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Simple Summary: Epstein–Barr virus (EBV) is the first discovered human tumor virus, which
contributes to the oncogenesis of many human cancers. The ubiquitin–proteasome system is a key
player during EBV-mediated oncogenesis and has been developed as a crucial therapeutic target
for treatment. In this review, we briefly describe how EBV antigens can modulate the ubiquitin–
proteasome system for targeted protein degradation and how they are regulated in the EBV life cycle
to mediate oncogenesis. Additionally, the developed proteasome inhibitors are discussed for the
treatment of EBV-associated cancers.

Abstract: Deregulation of the ubiquitin–proteasome system (UPS) plays a critical role in the develop-
ment of numerous human cancers. Epstein–Barr virus (EBV), the first known human tumor virus,
has evolved distinct molecular mechanisms to manipulate the ubiquitin–proteasome system, facili-
tate its successful infection, and drive opportunistic cancers. The interactions of EBV antigens with
the ubiquitin–proteasome system can lead to oncogenesis through the targeting of cellular factors
involved in proliferation. Recent studies highlight the central role of the ubiquitin–proteasome system
in EBV infection. This review will summarize the versatile strategies in EBV-mediated oncogenesis that
contribute to the development of specific therapeutic approaches to treat EBV-associated malignancies.
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1. Introduction

Ubiquitin is a 76-amino acids polypeptide that is highly conserved in eukaryotic cells.
Ubiquitination is a type of post-translational modification that targets specific proteins
by covalent ligation to ubiquitin. Ubiquitination is tightly mediated by three families of
ubiquitin-specific proteases: these are the ubiquitin-activating enzyme (E1), the ubiquitin-
conjugating enzyme (E2), and the ubiquitin-protein ligase (E3). Briefly, ubiquitin is activated
by the activating E1 in an ATP-dependent manner to form a thioester bond between ubiq-
uitin covalently bound to E1. Secondly, the conjugating E2 transfers the activated ubiquitin
from E1 to form an intermediate molecule. Thirdly, the E3 ligase then catalyzes the covalent
bond of ubiquitin to the target substrate. This multi-step process is critical for modulation of
diverse biological processes, including cell cycle, cell apoptosis, transcriptional regulation,
and signal transduction [1]. The modification of substrates by a single ubiquitin is called
monoubiquitination and is mostly associated with signal transduction, while the modifica-
tion of the targeted protein by a ubiquitin chain is referred to as polyubiquitination, which
can be recognized by the 26S proteasome for proteasomal degradation [2]. In the process of
polyubiquitination, seven lysines located in the ubiquitin polypeptide can be utilized to
form polyubiquitin chains that lead to various functions. Specifically, the well-studied K48
and K63-linked polyubiquitin chains are often involved in protein degradation and signal
transduction, respectively [2,3]. Ubiquitination can also be reversed by deubiquitinating
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enzymes (DUBs), and it is important to note that the dysregulation of DUBs is highly linked
to many human diseases [1,4].

Epstein–Barr virus (EBV) is the first discovered human oncogenic virus and infects
more than 90% of the human population worldwide. It is closely associated with a broad
spectrum of human malignancies, including Burkitt’s lymphoma (BL), Hodgkin lymphoma
(HL), nasopharyngeal carcinoma (NPC), and gastric carcinoma (GC) [5,6]. These diseases
are tightly linked to EBV lytic or latent infection, in which multiple viral antigens are
specifically expressed. These transcription programs hijack different cellular host factors
with various mechanisms to induce oncogenesis. In particular, EBV nuclear antigens
(EBNA1, 2, 3A, 3B, 3C, leader protein), and latent membrane proteins (LMP1, 2A, 2B)
have been shown to interact with the ubiquitin–proteasome system to manipulate cellular
processes indispensable for EBV-mediated oncogenesis [7,8]. In this review, we highlight
the strategies used by EBV antigens to manipulate the ubiquitin–proteasome pathway to
target cellular host factors. Similarly, viral antigens can be modulated by ubiquitination
in EBV-induced oncogenesis. These proteins may also serve as specific targets to facilitate
the development of novel therapeutic strategies for targeted interventions against EBV-
associated cancers.

2. EBV Latent Antigens Manipulate the Ubiquitin–Proteasome System for Targeted
Protein Degradation

EBV latent programs are characterized by the expression of viral latent antigens. These
EBV-encoded proteins can mediate the degradation of cellular factors through the ubiquitin–
proteasome system to induce oncogenesis in EBV-infected cells (Table 1). A previous
chemistry-based functional proteomic screen identified active ubiquitin-specific proteases
(USP) in EBV-infected cells [9]. USP5/IsoT, USP7/HAUSP, USP9, and USP15i are higher
expressed in EBV-transformed lymphoblastoid cell line (LCL) than in the Burkitt’s lym-
phoma cell line Raji [9]. This suggests several EBV latent antigens (e.g., EBNA2, EBNA3s,
and LMPs) expressing in LCL cells but not Raji cells may induce expression of these
UPSs that play potential roles in EBV-mediated lymphomagenesis. Using affinity chro-
matography in vitro and tandem affinity purification (TAP)-tagging in vivo approaches,
the EBV nuclear antigen 1 (EBNA1) was identified to be associated with several cellular
proteins, such as USP7/HAUSP, CK2, PRMT5 [10]. Further studies showed that EBNA1
is associated with host USP7 for PML disruption [11] (Figure 1). EBNA1 also recruits the
cellular CK2 kinase to directly interact with PML proteins and promotes CK2-mediated
PML phosphorylation, which induces the polyubiquitylation and degradation of PML [11].
Additionally, both EBNA1 and p53 can bind to the same domain of USP7, and the com-
petitive binding of EBNA1 to USP7 reduces p53 stability and facilitates cell survival in
EBV-infected cells [12,13].

The latent EBV nuclear antigen 3C (EBNA3C) is essential for transformation of hu-
man primary B lymphocytes in vitro [14]. EBNA3C manipulates several cellular proteins
through their targeted degradation by the ubiquitin–proteasome system to facilitate cell pro-
liferation in EBV-mediated oncogenesis. For example, Bcl6 is a zinc-finger transcriptional
repressor that functions as a master regulator of B cell development in the germinal center
(GC) [15,16]. Frequent dysregulation of Bcl6 expression is involved in various B cell malig-
nancies through disruption of germinal center formation [15,16]. A large number of cellular
functions can be modulated by Bcl6 in GC development, including cell survival, cell cycle,
DNA damage, and cell differentiation [17,18]. Thus, Bcl6 can be therapeutically targeted
by rationally designed inhibitors for treatment of associated lymphomas [19,20]. Further-
more, previous studies showed that EBNA3C can induce the degradation of Bcl6 protein
through the ubiquitin–proteasome-dependent signaling pathway, further promoting cell
proliferation, and the cell cycle by targeting Bcl2 and cyclin D1 [21]. EBNA3C directly
interacts with cyclin D1 and inhibits its ubiquitination [22]. EBNA3C also stabilizes cyclin
D2 by suppressing its ubiquitin-dependent degradation to facilitate cell proliferation [23].
Moreover, p21 and p27 are two cyclin-dependent kinase (CDK) inhibitors that block CDK
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activity in cell cycle regulation [24,25]. Functional loss of p21 or p27 can facilitate the
development of human cancers [26]. EBNA3C recruits the E3 ubiquitin ligase SCFSkp2 to
cyclin A complex and induces SCFSkp2-dependent p27 ubiquitination and degradation [27].
EBNA3C also physically interacts with the oncogenic serine/threonine kinase Pim-1 and
stabilizes Pim-1 by suppressing its poly-ubiquitination [28]. Overexpression of Pim-1 has
been shown to play a role in the progression of hematopoietic malignancies [29]. Further,
EBNA3C enhances Pim-1 mediated p21 degradation through the ubiquitin–proteasome
pathway, which promotes proliferation of EBV-infected B cells [28].

Table 1. The interaction of EBV antigens and cellular factors targeted for protein degradation. The
cellular proteins that directly interact with the indicated EBV antigens are listed, which shows that
both EBV latent and lytic genes are involved in regulating degradation of these substrates.

EBV Life Cycle EBV Antigens Cellular Factors

Latent cycle

EBNA1
USP7
CK2

PRMT5

EBNA3C

Bcl6
Cyclin D1
Cyclin D2

Skp2
Pim-1

LMP1

RIPK1
RIPK3

P53
TRAF1
TRAF6

NF-κB2 p100
RNF31
IRF7
CHIP

TRAFD1

LMP2A

AIP4
WWP2
Nedd4
Siah-1

Lytic cycle

Rta TRIM5α

BDLF3 MHC-I
MHC-II

BPLF1

P62
TOP2

TRIM25
PCNA
Rad18

RR

BGLF2 Cullin 1
TYK2

EBV latent membrane protein 1 (LMP1) is another essential viral antigen for EBV-
mediated transformation, of which LMP1-induced NF-κB activation is necessary for sur-
vival of EBV-transformed lymphoblastoid cells [30,31] (Figure 2). NF-κB activation is
usually blocked by inhibitors of kappa B (IκBs), and the IκB kinase (IKK) promotes pro-
teasomal degradation of IκB which leads to NF-κB activation [32]. TRAF6 induces IKK
activation through K63-linked ubiquitination [33,34]. Moreover, LMP1 activates NF-κB
(p65) signaling pathway by inducing TRAF6 poly-ubiquitinated modification in EBV la-
tency, while EBV-encoded BPLF1 interacts with, and deubiquitinates TRAF6 to inhibit the
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NF-κB signaling pathway during EBV lytic replication [35–37]. LMP1 promotes p53 stabil-
ity by inhibiting K48-linked ubiquitination of p53 mediated by the E3 ligase MDM2, while
LMP1 enhances p53 accumulation by inducing K63-linked ubiquitination of p53 that is
mediated by the tumor necrosis factor receptor-associated factor 2 (TRAF2), contributing to
the suppression of cell apoptosis and cell cycle arrest in EBV latently infected cells [38]. The
ubiquitin sensor and adaptor protein SQSTM1/p62 has multiple oncogenic roles during
diverse conditions [39,40]. p62 is an autophagy adaptor that contributes to formation of
protein aggregates and can also be regulated as a substrate by autophagy [41,42]. Addi-
tionally, p62 induces K63-polyubiquitination of TRAF6 to regulate NF-κB activation [43].
During EBV latency, LMP1 activates p62 through NF-κB and AP1, then p62 promotes LMP1-
mediated TRAF6 ubiquitination [44]. A deficiency in p62 expression in EBV-transformed B
cells can inhibit LMP1-mediated cell proliferation, and suggests p62 as a novel protein in
LMP1-induced oncogenic pathways [44].
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Different from the canonical activated NF-κB pathway, LMP1 induces degradation of
NF-κB p100 subunit through the ubiquitin–proteasome system and promotes translocation
of activated p52 together with p65, the RelB NF-κB subunit to the nucleus [45]. This
signaling pathway is induced independently of IKKγ/NEMO that is critical for activation
of the LMP1-mediated canonical NF-κB pathway, suggesting a novel signaling pathway in
LMP1-induced NF-κB activation [45].

LMP1 interacts with RNF31, a critical component of linear ubiquitin assembly complex
(LUBAC), and LUBAC is responsible for ubiquitination of NEMO and interferon regulatory
factor 7 (IRF7) [46]. Moreover, RNF31 downregulation in EBV-positive cells inhibits LMP1-
related downstream genes and suppresses cell proliferation [46]. LMP1-induced IKK2
activation is dependent on NEMO ubiquitination and related to the activation of the down-
stream canonical NF-κB and JNK signaling pathways [47,48]. LMP1 induces the expression
of A20 and IRF7, but A20 negatively regulates IRF7 ubiquitination in EBV latency [49].
LMP1 also stimulates IRF7 activation by promoting ubiquitination of receptor-interacting
protein kinase 1 (RIPK1) that is critical for TNF-induced NF-κB activation [50–52]. LMP1
enhances K63-linked polyubiquitination of the death domain of kinase RIPK1, but inhibits
K63-linked polyubiquitination of RIPK3 through direct interaction with RIPK1 or RIPK3,
leading to the suppression of necroptosis [53]. Additionally, the LMP1 TES1/CTAR1 do-
main can recruit TRAF1 to activate the p38, JNK, ERK, and canonical NF-κB pathways.
LMP1 TES1 domain also induces the interaction of TRAF1 and LUBAC, and triggers the
attachment of linear (M1)-linked polyubiquitin chains to TRAF1 complexes, both of which
are mediated by TRAF2 protein [54]. These findings show that LUBAC-induced linear
ubiquitination is crucial for LMP1-medicated NF-κB activation in EBV-infected cells.

A screen using co-immunoprecipitation coupled with mass spectrometry (IP-MS)
showed that LMP1 can interact with 19 E3 ligases, including CHIP and TRAFD1 [55].
CHIP directly interacts with RIG-I and is responsible for RIG-I degradation via K48-linked
ubiquitination [56]. In addition, LMP1 can inhibit IFN-β expression through promoting
RIG-I degradation in nasopharyngeal carcinoma (NPC) cell line C666-1, suggesting that
LMP1 may recruit CHIP E3 ligase to degrade RIG-I through the ubiquitin–proteasome
system [55]. However, further studies will be required to explore the detailed mechanism
by which RIG-I is degraded.

EBV-encoded latent membrane protein 2A (LMP2A) amino-terminal domain can
specifically bind to four cellular proteins, including AIP4, WWP2/AIP2, and Nedd4,
all of which belong to the Nedd4-like ubiquitin-protein ligase family [57]. LMP2A can
recruit these ubiquitin-protein ligases to induce degradation of the downstream Lyn pro-
tein tyrosine kinase [57,58]. LMP2A utilizes these Nedd4 family members to trigger the
ubiquitination of Lyn and Syk protein tyrosine kinases, which can lead to regulation of
LMP2A-mediated B-cell signaling and the maintenance of viral latency [59,60]. In LMP2A+

Itch-/- mice, the increased growth of bone marrow B cells demonstrates that Itchy acts as a
Nedd4 ubiquitin ligase to negatively regulate LMP2A activity [61]. Besides Itchy, LMP2A
is ubiquitinated by the Nedd-family E3 ligases AIP4 and WWP2 [62].

Furthermore, LMP2A enhances MYC expression and suppressed p53-mediated apop-
tosis in a mouse model [63]. LMP2A can also induce expression of the adaptor protein
cyclin-dependent kinase regulatory subunit 1 (Cks1), which degrades the tumor suppressor
p27Kip1 in a ubiquitin–proteasome dependent manner [63]. Loss of Cks1 results in the
prolong of LMP2A-induced lymphomagenesis in mice [63]. Notably, a study using LMP2A
and MYC transgenic mice indicated that p27Kip1 degradation is required for LMP2A-driven
lymphomagenesis [64]. EBV stabilizes β-Catenin in EBV-associated type III latency but
degrades it in type I latency, which involves the function of deubiquitinating enzymes [65].
LMP1 upregulates β-Catenin expression by inhibiting seven in absentia homolog 1 (Siah-1)
ubiquitin ligase-mediated ligation in B lymphoma cells [66]. Another study indicated that
LMP2A activates PI3K/AKT signaling pathway to stabilize β-Catenin in epithelial cells,
but it is not clear whether this is the case in EBV-infected B cells [67]. Moreover, how
activated PI3K/AKT signaling is associated with deubiquitinating enzymes is not under-
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stood and needs further investigation. LMP2A activates the extracellular signal regulated
kinase (ERK) signaling pathway and downregulates levels of the pro-apoptotic protein
Bim via proteasomal degradation in EBV-infected cells [68]. Therefore, both LMP1 and
LMP2A can interact with cellular ubiquitin ligases to modulate the ubiquitin–proteasome
pathway. A study using label-free quantitative proteomics identified many proteins that
are regulated by LMP1 and LMP2A [69]. Although they may target distinct cellular fac-
tors, they can affect common signaling pathways through recruitment of the ubiquitin
degradation pathway [69].

A recent study showed that the EBV-encoded noncoding RNA EBER2 binds to the
mRNA of the UCHL1 and recruits its transcription transactivator PU.1 to induce UCHL1
expression. This leads to increased expression of the downstream Aurora kinases and
cyclin B1 to further promote cell growth [70]. This suggests that noncoding RNAs can
modulate the deubiquitinase to regulate cell growth or cell cycle, but these functions may
be related to the specific cell types and the different EBV strains.

3. EBV Lytic Antigens Modulate the Activities of the Ubiquitin–Proteasome System
for Protein Degradation

A systematic analysis revealed quantitative temporal proteomic profiling that included
8318 host proteins and 69 EBV proteins during EBV lytic replication. These proteins
are involved in multiple signaling pathways [71]. Among them, an EBV early protein
targets the B cell receptor (BCR) complex for ubiquitin-dependent proteasomal degradation,
facilitating cell replication in EBV-infected B cells [71]. EBV-encoded Zta and Rta proteins
play a central role in the switch of EBV latency and lytic replication [72,73]. These two
critical immediate-early proteins are responsible for expression of all other EBV lytic genes
during EBV reactivation [73]. Rta can interact with the E3 ubiquitin ligase TRIM5α in vitro
and colocalize in the nucleus during EBV lytic replication [74]. Furthermore, TRIM5α can
induce Rta ubiquitination which results in inhibition of EBV lytic progression [74].

To escape the recognition of human T cells, the late lytic BDLF3 protein degrades
the major histocompatibility complex (MHC) class I molecules in a ubiquitin–proteasome
dependent manner and induces increased internalization and delayed appearance of these
MHC molecules on the surface of CD8+ T cells [75]. BDLF3 also targets MHC class II
molecules of CD4+ T cells [75]. The reduced expression of MHC class I and II molecules on
human T cells impairs the recognition of EBV late lytic proteins by these T-cells.

The EBV large tegument protein BPLF1 is a known ubiquitin deconjugase that targets
the autophagy receptor SQSTM1/p62 (sequestosome 1) in vesicular trafficking and au-
tophagy [76]. BPLF1 directly interacts with p62 and inhibits its ubiquitination [76]. A recent
study demonstrated that BPLF1 could target topoisomerase II (TOP2) and stabilize sumoy-
lated TOP2. This results in inhibition of the DNA damage response and etoposide-induced
apoptosis [77]. The resistance of etoposide toxicity in EBV-transformed cells is mediated by
the expression of tyrosyl-DNA phosphodiesterase 2 (TDP2) that promotes TOP2 releases
and DNA repair [77]. BPLF1 can disturb the cellular DNA repair pathway through the
deubiquitination of the DNA processivity factor PCNA [78]. Furthermore, BPLF1 directly
interacts with the E3 ubiquitin ligase Rad18 and stabilizes Rad18 protein to promote EBV
lytic replication and the production of infectious viruses [78]. BPLF1 also induces TRIM25
ubiquitination and inhibits RIG-I ubiquitination to halt the innate anti-viral response [79].
Meanwhile, BPLF1 interacts with and deubiquitinates PCNA to reduce the localization
of polymerase η (Pol η) to the nuclear repair foci, leading to the disruption of translesion
synthesis [80]. BPLF1 also deubiquitinates EBV ribonucleotide reductase (RR) and reduces
its activity in regulation of EBV replication [81].

A functional screen identified the EBV tegument protein BGLF2, which suppresses
the host interferon (IFN) signaling pathway [82]. In particular, BGLF2 recruits Cullin 1 E3
ligase to promote STAT2 degradation via K48-linked polyubiquitination. This facilitates
EBV primary infection by inhibiting IFN signaling [82]. Another study reported that BGLF2
counteracts type I IFN signaling but with a different mechanism than that where BGLF2
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interacts with the TYK2 tyrosine kinase to reduce the type I IFN signaling [83]. EBV-encoded
lytic protein BBRF2 interacts with its partner BSRF1 to tether EBV nucleocapsids, and
mechanistically, BBRF2 stabilizes BSRF1 by inhibiting the ubiquitin–proteasome pathway,
contributing to augmented EBV infectivity [84,85].

4. EBV-Encoded Proteins Can Be Modified by the Ubiquitin–Proteasome System

A study showed that deletion of the Gly-Ala repetitive domain of EBNA1 could
enhance its degradation via the ubiquitin–proteasome pathway, implying that Gly-Ala
repeats promoted EBNA1 stability [86]. More strikingly, the length of the repeats and
the types of degradation signal affect the stability of EBNA1, and these further hamper
major histocompatibility complex (MHC) class I-mediated antigen processing and facilitate
immune escape [86–89]. A natural product triptolide, which induces apoptosis and reduces
cell proliferation, led to a reduction in EBNA1 expression by inducing the ubiquitin-
dependent protein degradation in nasopharyngeal carcinoma (NPC) cells [90]. Using the
established lymphoblastoid cell lines (LCLs) stably expressing Flag-HA tagged EBNA3
proteins, the investigators identified distinct interaction complexes of individual EBNA3
proteins [91]. They found that EBNA3 proteins can interact with USP46 deubiquitinating
enzyme (DUB) as well as its associated chaperones WDR48 and WDR20 [91]. Although the
DUB complex is recruited by EBNA3 protein, more evidence is needed to explore how these
complexes target the specific substrates. Besides, LMP1 itself can be ubiquitinated through
the ubiquitin–proteasome pathway [92]. Ribosomal protein S27a (RPS27a) interacts with
LMP1 and enhances LMP1 expression via inhibition of its proteasomal degradation in
EBV-infected cells [93].

The immediate-early protein Zta can also be modified by ubiquitination. This is facili-
tated by targeting four lysine residues on the Zta protein [94]. This type of modification
inhibits the stability of Zta, and therefore, the following viral lytic replication, demonstrat-
ing the important function of ubiquitination on regulating the EBV life cycle [94]. RNF4,
a RING-domain-containing ubiquitin E3 ligase, can directly target Rta and induce the
ubiquitination of SUMO-2-conjugated Rta [95]. The mutation of lysine residues on Rta
impairs its sumoylation and decreases RNF-4 mediated Rta ubiquitination. Therefore, it
suggests that RNF4 acts as a SUMO-targeted ubiquitin E3 ligase of Rta to modulate EBV
lytic replication [95].

After screening a kinase inhibitor library, one study found that cyclin-dependent kinase
(CDK) inhibitors can induce degradation of the viral lytic protein BDLF4, which is important
for EBV lytic replication, and progeny production [96,97]. CDK2 complexes phosphorylate
BDLF4 at threonine 91 to protect BDLF4 from ubiquitin-dependent degradation [96]. EBV-
encoded BFRF1 protein regulates the nuclear envelope (NE)-derived vesicles by recruiting
the Alix protein, which is associated with cellular endosomal sorting complex required for
the transport (ESCRT) machinery [98]. BFRF1 ubiquitination is mediated by the ubiquitin
ligase Itch and modulates the formation of BFRF1-driven NE vesicles [98]. Interestingly, Itch
is associated with both BFRF1 and Alix proteins, suggesting that these molecular players
interact with each other to control BFRF1-induced NE vesicles, and EBV maturation [98].

EBV envelop glycoprotein B (gB) is a key protein as a member of the fusion machinery
required for viral entry into B cells and epithelial cells [99]. The E3 ligase F-box only protein
2 (FBXO2) was identified due to its ability to recognize N-glycosylated gB, and induced its
degradation through the ubiquitin–proteasome pathway. This resulted in the suppression
of EBV infectivity [100]. These findings represent a new host defense mechanism strategy
against EBV infection.

5. Targeting EBV-Associated Oncogenesis with Proteasome Inhibitors

The proteasome in the ubiquitin–proteasome pathway has been identified as a ther-
apeutic target for treatment of many cancers. More specifically, proteasome inhibitors
have also been used for targeting EBV-associated diseases. Bortezomib (Velcade) is the
first FDA-approved reversible proteasome inhibitor [101,102]. Bortezomib suppressed the
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growth of EBV-positive Burkitt’s lymphoma in a murine xenograft model. Moreover, the
tumor growth was almost completely halted after treatment with Bortezomib followed
by the nucleoside analogue [131I]2′-fluoro-2′-deoxy-beta-D-5-iodouracil-arabinofuranoside
([131I]FIAU) [103,104]. Further studies showed that Bortezomib treatment enhances the
binding of CCAAT/enhancer-binding proteinβ (C/EBPβ) to the Zta promoter and induced
Zta-mediated EBV lytic replication [105]. Ixazomib (Ninlaro) is another FDA-approved oral
proteasome inhibitor [106,107]. One study indicated that Ixazomib promoted accumulation
of polyubiquitinated proteins and induces cell cycle arrest and apoptosis in EBV-associated
B-lymphoblastoid cells [108]. Both Bortezomib and Ixazomib have a similar structure and
can inhibit the β1 caspase-like and β2 trypsin-like subunits of the 20S proteasome [106,109].
Epoxomicin is a natural product that can specifically target the 20S proteasome and function
as a selective and irreversible proteasome inhibitor [110,111]. However, Epoxomicin has
poor drug-like features including the labile epoxy ketone pharmacophore, which restricts
its development as a potential proteasome inhibitor [112,113]. Furthermore, Carfilzomib
(Kyprolis), a derivative of Epoxomicin, becomes another FDA-approved irreversible pro-
teasome inhibitor, which can more preferentially inhibit the chymotrypsin-like subunit β5
of 20S proteasome [114–116]. Although Carfilzomib exhibits improved efficacy and safety
over Bortezomib, its effects on EBV-associated lymphomas remain unknown [117]. Other
proteasome inhibitors, such as Marizomib, Oprozomib, and Delanzomib are still in clinical
trials [118]. Moreover, ubiquitin C-terminal hydrolase L1 (UCHL1) was highly expressed
after more than 30 days post-infection during establishment of EBV-transformed LCLs,
and may be associated with EBER regulation [9,70]. A selected small-molecule inhibitor
targeting the deubiquitinating enzyme (DUB) UCHL1, LDN-57444 or its soluble form
LDN-Pox, was shown to suppress the motility of EBV-positive nasopharyngeal cells [119].
This suggests that DUB can be a potential therapeutic target for treating cancers. Although
these drugs are recognized as proteasome inhibitors, their non-proteasome targets still
need further investigation.

A high throughput screening of small molecule compounds identified five tetrahydro-
carboline derivatives that effectively reactivated the lytic cycle through induction of the
transcription activity of EBV immediate-early Zta gene [120]. Among these compounds,
C60 consistently stimulated EBV lytic reactivation and can synergize with Ganciclovir
(GCV) to selectively eliminate EBV-positive tumor cells [120]. A following biochemical
affinity purification assay showed that C60 can directly target the Cullin exchange fac-
tor CAND1 [121]. Further, C60 disturbs the association of CAND1 with Cullin 1 and
accumulates the global ubiquitylated substrates [121]. This stabilizes the EBV Zta protein
by regulating the ubiquitin-dependent proteasome pathway, which leads to EBV lytic
reactivation from latency [121].

6. Conclusions and Perspectives

The ubiquitin–proteasome system (UPS) is central to the regulation of the stability of
cellular factors as well as their related signaling pathways. EBV has developed multiple
strategies that manipulate the ubiquitin system to induce oncogenesis or escape immune
response in EBV-infected cells. Therefore, the ubiquitin–proteasome system becomes an
important therapeutic target for development of interventions to treat EBV-associated
diseases. Several proteasome inhibitors have been approved, or in clinical trials, but the
toxicity and resistance of these inhibitors restrict their wide application because of the
accumulation of ubiquitinated proteins [122]. The combination of proteasome inhibitors
and HDAC inhibitors or other immunotherapies as a future direction has the potential
to be used in EBV-associated cancers [123–125]. Furthermore, the development of novel
EBV-specific therapeutic agents, which can modulate the interactions of viral antigens and
their cellular binding partners, or target viral antigens-related E3 ligase, will offer novel
strategies against EBV-associated cancers.
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