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Abstract

Background: Machine learning (ML) has emerged as a promising tool for risk stratifi-

cation. However, few studies have applied ML to risk assessment of patients with

atrial fibrillation (AF).

Hypothesis: We aimed to compare the performance of random forest (RF), logistic

regression (LR), and conventional risk schemes in predicting the outcomes of AF.

Methods: We analyzed data from 7406 nonvalvular AF patients (median age

71 years, female 29.2%) enrolled in a nationwide AF registry (J-RHYTHM Registry)

and who were followed for 2 years. The endpoints were thromboembolisms, major

bleeding, and all-cause mortality. Models were generated from potential predictors

using an RF model, stepwise LR model, and the thromboembolism (CHADS2 and

CHA2DS2-VASc) and major bleeding (HAS-BLED, ORBIT, and ATRIA) scores.

Results: For thromboembolisms, the C-statistic of the RF model was significantly

higher than that of the LR model (0.66 vs. 0.59, p = .03) or CHA2DS2-VASc score

(0.61, p < .01). For major bleeding, the C-statistic of RF was comparable to the LR

(0.69 vs. 0.66, p = .07) and outperformed the HAS-BLED (0.61, p < .01) and ATRIA

(0.62, p < .01) but not the ORBIT (0.67, p = .07). The C-statistic of RF for all-cause

mortality was comparable to the LR (0.78 vs. 0.79, p = .21). The calibration plot for

the RF model was more aligned with the observed events for major bleeding and all-

cause mortality.

Conclusions: The RF model performed as well as or better than the LR model or exis-

ting clinical risk scores for predicting clinical outcomes of AF.
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1 | INTRODUCTION

Atrial fibrillation (AF) is the most common sustained arrhythmia seen

in the elderly population and is associated with an increased risk of

thromboembolisms, major bleeding, and mortality. 1 Treatment deci-

sions for AF are often made by risk prediction models built using a

regression analysis, but their accuracy is modest. 2–6 AF is a highly

heterogeneous condition caused by various underlying disorders, and

a simple risk score may limit the performance of the risk stratification. 7

Therefore, more accurate and personalized risk stratification approaches

are required.

Machine learning (ML), the use of mathematical algorithms that

address the higher dimensional, nonlinear relationships among many

variables, is making significant progress.8–10 Promising tools for ML in

cardiology include the improvement of the automated risk prediction

and interpretation of medical imaging that can have a dramatic impact

on the practice of cardiology. Currently, several studies have shown

that ML outperforms the risk prediction as compared to the traditional

logistic models. Mortazavi et al. showed an improved prediction of

readmissions for worsening heart failure with ML models as compared

to a logistic regression (LR) analysis.11 In another study using a large

multicenter database, the ML model was more accurate in detecting

clinical deterioration in the hospitalized patients than the traditional

regression models.12 In a more recent study using patients admitted

to the intensive care unit, Hyland et al. developed a new approach

that provides early identification of patients at risk for circulatory fail-

ure with a much lower false-alarm rate than conventional threshold-

based systems.13 However, contradictory results have also been

reported.14,15 While AF patients represent an important target popu-

lation for whom adverse events need predicting, few studies have

applied ML to the risk assessment in them. Therefore, the aim of this

study was to compare the discrimination and calibration performance

of an ML algorithm called the random forest (RF) model, against a

stepwise LR model and several conventional score based risk predic-

tors, to predict thromboembolisms, major bleeding, and all-cause mor-

tality, using a prospective nationwide registry of AF patients.16–18

2 | METHODS

2.1 | Patients

For this study, we used individual patient data from the J-RHYTHM

Registry.16–18 The J-RHYTHM Registry is an observational, prospec-

tive cohort study that enrolled patients with AF between January and

July of 2009 at 150 sites within Japan. In this post-hoc study, after

excluding patients with mitral stenosis or those who had undergone

mechanical valve replacements (n = 410), the final cohort included

7406 patients. Warfarin was used as an oral anticoagulation therapy

because no direct oral anticoagulants were available when this regis-

try was carried out. The study protocol conformed to the 1975 Decla-

ration of Helsinki and was approved by the Nippon Medical School

institutional review board and review board at each enrolling center.

All patients gave their written informed consent. The data that sup-

port the findings of this study are available from the corresponding

author upon reasonable request.

2.2 | Endpoints

The endpoint of thromboembolisms included ischemic strokes, tran-

sient ischemic attacks, and systemic embolisms. Major bleeding as the

safety endpoint included intracranial hemorrhage, gastrointestinal

bleeding, and other causes of bleeding requiring hospitalization. The

all-cause mortality was also tallied. The diagnostic criteria for each

event have been described in research design papers.16,17 The

patients were followed for 2 years, or until an endpoint, whichever

occurred first. All analyses of the rates of the endpoints were based

on the first event during follow-up. A local investigator ascertained

the events, and members of the outcomes review committee adjudi-

cated all outcomes.

2.3 | Risk scores

The components of the CHADS2
2 and CHA2DS2-VASc scores3 for

thromboembolisms and the HAS-BLED,4 ORBIT,5 and ATRIA6 scores

for major bleeding are shown in the Supplementary file (Appendix S1).

In the CHA2DS2-VASc scores, we modified the “V” criterion to include

coronary artery disease only, because no data were available regarding

peripheral artery disease and aortic plaque. The time in therapeutic

range (TTR) was determined with the method of Rosendaal et al. 19 and

a labile international normalized ratio (INR) was defined as TTR < 60%.

For this determination, the target INR level was set at 1.6–2.6 for

patients aged 70 years or older and at 2.0–3.0 for patients aged youn-

ger than 70 years, in keeping with Japanese guidelines for AF pharma-

cotherapy.20 We assessed the predictive accuracy of the CHADS2 and

CHA2DS2-VASc scores for thromboembolisms and all-cause mortality 21

and the HAS-BLED, ORBIT, and ATRIA scores for major bleeding.

2.4 | Statistical analysis

The statistical analyses were performed with R project software

(R foundation, Vienna, Austria). An RF analysis was performed using the

Scikit-learn open-source ML library, version 0.21.2. In this study, we

used an RF algorithm, which is a decision tree-based ensemble learning

method for the classification, regression, and clustering of the data.22

The RF analysis was composed of three steps: (1) missing values impu-

tation, (2) classification model building, and (3) feature selection.

2.5 | Missing values imputation

There were 10 variables for which we did not have data from every

single patient. They were the height (13.8%), body weight (13.1%),
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hemoglobin (11.5%), platelet count (11.6%), creatinine (11.1%), total

cholesterol (25.5%), total bilirubin (29.5%), aspartate aminotransferase

(AST) (12.1%), alanine aminotransferase (ALT) (11.7%), and creatinine

clearance (11.1%). In cases with missing data, categorical variables

were replaced by the modes, and numerical variables were imputed

with sequential regression multivariate imputation.23

2.6 | Classification model building

The RF classifier was trained (80% of an overall cohort) and tested

(20%) on the feature-selected variables. After hyperparameter tuning

and feature selection on the training data, the model was fit to the

training data set. The predictive capacity of the models was estimated

by the mean value and 95% confidence interval of the C-statistic over

5-fold cross-validation. In this study, the RF model was fit using 1000

trees.

2.7 | Feature Selection

We used 42 variables in this study (Supplementary file, Appendix S2).

The feature selection on the training data was performed using a

sequential forward floating selection (SFFS).24 The SFFS is a family of

greedy search algorithms, which is used to select a subset of features

that is suitable for model building.

2.8 | Permutation importance

To provide a description of an individualized prediction made by the

algorithm, we measured the permutation importance on a testing

dataset.22,25 The permutation importance was calculated by measur-

ing how the performance of a classifier decreased when a single pre-

dictive variable was randomly shuffled. Because shuffling breaks the

association between the variable and target clinical outcome,

the resulting drop in performance of the classifier as measured by the

area under the curve (AUC) was indicative of how much the classifier

depended on the predictive variable.

2.9 | Stepwise LR analysis

We used the logit link function of R for stepwise multivariable LR. The

predictive capacity of the regression model was estimated via the

mean value and 95% confidence interval for the C-statistic over

the 5-fold cross-validation iterations.

2.10 | Model calibration

The performances of the RF and LR models were evaluated with cali-

bration plots comparing the expected and actual event rates for the

outcomes. The RF outputs were reconverted into posterior probabili-

ties by fitting the sigmoid functions.26 The risk of the outcomes was

calculated for each sub-interval bounded by the quintiles. A calibra-

tion slope smaller than one indicated an overestimation of the event

risks for that quintile. We also evaluated the relationship between the

existing clinical risk scores and the event rate. The existing risk scores

were presented as a continuous score or classified into three catego-

ries (low, intermediate, and high risk) based on previous literature.2–6

The high-risk event rate cutoff value was defined as the maximum

event rate (mean value of the highest quintile interval) in the calibra-

tion curve of the RF model. We calculated the net reclassification

improvement (NRI) by the NRI index and 95% confidence interval to

assess the added value of the LR model or risk scores compared

to the RF model.27 A continuous NRI was used to compare the RF

and LR, and a categorical NRI was used to compare the RF model and

existing risk scores.2–6 The baseline variables are presented as the

number and frequency or mean ± SD values, or the median and inter-

quartile range. The DeLong test was used to compare the C-statistics-

between the models.28 A two-tailed p value of <.05 was considered

significant.

3 | RESULTS

The baseline characteristics of the patients are shown in Table 1. We

analyzed 7406 patients with nonvalvular AF (age 69.8 ± 10.0 years,

female 29.2%). A total of 6404 patients (86.5%) were taking warfarin.

The prevalence of a previous stroke or transient ischemic attack, or

major bleeding were 13.8% and 4.5%, respectively. Supplemental

Table S2 shows the number of patients with the thromboembolism risk

scores and major bleeding risk scores divided into three categories.

3.1 | Model performance

Figure 1 compares the performance of the two models and various

scoring systems in predicting the three types of outcomes. During a

2-year follow-up, 126 patients (1.6%) had thromboembolisms,

140 (1.8%) had major bleeding, and 195 (2.6%) died. The C-statistic of

the RF model for predicting thromboembolisms was 0.66 (95% CI

0.62–0.70), which was significantly higher than that of the LR model

(0.59, p = .03) and CHA2DS2-VASc score (0.61, p < .01) but was mar-

ginally higher than that of the CHADS2 score (0.62, p = .05). For

major bleeding, the C-statistic of the RF model (0.69, 95% CI 0.66–

0.72) was comparable to that of the LR model (0.66, p = .07). The C-

statistic of the RF model outperformed the HAS-BLED (0.61, p < .01)

and ATRIA (0.62, p < .01), but not the ORBIT (0.67, p = .07). For the

all-cause mortality, no significant difference was observed in the C-

statistic between the RF model (0.78, 95% CI 0.75–0.82) and LR

model (0.79, 95% CI 0.77–0.82). The discriminatory power of the RF

model outperformed the CHADS2 score (0.68, p < .001) and

CHA2DS2-VASc score (0.70, p < .01) for predicting the 2-year all-

cause mortality.
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3.2 | Permutation importance of the RF model

The features in the order of the permutation importance of the RF

model for predicting the three types of outcomes are shown in

Figure 2. For thromboembolisms, in addition to previously known risk

factors such as the age, systolic blood pressure, strokes, creatinine,

and body weight, three new factors, the total cholesterol, height, and

hepatic enzymes, were found to contribute to improving the model

performance (Figure 2(A)). For major bleeding, the most predictive

patient features in the order of a decreasing contribution included the

age, creatinine clearance, and a history of any bleeding (Figure 2(B)).

For the total mortality, creatinine clearance, age, and congestive heart

failure were the three main features (Figure 2(C)). The permutation

importance of risk factors in the LR model is shown in the Supplemen-

tary file (Figure S1).

3.3 | Independent predictors of the stepwise
LR model

The independent predictors of the three types of outcomes found by

the LR model are shown in Figure 3. Of the nine predictors found, the

labile INR, height, body weight, age, and strokes were predictors com-

mon to the LR and RF models, but the type of AF and use of calcium

channel blockers and beta-blockers, were not picked up by the RF

model (Figure 3(A)). For major bleeding, the independent predictors in

the LR model not picked up by the RF model were the body weight

and AF type (Figure 3(B)). For all-cause mortality, the total cholesterol,

ALT, and diastolic blood pressure were independent predictors not

picked up by the RF model (Figure 3(C)).

TABLE 1 Baseline characteristics of the patients

Overall

(n = 7406)

Age, years 69.8 ± 10.0

71 [64–77]

Age ≥ 75 years 2565 (34.6)

Male, (n) % 5241 (70.8)

Height (cm) 162 ± 9.1

Weight (kg) 62.2 ± 12.2

Systolic blood pressure (mmHg) 126.0 ± 16.2

Diastolic blood pressure (mmHg) 73.5 ± 17.0

Heart rate (beat per min) 72.5 ± 13.2

Type of AF, n (%)

Paroxysmal 2835 (38.3)

Persistent 1081 (14.6)

Permanent 3490 (47.1)

Comorbidities, n (%)

Congestive heart failure 2055 (27.7)

Hypertension 4481 (60.5)

Diabetes 1359 (18.3)

Previous stroke or TIA 1022 (13.8)

Coronary artery disease 781 (10.5)

COPD 131 (1.8)

Malignancy 567 (7.7)

Cardiomyopathy 634 (8.6)

Congenital heart disease 96 (1.3)

Hyperthyroidism 131 (1.8)

Abnormal renal or liver function 901 (12.2)

Alcohol use >8 U/week 2263 (30.6)

Labile INR 3330 (44.9)

History of hepatitis 316 (4.3)

Previous bleeding, n (%)

Intracranial 81 (1.1)

Gastrointestinal 170 (2.3)

Other sites 78 (1.1)

Laboratory data

Hemoglobin (g/dl) 13.7 ± 1.7

Platelet (�104/ul) 23.3 ± 25.7

Creatinine (mg/dl) 0.96 ± 0.56

CCr (ml/min) 68.5 ± 26.6

Total cholesterol (mg/dl) 188.8 ± 36.7

Total bilirubin (mg/dl) 0.82 ± 2.5

AST (IU/L) 26.1 ± 10.9

ALT (IU/L) 22.6 ± 13.1

Medications, n (%)

Warfarin 6404 (86.5)

Antiplatelet agents 1937 (26.2)

Antihypertensive drugs 5354 (72.2)

Class I Antiarrhythmic drug 1248 (16.9)

TABLE 1 (Continued)

Laboratory data

Class III Antiarrhythmic drug 223 (3.0)

Beta-blocker 753 (10.2)

Digitalis 622 (8.4)

CCB 270 (3.6)

ACE/ARB 3934 (53.1)

Statin 1795 (24.2)

Note: Data represent number, frequency, or means ± SD.

Abbreviations: Abnormal liver function, chronic hepatic disease or

significant hepatic derangement (e. g., bilirubin >2� upper limit of normal,

in association with aspartate aminotransferase/alanine aminotransferase/

alkaline phosphatase >3� upper limit normal); Abnormal renal function,

chronic dialysis, renal transplantation, or serum creatinine >2.26 mg/dl;

ACE, angiotensin converting enzyme inhibitor; AF, atrial fibrillation; ALT,

alanine aminotransferase; Antihypertensive drugs include α-blocker,
dihydropyridine calcium channel blocker, and diuretics; ARB, angiotensin II

type 1 receptor blocker; AST, aspartate aminotransferase; CCB,

nondihydropyridine calcium channel blocker; CCr, creatinine clearance;

COPD, chronic obstructive pulmonary disease; INR, international

normalized ratio of prothrombin time; labile INR, therapeutic time in

range < 60%; TIA, transient ischemic attack.
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3.4 | Model calibration

In Figure 4, the continuous calibration plots for the RF and LR

models, and categorical calibration of the risk scores are pres-

ented. With regard to thromboembolisms (Panels A � C), both the

RF and LR models overestimated the actual observed event rate in

the high-risk (>3.0%) population, and the LR model under-

estimated the event rate in the lower risk population. The

CHADS2 and CHA2DS2-VASc scores underestimated the event

rates for the high-risk population. With regard to the major bleed-

ing (Panels D � F), the calibration plot for the RF model approxi-

mated the observed event rate. The LR model overestimated the

event rate in the high-risk (>4.1%) population. The ORBIT score

estimated the high-risk population well. With regard to the all-

cause mortality (Panels G � I), the RF model showed good agree-

ment between the estimated and observed event rates, while the

LR model overestimated the event rate in the high-risk (>7.8%)

population. The CHADS2 and CHA2DS2-VASc scores under-

estimated the event rates in the high-risk population. The calibra-

tion plots for the continuous risk scores are presented in the

Supplementary file (Figure S2).

3.5 | Net reclassification improvement

The NRI for the outcomes between the models are presented in Sup-

plemental Table S3. For thromboembolisms, the RF model more cor-

rectly identified events than the LR model and CHA2DS2-VASc score.

For major bleeding, the RF model showed no significant improvement

in the discriminatory ability over the LR model or risk scores. For the

all-cause mortality, the RF model was no better than the LR model but

was better than the CHADS2 and CHA2DS2-VASc scores.

4 | DISCUSSION

In this study, we compared the accuracy of the RF model, against the

LR model and existing clinical risk scores for predicting three types of

clinical outcomes of AF, namely, thromboembolisms, bleeding, and

mortality, using a nationwide AF registry. The predictive performance

of the RF model for thromboembolisms was modest but significantly

outperformed the LR model and CHA2DS2-VASc score. For major

bleeding and all-cause mortality, the predictive performance of the RF

model was modest and comparable to the LR model, while it had a

(A) Thromboembolism        (B) Major bleeding              (C) All-cause mortality

RF
0.66

(0.62 – 0.70)

0.69
(0.66 – 0.72)

0.78

(0.75 – 0.82)

LR
0.59

(0.54 – 0.64) *

0.66

(0.63 – 0.68)

0.79

(0.77 – 0.82)

CHADS2

0.62
(0.56 – 0.68)

–
0.68

(0.66 – 0.70) #

CHA2DS2-VASc
0.61

(0.58 – 0.65)†
–

0.70

(0.66 – 0.73)†

–DELB-SAH
0.61

(0.57 – 0.64)†
–

–TIBRO
0.67

(0.64 – 0.70)
–

–AIRTA
0.62

(0.60 – 0.65)†
–

F IGURE 1 C-statistics of the outcomes. The receiver operating characteristic curves for (A) thromboembolisms, (B) major bleeding, and
(C) all-cause mortality are shown in the upper figures. The C-statistic and 95% confidence intervals are presented in the lower table. The C-
statistics of the RF were compared to that for the LR and clinical risk scores. RF: random forest, LR: stepwise logistic regression. The other
abbreviations of the risk scores are shown in the supplementary file. Compared to RF: * <0.05, † < 0.01, # <0.001
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Age

Total cholesterol

Height

ALT

AST

Labile INR

SBP

Stroke

Creatinine

DBP

Body weight

Hemoglobin

Heart rate

ACE/ARB

Antihypertensive drug

Abnormal renal function

Diabetes

Sex (female)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Age

CCr

History of bleeding

ALT

History of intracranial bleeding

Creatinine

Labile INR

History of gastrointestinal bleeding

Antihypertensive drug

ACE/ARB

Sex (female)

Stroke

Congestive heart failure

Diabetes

Antiplatelet agent

Total bilirubin

History of cancer

COPD

Cardiomyopathy

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

CCr

Age

Congestive heart failure

Total cholesterol

Creatinine

Hemoglobin

History of cancer

ALT

Vascular disease

DBP

Mean decrease in AUC

(A) Thromboembolism

(B) Major bleeding 

(C) All-cause mortality

F IGURE 2 Permutation importance of the random forest model. Permutation importance for the classification of (A) thromboembolisms,
(B) major bleeding, and (C) all-cause mortality. The mean decrease in the AUC is a measure of the permutation importance. It shows how much a
prediction made by the random forest model is degraded if a particular variable is shuffled (effectively removed). By inference, a variable with a
larger decrease in the AUC must be contributing more to the model's predictive ability. AUC: area under the curve. The definitions of abnormal
renal or hepatic function and other abbreviations are as in Table 1
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superior discrimination ability as compared to several risk scores. Our

study suggests that the RF model performs as well as, or better than

the LR model and conventional risk scores for predicting clinical out-

comes in AF patients.

Despite the claims that ML models outperform conventional

regression models in clinical medicine, few studies have compared the

predictive performance between ML models and the LR model or

existing risk scores in AF patients. Recently, Loring et al.15 examined

F IGURE 3 Independent predictors of the stepwise logistic regression model. The independent predictors and their odds ratio and 95%
confidence interval of (A) thromboembolisms, (B) major bleeding, and (C) all-cause mortality are shown. The definitions of abnormal renal or
hepatic function and other abbreviations are as in Table 1

WATANABE ET AL. 1311



the performance of three ML approaches (RF, gradient boosting, and

neural networks) and the LR model in predicting strokes, major

bleeding, and mortality, using two global AF registries (ORBIT-AF

and GARFIELD-AF). The cross-registry validation revealed that the

LR model had a similar or better discrimination and calibration per-

formance for these three outcomes compared to ML. They also

reported the superiority of gradient boosting among the ML models.

In our study, we showed that the discriminatory power of the RF

model was highest for death (C-statistic = 0.78) and lowest for

thromboembolisms (C-statistic = 0.66). These C-statistic values

were comparable to the abovementioned study by Loring et al.,

where the highest C-statistic in the LR was for death (C-statis-

tic = 0.80 in ORBIT-AF, 0.75 in GARFIELD-AF) and the lowest

C-statistic was for strokes (C-statistic = 0.67 in ORBIT-AF, 0.66 in

GARFIELD-AF).15 In addition, the C-statistic for major bleeding in

the RF model in our study was 0.69, which was comparable to that

of the LR model by Loring et al. (C-statistic = 0.71 in ORBIT-AF,

0.64 in GARFIELD-AF). Our study examined the consistency of indi-

vidual risk predictions between models to assess their usefulness in

identifying patients at high risk. We found that the LR model under-

estimated the low risks and overestimated the high risks for throm-

boembolisms, probably due to overfitting. This pattern was repeated

for major bleeding and mortality. The RF model, however, predicted

major bleeding and mortality well. This observation was contrary to

that of Loring et al., who found a well aligned calibration in the LR

models. The cause of this difference is unknown, but many factors

can play a role, such as the sample size, number of parameters con-

sidered, rate of missing data, patient race, drugs used (warfarin or

F IGURE 4 Calibration plots. The plots comparing the predicted event rates (horizontal axis) and observed event rates (vertical axis) for
thromboembolisms (A, B, C), major bleeding (D, E, F), and all-cause mortality (G, H, I) are shown. The blue line in the RF and LR indicates the trend
for the calibration. When the intersect of the observed and expected event rates is below the dotted line, this indicates an overestimation of the
event risks for that quintile. (C, F, I) The plots comparing the categorical score (horizontal axis) and observed event rates (vertical axis) are shown.
The high-risk event rate cutoff values were 3.0%, 4.1%, and 7.8% for thromboembolisms, major bleeding, and all-cause mortality, respectively (red
shaded area). The abbreviations and categorical grouping are shown in Table 1 and the Supplementary File (Appendix S1 and Table S1).
RF: random forest, LR: stepwise logistic regression
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direct oral anticoagulants), comorbidities, treatment or survival rate,

number of censors,14 and tuning of the model hyperparameters.

ML models are often thought of as black boxes that take input

and produce output. Interactions between the features and intermedi-

ate steps that affect output are poorly understood. The algorithm of

the RF model is also a black box, but has the advantage of revealing

factors (permutation importance) that contribute to improving the

accuracy of the model and discovering complex interactions, even in

high-dimensional environments.25 At a high level, it works by ran-

domly shuffling data for one feature at a time over the entire data set

and calculating how much the performance metric of interest drops.

Although the permutation importance is heuristic, it can correct the

feature importance bias. To calculate the permutation importance,

the number of permutations does not grow exponentially and is pro-

portional to the number of the parameters. In this study, for example,

the RF model selected the total cholesterol, height, hepatic enzymes,

and labile INR for the risk estimation of thromboembolisms. Those

variables have not been reported previously and are not considered in

the LR model or existing risk scores. The LR model is often limited for

data mining purposes because of interactions of multiple, nonlinear

variables. The RF analysis, however, uses a nonparametric decision

tree approach to overcome these issues. In other words, the risk fac-

tors selected by the RF model and not by the LR were such that the

increase in their values was not related to a monotonic increase or

decrease in the risk.

In this study, the RF model significantly improved the prediction

of the outcomes when compared to the LR and standard clinical risk

scores. Our approach used variables that are typically measured clin-

ically. Although our understanding of the risk factors that regulate

the risk of AF patients is based on clinical observation, there is lim-

ited information on the underlying mechanisms. Therefore, we sup-

posed that the incorporation of the underlying mechanisms, such as

the inflammatory cytokines,29 autonomic balance,30 atrial imaging

parameters,31 or multiomics approaches32 may enable a more

sophisticated risk stratification scheme. In addition to the above-

mentioned parameters, incorporation of population-based risk fac-

tors such as the race/ethnicity, smoking, education, marital status,

home ownership, and physical activity may further improve the pre-

dictive accuracy. Another advantage of RF is that we can describe

the effect of each variable on an individualized prediction. Lack of

interpretability of the novel features or patterns, however, raises

some important questions for the clinician. We need to maximize

both the accuracy and interpretability of the ML, but so far there is

a trade-off between the two. Currently, ML has limited clinical appli-

cation for a risk assessment, but it could be utilized to personalize

the risk assessment when programmed algorithms are implemented

in electronic health records. We expect that ML will automatically

collect variables and integrate all relevant clinical risk measurements

to calculate the risk scores. Such a diagnostic support or computer-

ized alerts may provide timely information that may improve the

clinical decisions and potentially enhancing the therapeutic strate-

gies. The prediction accuracy based on ML models depends on fac-

tors such as the data heterogeneity, ML choices, and feature

selection algorithms. To test the clinical significance of our model,

we need to validate them in multicenter datasets, clinical trials, and

computational experiments.

4.1 | Study limitations

This study had many strengths, including the large number of sites

and patients studied and high quality of the clinical data collected

through the registry, but had some limitations. The J-Rhythm Reg-

istry was limited to cardiology practices that actively volunteered

to participate in this nationwide registry and was not a randomized

or blinded study. In this study, 86.5% of the patients were on anti-

coagulants, which may have confounded the models for the pre-

diction of thromboembolisms and major bleeding. Additionally, no

direct oral anticoagulants were used. This study was conducted

with patients of Asian race only, therefore outcomes may differ in

other races. Although the event rates for the three endpoints were

very low (6.2%), we did not consider the class imbalance. To

address this problem, we should apply a technique such as syn-

thetic minority over-sampling technique to achieve better classi-

fier performance.33 In this study we used the RF model and did not

employ support vector machine and neural network. The advan-

tage of RF over the support vector machine and neural network is

that RF works well for data analyses with a mixture of categorical

and continuous values. In the future study, other types of ML algo-

rithms should be tried.

5 | CONCLUSIONS

Our study showed that the RF model performed as well as or better

than the LR model or existing risk scoring schemes for predicting clini-

cal outcomes. The RF model was also able to provide information on

the relative importance of individual risk factors. The RF model has

the potential to be implemented clinically and improve the decision

making in patients with AF.
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