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Abstract

Parrondo’s games were first constructed using a simple tossing scenario, which demonstrates the following paradoxical
situation: in sequences of games, a winning expectation may be obtained by playing the games in a random order,
although each game (game A or game B) in the sequence may result in losing when played individually. The available
Parrondo’s games based on the spatial niche (the neighboring environment) are applied in the regular networks. The
neighbors of each node are the same in the regular graphs, whereas they are different in the complex networks. Here,
Parrondo’s model based on complex networks is proposed, and a structure of game B applied in arbitrary topologies is
constructed. The results confirm that Parrondo’s paradox occurs. Moreover, the size of the region of the parameter space
that elicits Parrondo’s paradox depends on the heterogeneity of the degree distributions of the networks. The higher
heterogeneity yields a larger region of the parameter space where the strong paradox occurs. In addition, we use scale-free
networks to show that the network size has no significant influence on the region of the parameter space where the strong
or weak Parrondo’s paradox occurs. The region of the parameter space where the strong Parrondo’s paradox occurs reduces
slightly when the average degree of the network increases.
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Introduction

Parrondo’s games can produce a paradoxical effect that

alternating plays of two losing games can produce a winning

game. Parrondo’s original games [1] involve two games, A and B.

The player has some capital, which is increased by one with a

probability of winning p1 and decreased by one with a probability

1-p1 in game A. Game B is slightly more complicated, and the

rules are that if the capital is a multiple of an integer M, the

probability of winning is p2. If it is not, the probability of winning is

p3.

Game A is a losing strategy if p1,0.5. Harmer et al. [2] showed

that game B is a losing strategy when the inequality

(1{p2)(1{p3)M{1

p2p3
M{1

w1 holds, and the combined game A+B is a

winning strategy when the inequality
(1{q2)(1{q3)M{1

q2q3
M{1

v1

holds, where q2~pp1z(1{p)p2, q3~pp1z(1{p)p3, and p is the

probability of playing game A. An example of the parameters that

satisfy the previous inequalities was given by [1] as follows:

p1 = 0.5-e, p2 = 0.1-e, p3 = 0.75-e, M = 3, p = 0.5 and e= 0.005.

Notice that when e is zero, game A is a fair game (i.e., it is neither

losing nor winning on average).

Parrondo’s paradox has been confirmed by computer simula-

tions, the Brownian ratchet and the discrete-time Markov chain

[2–4]. In addition, the Parrondo effect has inspired the studies of

the negative-mobility phenomena [5], the reliability theory [6], the

noise-induced synchronization [7] and the controlling chaos [8].

In biological systems, Parrondo’s paradox may be related to the

dynamics of gene transcription in GCN4 protein and the dynamics

of transcription errors in DNA [2]. Moreover, Parrondo’s paradox

has been studied in various interesting scenarios involving

population genetics [9–12]. In the stock market, Boman et al.

[13–14] used a Parrondian game framework as a toy model to

study the dynamics of insider information. Parrondo’s paradox not

only can be used to explain a large number of nonlinear

phenomena [4] but also presents its own rich non-linear

characteristics. Recent work [15] has shown that Parrondo’s

games exhibit fractal patterns in their state space.

In Parrondo’s games, the construction of game B is a critical

factor to produce the paradoxical phenomena. Usually, several

asymmetric branches exist in game B, some of which are favorable

(i.e., the probability of winning is large), and others are

unfavorable (i.e., the probability of losing is large). These

asymmetric structures form a ‘‘ratcheting’’ mechanism. When

game B is played individually, game B is losing by setting the

parameters of winning or losing probabilities. When two losing

games are combined (game A+B) in a random or periodic

alternation, the capital or the winning and losing states are

changed because of the ‘‘agitating’’ role of game A. Thus, when it

is game B’s turn to play, the chance for the favorable branches

increases. Finally, a winning counter-intuitive phenomenon

appears. This paradoxical effect has motivated a dynamic

mechanism study of a widespread counter-intuitive phenomenon

that exists in physics, biology, economics and other disciplines. In
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the engineering literature it is known that individually unstable

systems can become stable if coupled together [16]. In the theory

of granular flow, drift can occur in a counterintuitive direction.

For instance, the ‘‘Brazil nut effect’’ [17–18] has shown that the

large Brazil nuts rise to the top when you shake a bag of mixed

nuts. In the area of mathematics, Pinsky and Scheutzow [19] have

shown that switching between two transient diffusion processes in

random media can form a positive recurrent process, which can be

viewed as a continuous-time version of Parrondo’s games. Masuda

and Konno [11], who studied the Domany-Kinzel probabilistic

cellular automata, concluded that alternating two supercritical

dynamics resulted in the subcritical dynamics in which the

population died out. Almeida et al. [20] have proposed a case

that ‘‘chaos+chaos = order’’, where the periodic mixing of two

chaotic dynamics resulted in an ordered dynamics under certain

circumstances. Therefore, the dynamic mechanisms similar to

Parrondo’s games exist behind the counterintuitive phenomenon

produced by the two mixed systems (processes, states). One system

plays the ‘‘ratcheting’’ role, and the other plays the ‘‘agitating’’

role. The key to study these counterintuitive phenomena is to

analyze the ‘‘ratcheting’’ role. By analyzing the phenomena such

as the Brownian ratchet, the Brazil nut effect, the longshore drift

on a beach, the buy-low sell-high process in stock-market trading

and the two-girlfriend paradox, Abbott [21] demonstrated that

various ‘‘ratcheting’’ mechanisms were caused by the asymmetries

of space, friction, information, money and time.

The structure of game B in Parrondo’s original games has two

branches, which depend on the modulus of the capital. Such

dependence limited the application of the games in practice.

Therefore, Parrondo et al. [3] modified game B and devised a new

structure that depended on the recent history (t-2, t-1) of wins and

losses. The modified game B had four branches: (lose, lose), (lose,

win), (win, lose) and (win, win). This new structure increased the

region of the parameter space where the Parrondo’s paradox

occurred. The theoretical analysis demonstrated that the para-

doxical space based on the history-dependent model was 50 times

larger than the original version [15].

The above variations of game B, which is capital-dependent or

history-dependent, have been introduced into Parrondo’s games.

Toral [22] and Mihailovic [23–24] proposed a structure of game B

that depended on the neighboring players, who surrounded the

player whose turn it was to play the game. A remarkable difference

was that an ensemble of N players was considered instead of only

one player. Each one occupied a certain space. For any player i, all

of its surrounding neighbors composed its spatial niche. At present,

there are networks of a one-dimensional line and a two-

dimensional lattice, which connect N players. For the one-

dimensional line, the neighbors of player i are i-1 and i+1. I–1

and i+1 have four different winning and losing states, which are (0

0), (0 1), (1 0) and (1 1), where 0 denotes a losing state, and 1

denotes a winning state. Therefore, the structure of game B

consists of four branches. The probability of winning in each

branch for player i is p0, p1, p2 and p3 respectively. For the two-

dimensional lattice, the four neighbors of player i have the

following five different winning and losing states (here, the

positions of the winning and losing states of the neighbors are

not distinguished): (1) all the four neighbors are in the losing states,

that is, (0000); (2) one neighbor is in the winning state, and the

other three neighbors are in the losing states, that is, (1000); (3) two

neighbors are in the winning states, and the other two neighbors

are in the losing states, that is, (1100); (4) three neighbors are in the

winning states, and one neighbor is in the losing state, that is,

(1110); (5) all the four neighbors are in the winning states, that is,

(1111). Therefore, the structure of game B consists of five

branches. The probability of winning in each branch for the

player i is p0, p1, p2, p3 and p4 respectively.

Because the actual networks are complex, there are many types

of topologies, such as random graphs, small-world networks and

scale-free networks. However, the above two structures of game B

cannot be extended directly to arbitrary topologies, where the

number of the neighbors of the nodes cannot be maintained

consistently. Therefore, we want to design a structure of game B

that can be applied to arbitrary topologies, which means a

structure of game B that can be applied to the nodes with different

degrees. Toyota [25] proposed a construction method for game B

Figure 1. The structure of game B based on arbitrary topologies.
doi:10.1371/journal.pone.0067924.g001
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in scale- free networks, where each player on a network played a

game L when there was R or more winners in the neighborhood

connected to the player and played a game W otherwise in game

B. The simulation results and the theoretical studies showed that

Parrondo’s paradox might not occur. Here, based on the spatial

neighboring environment, the paper proposes a structure of game

B to be applied in arbitrary topologies. The results show that

Parrondo’s paradox can occur. Moreover, the size of the region of

Figure 2. The degree distributions progressively changing from a two-dimensional network to a random graph. The size of the
network is 900. The number of rewiring times L is 0, 90, 900 and 3600 respectively. L = 0 corresponds to a two-dimensional lattice. The degree
distribution of the network is a d distribution and the degree of all nodes is four. The node degree of the network progressively changes to a Poisson
distribution with the increment of L. The average degree of the nodes remains at four during this process.
doi:10.1371/journal.pone.0067924.g002

Figure 3. The degree distributions progressively changing from a random graph to a scale-free network. The network size is 900. The
parameter a is 1.0, 0.7, 0.3 and 0.0 respectively. a= 1 corresponds to a random graph. The node degree of the network satisfies a Poisson distribution.
With the decrease of a, the node degree of the network gradually changes to a power-law distribution. a= 0 corresponds to a scale-free network. The
degree distribution of the network has an obvious fat-tail phenomenon.
doi:10.1371/journal.pone.0067924.g003
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the parameter space that elicits Parrondo’s paradox depends on

the heterogeneity of the degree distributions of the networks. A

higher heterogeneity of the degree distributions of the networks

produces a larger region of the parameter space where the strong

paradox occurs.

Model

In this article, Parrondo’s model based on arbitrary topologies is

shown in Figure 1. The model is composed of two games, A and B.

Consider complex networks composed of N nodes. The game

modes include playing game A and game B individually and

playing a randomized game A+B. The randomized game A+B

means a probabilistic sequence of games A and B. The dynamic

processes of the randomized game A+B are as follows: for each

round of the game, one node ‘i’ is chosen at random from N nodes

to play game A (with a probability p) or game B (with a probability

1-p).

A Zero-sum Game between Individuals–Game A
Game A is used to represent the competition behavior between

the individuals in the networks, which is designed to be a zero-sum

game. It has no impact on the total capital of the population, but it

changes the capital distributions among the population. When

game A is played, we need to randomly choose a node j from the

neighboring nodes that are connected with i. The winning

probabilities of nodes i and j are 0.5, respectively. When i wins, j

pays one unit to i; conversely, i pays one unit to j.

The Construction of Game B
We consider the following two conditions when constructing

game B: (1) The structure of game B needs several branches to

form the ‘‘ratcheting’’ mechanism. (2) The structure of game B

needs to be applied to the individuals with an arbitrary number of

neighbors. We must avoid the influence of the number of

neighbors while constructing the branches. Based on these two

considerations, game B has two branches, which are generated

according to the capital of node i and its neighbors. In branch one,

when the capital of node i is less than or equal to the average

capital of all of its neighbors, the winning probability is p1; in

branch two, when the capital of node i is greater than the average

capital of all of its neighbors, the winning probability is p2. Game B

can also be constructed in other forms that are applicable to any

networks. Therefore, the results and the related conclusions of this

paper are obtained based on the Parrondo’s model shown in

Figure 1.

Computer Simulations

We perform the following computer simulations based on

Parrondo’s model in complex networks.

Based on the needs of computer simulations, we define the

average fitness of the population d as follows:

d(t)~
W (t)

T :N
ð1Þ

Figure 4. Simulations based on the networks, which progressively change from a two-dimensional lattice to a random network. The
population size N is 900. The average degree of the network is four, and the average number of playing times T of each individual is 100. The
probability of playing game A is p = 0.5. Play the games 30 times with different random numbers, and draw the corresponding figures according to
the average results of the games. The blue area in the picture demonstrates the weak Parrondo’s paradox area, whereas the red denotes the strong
area. Figures 4 (a), (b), (c) and (d) correspond to the networks with the rewiring times L = 0, 90, 900 and 3,600, respectively.
doi:10.1371/journal.pone.0067924.g004
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where: N is the population size, and T is the average number of

playing times for each individual. In this study, T = 100.

W (t)~
PN

i~1

Ci(t), which denotes the total capital of the population,

andCi(t) is the capital at time t (t[ 0,TN½ �) of individual i. The

initial capital of all individuals is equal.

The condition under which the weak paradox occurs is as

follows:

d AzBð Þ
wd Bð Þ ð2Þ

The conditions under which the strong paradox occurs are as

follows:

d AzBð Þ
§0 ð3Þ

d Bð Þ
v0 ð4Þ

where d Bð Þand d AzBð Þrepresent the capital of games B and A+B in

the steady state, respectively.

In the following section, we analyze three types of factors,

including the heterogeneity of the degree distributions of the

networks, the network size and the average degree of the network,

and observe the influence of these factors on the paradoxical effect.

The Influence of the Heterogeneity of the Degree
Distributions of the Networks on the Paradoxical Effect

To cleanly control the heterogeneity manipulation, we use the

following two methods.

(1) In order to reflect the progressive changes from a two-

dimensional lattice to a random graph, we start from a two-

dimensional lattice and use the following rewiring mechanism

to generate a random graph. The basic steps are as follows

Figure 5. Simulations based on the networks, which progressively change from a random network to a scale-free network. The
population size N is 900. The average degree of the network is four and the average number of playing times T of each individual is 100. The
probability of playing game A is p = 0.5. Play the games 30 times with different random numbers, and draw the corresponding figures according to
the average results of the games. The blue area in the picture demonstrates the weak Parrondo’s paradox area, whereas the red denotes the strong
area. Figures. 5 (a), (b), (c) and (d) correspond to the networks with the parameter a= 1.0, 0.7, 0.3 and 0.0, respectively.
doi:10.1371/journal.pone.0067924.g005

Table 1. The average fitness and the proportion of playing branch two (from the two-dimensional lattice to the random network).

Game Modes L = 0 L = 90 L = 900 L = 3600

d proportion d proportion d proportion d proportion

Game B 0.0339 49.20% 0.0328 49.12% 0.0240 48.48% 0.0179 48.05%

Randomized game A+B 0.0187 49.47% 0.0186 49.44% 0.0172 49.25% 0.0166 49.15%

doi:10.1371/journal.pone.0067924.t001

Complex Networks and Paradoxical Effect

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e67924



[26]: (a) generate an initial two-dimensional lattice; (b)

randomly choose a node E and then randomly choose a

node F from E’s neighbors. Break the connection between

nodes E and F; (c) randomly choose two nodes G and H from

the network and build a connection between E and G and a

connection between F and H; (d) repeat steps (b) and (c) L

times. As the number of rewiring times (L) increases, the

stochastic degree of the network increases. The node degree of

the network progressively changes from a d distribution to a

Poisson distribution. Moreover, the average degree of the

network remains at four. The number of rewiring times L is

the controlling index of the heterogeneity of the degree

distributions. The corresponding degree distributions of the

networks are shown in Figure 2 (where k is the degree, and p(k)

is the probability).

(2) To reflect the progressive changes from a random graph to a

scale-free network, we use a model based on the degree

distribution with adjustable parameters of the network and use

the corresponding construction algorithm. The steps of the

algorithm [27] are as follows: (a) growth. The initial network

consists of N nodes, where m0 nodes are fully connected, and a

set J2 is constituted; an unconnected set J1 is composed of (N-

m0) isolated nodes. At each time step, choose a new node from

J1. The new node has m edges connected with the other

nodes. (b) Preferential attachment. The above new node’s m

edges are randomly linked to any other node from (N-1) nodes

with a probability a (here, we have to avoid the multiple

edges); then connect the nodes of the set J2 by following a

linear preferential-attachment strategy with the probability 1-

a. After the connection is completed, we remove the new node

from J1 and add it into J2. (c) After N-m0 time steps, a series of

networks are generated by controlling the parameter a [½0,1�,
where a= 0.0 corresponds to a scale-free network, and a= 1.0

corresponds to a random graph. With a decrease in a, the

node degree changes progressively from a Poisson distribution

to a power-law distribution, and the average degree of the

network remains at four. The parameter a is the controlling

index of the heterogeneity of the degree distributions. Figure 3

shows the corresponding degree distributions of the networks.

Table 2. The average fitness and the proportion of playing branch two (from the random network to the scale-free network).

Game Modes a = 1.0 a = 0.7 a = 0.3 a = 0.0

d proportion d proportion d proportion d proportion

Game B 0.0207 48.26% 0.0157 47.89% 20.0092 46.10% 20.0459 43.44%

Randomized game A+B 0.0172 49.23% 0.0163 49.11% 0.0155 48.99% 0.0138 48.75%

doi:10.1371/journal.pone.0067924.t002

Figure 6. The relationship between the degree and the capital (based on the BA scale-free network). The population size N is 10, 000.
The average degree of the network is four and the average number of playing times T of each individual is 100. The probability of playing game A is
p = 0.5. The probabilities of winning in branch one and branch two of game B are p1 = 0.175 and p2 = 0.870, respectively. Play the games 1000 times
with different random numbers, and draw the corresponding figures according to the average results of the games. For the nodes with the same
degree, the capital is averaged from all of these nodes.
doi:10.1371/journal.pone.0067924.g006
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The simulation results based on Parrondo’s model (shown in

Figure 1) are given in Figures 4 and 5. These results demonstrate

that the structure of game B proposed in the paper can produce

Parrondo’s paradox based on the complex networks. Figure 4

shows that the results of Parrondo’s paradox change progressively

from a two-dimensional lattice to a random network. As the

number of rewiring times, L, increases, the node degree of the

network gradually changes from a ddistribution to a Poisson

distribution. Moreover, the region of the parameter space where

the strong paradox occurs (the red region in Figure 4) grows

progressively. The region of the parameter space where the weak

paradox occurs (the blue part in Figure 4) is divided into two

regions by the red part. The characteristic of the large blue area on

the left of the red region is 0wd AzBð Þ
wd Bð Þ. The characteristic of

the small blue area on the right of the red region is

d AzBð Þ
wd Bð Þ

w0. With the increment of the rewiring times L,

the blue area corresponding to d AzBð Þ
wd Bð Þ

w0 progressively

grows. Figure 5 shows the results of Parrondo’s paradox

progressively changing from a random network to a scale-free

network. As the parameter a decreases, the node degree of the

network progressively changes from a Poisson distribution to a

power-law distribution. In addition, the region of the parameter

space in which the strong paradox occurs (the red region in

Figure 5) grows progressively. Moreover, the region of the

parameter space in which the weak paradox occurs (the blue part

that corresponds to d AzBð Þ
wd Bð Þ

w0, as shown in Figure 5) also

grows. Therefore, the region of the parameter space where

Parrondo’s paradox occurs is related to the heterogeneity of the

degree distributions of the networks. A higher heterogeneity leads

to a larger region of the parameter space where the strong or weak

paradox occurs.

To analyze the mechanisms that elicit the paradox and the

reason for the effect of the heterogeneity of the degree distributions

of the networks, a set of specific parameters (p1 = 0.175 and

p2 = 0.870) is chosen based on the results of Figures 4 and 5. We

count the proportion of playing the favorable branch of game B,

which is the number of times that the favorable branch of game B

is played in comparison to the number of times that game B is

played (for parameters p1 = 0.175 and p2 = 0.870, branch two is the

favorable one). The results are shown in Tables 1 and 2.

Tables 1 and 2 show that (1) the proportion of playing the

favorable branch of the randomized game A+B is larger than that

of game B played individually, which shows that the ‘‘agitating’’

role of game A increases the chance to play the favorable branch;

(2) when the heterogeneity of the degree distributions of the

networks increases, for the given set of parameters (p1 = 0.175 and

p2 = 0.870), first, the paradoxical effect is not produced (when

L = 0, 90, 900 and 3,600 and a= 1.0, d Bð Þ
wd AzBð Þ

w0), then, the

weak paradox occurs (when a= 0.7, d AzBð Þ
wd Bð Þ

w0), and

finally, the strong paradox occurs (when a= 0.3 and a= 0.0,

d AzBð Þ
w0 and d Bð Þ

v0). The same changing trend is shown in

Figures 4 and 5. The main reason for this finding is that when the

heterogeneity of the degree distributions of the networks increases,

the proportions of playing the favorable branch in both the

randomized game A+B and game B decrease. However, the

proportion of playing the favorable branch in game B decreases

more significantly, from 48.26% (when a= 1.0) to 43.44% (when

a= 0.0), whereas the proportion of playing the favorable branch in

the randomized game A+B decreases less from 49.23% (when

a= 1.0) to 48.75% (when a= 0.0). This asynchronous decline

shows that the ‘‘agitating’’ role of game A contributes to the

increase of the opportunity to play the favorable branch. In

Figure 7. The influence of the network size on the Parrondo effect (based on the BA scale-free network). The average degree of the
network is four and the average number of playing times T of each individual is 100. The probability of playing game A is p = 0.5. Play the games 30
times with different random numbers, and draw the corresponding figures according to the average results of the games. The small window in the
figure shows the degree distribution of the nodes. The green area in the figure represents the area of the weak Parrondo’s paradox, whereas the
brown region denotes the strong area. The population size N of Figure 7 (a) is 400 and Figure 7 (b) is 10, 000, respectively.
doi:10.1371/journal.pone.0067924.g007
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addition, this contribution has a positive correlation with the

heterogeneity of the degree distributions of the networks.

Therefore, the asynchronous decline between the two results

makes d Bð Þgradual changes from positive to negative, whereas

d AzBð Þ simultaneously remains positive. The given set of

parameters with which the paradox originally does not occur

gradually evolves into the set of parameters with which the weak

paradox or the strong paradox occurs. (3) when L = 0, 90, 900 and

3,600 and a= 1.0, we find that each proportion of playing the

favorable branch in game B is slightly smaller than that in the

randomized game A+B, but d Bð Þ
wd AzBð Þ. The reason for this

result is that when we play the randomized game A+B, half of the

total time is used to play the zero-sum game (i.e., game A).

Although the proportion of playing the favorable branch in game

B is smaller, the total time to play the favorable branch is more

than that in the randomized game A+B (The total time of playing

the unfavorable branch in game B is also more than that in the

randomized game A+B). When the proportion of playing the

favorable branch in game B is large enough, the corresponding

gain is enough to offset the loss of playing the unfavorable branch.

Therefore, d Bð Þ
wd AzBð Þ.

In the following section, we use a BA network as an example

and attempt to explain the following questions from a micro level:

(1) why does a higher heterogeneity of the degree distributions of

the networks lead to a smaller opportunity to play the favorable

branch in game B? (2) Why does the ‘‘agitating’’ role of game A

increase the chance to play the favorable branch? (3) The

‘‘agitating’’ role of game A contributes to increasing the

opportunity to play the favorable branch. Then, why does this

contribution have a positive correlation with the heterogeneity of

the degree distributions of networks?

We choose p1 = 0.175 and p2 = 0.870 and perform the

simulations on a BA network with 10,000 nodes. The results

show that the average fitness values of the population d of game B

and the randomized game A+B are 20.0456 and 0.0141,

respectively. Thus, the strong paradox occurs. The proportions

of playing the favorable branch in game B and the randomized

game A+B are 43.48% and 48.79%, respectively. Figure 6 shows

the relationship between the node degree and the capital. From

the figure, we observe that when game B is played individually, the

positive relations exist between the node degree and the capital. A

larger node degree corresponds to a larger capital. The capital of

node degrees two and three is negative and the capital of the other

node degrees is positive (because the number of nodes with degrees

two and three accounts for 70% of the total amount of nodes, the

average fitness of the population is negative). This result occurs

because for parameters p1 = 0.175 and p2 = 0.870, when the capital

of a node is less than the average capital of all of its neighbors, the

niche of this node is not favorable (branch one of game B is played,

and the probability of winning is p1 = 0.175). Otherwise, if the

average capital of all of the neighbors is less than or equal to the

capital of a node, the niche of this node is favorable (branch two of

game B is played and the probability of winning is p2 = 0.870).

Because the niche of the nodes with large degrees is mainly

composed of nodes with small degrees, we assume that the capital

of the nodes with small degrees is small. At the beginning of the

game, because the number of the node degrees two and three

Figure 8. The influence of the average degree of the nodes on the Parrondo effect (based on the BA scale-free network). The
population size N is 900 and the average number of playing times T of each individual is 100. The probability of playing game A is p = 0.5. Repeatedly
play the games 30 times with different random numbers, and draw the corresponding figures according to the average results of the games. The
small window in the figure shows the degree distribution of the nodes. The green area in the figure represents the weak-paradox area, whereas the
brown region denotes the strong area. The average degree of the network in Figure 8 (a) and Figure 8 (b) is 5.9867 and 7.9756, respectively.
doi:10.1371/journal.pone.0067924.g008
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accounts for 70% of all nodes, the nodes with small degrees have a

large chance of being chosen for the game. In addition, because

the initial capital of all nodes is the same, according to the rules of

game B, the node with a small degree chosen for the game will

play branch one. Then, the probability of losing is large, which

results in the capital decreasing. Therefore, in the initial stage of

the game, this hypothetical situation is a large-probability event.

Thus, the nodes with large degrees play the favorable branch two

with a larger probability, which increases the capital of the nodes

with large degrees. Therefore, the niche of the small-degree nodes

that are connected to these large-degree nodes is further worsened

(because the number of neighbors of the small-degree nodes is only

two or three, the increment of the capital of the large-degree nodes

causes the average capital of the niche to produce a comparatively

obvious rise). Moreover, this result makes the small-degree nodes

play the unfavorable branch one with a larger probability, which

reduces the capital of the nodes with small degrees. The favorable

niche of the nodes with large degrees and the unfavorable niche of

the nodes with small degrees are constantly strengthened in the

playing courses. Finally, a phenomenon is produced that the larger

node degree corresponds to more capital, and the smaller node

degree corresponds to less capital. Meanwhile, because the

number of nodes with small degrees is far greater than the

number of nodes with large degrees, the favorable niche of the

nodes with large degrees and the unfavorable niche of the nodes

with small degrees make the proportion of playing the favorable

branch small. This situation, which is favorable for the nodes with

large degrees and unfavorable for the nodes with small degrees, is

quite obvious in the BA network. When the heterogeneity of the

degree distributions of the networks decreases, this situation will be

weakened. The proportion of playing the favorable branch of the

population will increase.

When the randomized game A+B is played, from Figure 6, we

can observe that the node degree has no obvious relation with the

capital, where the capital of the node degrees two and three, which

account for 70% of the population, is positive (this result makes the

average fitness of the population is positive). The reason for this

result is the ‘‘agitating’’ role of game A. Because the nodes with

large degrees and the nodes with small degrees will play a zero-

sum game among them, the winning and the losing probabilities

are the same. This process makes the nodes with small degrees

have the chance of capital growth. Moreover, this process disrupts

the strengthening process of the favorable niche of the nodes with

large degrees and the unfavorable niche of nodes with small

degrees. Even in a local area of the network, an inverse

strengthening process may appear, where the unfavorable niche

of the nodes with large or medium degrees (the average capital of

the neighbors of the nodes with small degrees is large) and the

favorable niche of the nodes with small degrees are formed (in this

example, there is a phenomenon that the capital of nodes with

degrees 49, 81, 83 and 97 is negative). Therefore, the ‘‘agitating’’

role of game A makes the nodes with small degrees increase the

chance of playing the favorable branch in game B.

A higher heterogeneity of the degree distributions corresponds

to a larger proportion of pairs of neighbors that are composed of

large-degree nodes and small-degree nodes. Moreover, a higher

heterogeneity of the degree distributions correspons to a larger

probability that the nodes with large degrees and the nodes with

small degrees play game A. Thus, this process disrupts the

strengthening process that the favorable niche is formed by the

Figure 9. The influence of the probability p of playing game A on the Parrondo effect (based on the BA scale-free network). The
population size N is 900. The average degree of the network is four and the average number of playing times T of each individual is 100. Play the
games 30 times with different random numbers, and draw the corresponding figures according to the average results of the games. The orange area
in the figure represents the weak-paradox area, whereas the green region denotes the strong-paradox area.
doi:10.1371/journal.pone.0067924.g009
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nodes with large degrees and the unfavorable niche by the nodes

with small degrees. Therefore, the ‘‘agitating’’ role of game A

contributes to the increas of the opportunity to play the favorable

branch, and this contribution positively correlates with the

heterogeneity of the degree distributions of the networks.

The Influence of the Network Size on the Paradoxical
Effect

In order to investigate the impact of the size of the scale-free

network on the Parrondo effect, we maintain the same average

degree of the network (i.e., four) and the same heterogeneity of the

degree distributions of networks. The size of the scale-free network

is reduced to N = 400 and expanded to N = 10,000, respectively.

The results are shown in Figure 7. Comparing Figure 5 (d) with

Figure 7 (a) and Figure 7 (b), we notice that the region of the

parameter space where the strong or weak paradox occurs has no

significant change with the expansion of the network size (in the

region of the parameter space where the strong paradox occurs,

the percentages of Figure 5(d), Figure 7(a) and Figure 7(b) are

1.71%, 1.74% and 1.72, respectively; in the region of the

parameter space where the weak paradox occurs, the percentages

of Figure 5(d), Figure 7(a) and Figure 7(b) are 50.38%, 50.46% and

50.53%, respectively). The reason for this result is that when the

average degree of nodes remains unchanged, the expansion of the

size of the scale-free network has not effectively changed the

heterogeneity of the degree distributions of networks.

The Influence of the Average Degree of Networks on the
Paradoxical Effect

In addition, in order to investigate the impact of the average

degree of the scale-free network on the Parrondo effect, we

maintain the same network size (i.e., N = 900) and the same

heterogeneity of the degree distributions of networks. We increase

the average degree of the scale-free network. The results are shown

in Figure 8. We compare Figure 5 (d) (the average degree of the

network is four) with Figure 8 (a) (the average degree of the

network is 5.9867) and Figure 8 (b) (the average degree of the

network is 7.9756). Then we notice that the region of the

parameter space where the strong Parrondo’s paradox occurs

slightly reduces (the percentages of Figure 5 (d), Figure 8(a) and

Figure 8(b) are 1.71%, 1.37% and 1.17%, respectively) when the

average degree of the network increases. When the size of the

scale-free network remains unchanged, the increment of the

average degree of the node has slightly reduced the heterogeneity

of the degree distributions of networks. The region of the

parameter space where the weak paradox occurs has no significant

change (the percentages of Figure 5 (d), Figures 8 (a) and 8(b) are

50.38%, 50.37% and 50.40%, respectively). In addition, compar-

ing Figure 5(d) with Figure 8(a) and Figure 8 (b) between the

regions of p1R1 and p2R0, we notice that the region of the

parameter space where the weak Parrondo’s paradox occurs

increases with a small growth (the percentages of Figure 5 (d),

Figure 8 (a) and Figure 8 (b) are 0%, 0.005% and 0.25%,

respectively) along with the increment of the average degree of the

network. The capital corresponding to these areas is

d AzBð Þ
wd Bð Þ

w0.

The Influence of the Probability p of Playing Game A on
the Paradoxical Effect

Finally, in order to reflect the effect of the probability p of

playing game A, based on a scale-free network, we calculate the

capital of the strong and weak regions that corresponds to different

p values, as shown in Figure 9. From Figures 9 and 5(d), we notice

that when p#0.5, the strong paradoxical region gradually

increases with the increment of p. The weak paradoxical region

of the upper part of the trapezoidal shape (which corresponds to

d AzBð Þ
wd Bð Þ

w0) gradually reduces with the increment of p,

whereas the weak paradox region of the bottom part of the

trapezoidal shape (which corresponds to 0wd AzBð Þ
wd Bð Þ) grad-

ually increases with the increment of p. When p.0.5, the strong

paradoxical region has no obvious change with the increment of p.

With the increment of p, the weak paradoxical region that

corresponds to d AzBð Þ
wd Bð Þ

w0 reduces gradually, whereas the

weak paradoxical region that corresponds to 0wd AzBð Þ
wd Bð Þ has

no obvious change. Therefore, playing game A with a larger

probability (p$0.5) is conducive to generating a strong paradox.

Conclusions

In this article, Parrondo’s model based on complex networks

(shown in Figure 1) is proposed. Based on the spatial niche, a

structure of game B is constructed, which can be applied to

arbitrary topologies. The results show that Parrondo’s paradox

occurs. Moreover, the region of the parameter space where

Parrondo’s paradox occurs is related to the heterogeneity of the

degree distributions of networks. A higher heterogeneity corre-

sponds to a larger region of the parameter space where the strong

paradox occurs. Therefore, the heterogeneity of the degree

distributions of networks is conducive to the ‘‘agitating’’ mecha-

nism. This mechanism may also cause most of the networks in

reality to exhibit the high heterogeneity. In addition, the region of

the parameter space where the strong or weak paradox occurs

does not change significantly when the scale-free network expands.

The region of the parameter space where the strong Parrondo’s

paradox occurs slightly reduces when the average degree of the

network increases. Moreover, playing game A with a larger

probability is conducive to generating a strong paradox.
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