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Abstract When a continuum is subjected to an induced stress, the equations that govern seismic wave
propagation are modified in two ways. First, the equation of conservation of linear momentum gains terms
related to the induced deviatoric stress, and, second, the elastic constitutive relationship acquires terms
linear in the induced stress. This continuum mechanics theory makes testable predictions with regard
to stress-induced changes in the elastic tensor. Specifically, it predicts that induced compression linearly
affects the prestressed moduli with a slope determined by their local adiabatic pressure derivatives and
that induced deviatoric stress produces anisotropic compressional and shear wave speeds. In this article we
successfully compare such predictions against ab initio mineral physics calculations for NaCl and MgO.

1. Introduction
The effects of changes in stress on seismic wave propagation are commonly described in two different con-
texts. One focuses on stress effects on preexisting or induced cracks, which manifest themselves in the form
of seismic anisotropy (e.g., Bruner, 1976; Henyey & Pomphrey, 1982; Nur, 1971; O'Connell & Budiansky,
1974; Zheng, 2000). In the other context of mineral physics, the effects of stress changes are frequently
captured based on third-order elasticity theory (Bogardus, 1965; Egle & Bray, 1976; Hughes & Kelly, 1953;
Murnaghan, 1951; Wang & Li, 2009), requiring knowledge of higher-order elastic constants, which are not
easily measured in the laboratory (e.g., Renaud et al., 2012; Telichko et al., 2017). We propose an alternative
approach in the latter context without introducing higher-order derivatives.

In a previous article, Tromp and Trampert (2018) considered the effects of induced stress on seismic wave
propagation based on a continuum mechanics theory motivated by the accommodation of prestress in global
seismology. Prestress refers to Earth's state of stress prior to an earthquake, whereas induced stress refers to
an additional stress superimposed on a background state of stress. The hydrostatic prestress (pressure) can
be large (tens of gigapascals in Earth's mantle), but the nonhydrostatic or deviatoric prestress is believed
to be comparably small (< 0.5 GPa, i.e., a fraction of a percent of the shear modulus; Dahlen & Tromp,
1998, section 3.11.1).

As first discussed in Dahlen, (1972a, 1972b) and also in Dahlen & Tromp, 1998 (1998, sections 3.3.2
and 3.6.2), prestress affects both the equation of conservation of linear momentum and the constitutive
relationship.

Building on the approach in global seismology, Tromp and Trampert (2018) developed a theory describing
the effects of an induced stress on seismic wave propagation. They explored such effects both from a for-
ward modeling point of view and from the perspective of the inverse problem, and they show examples of
observable effects of prestress on seismic wave propagation in the setting of a hydrocarbon field, where the
deviatoric prestress is estimated to reach 2% of the shear modulus. Additionally, they demonstrate that the
original theory developed by Dahlen needs to be modified to accommodate pressure derivatives of the mod-
uli, which affect the magnitude of the induced anisotropic wave speeds. The modified theory of Tromp and
Trampert (2018) makes testable predictions, and in this article we benchmark such predictions against ab
initio mineral physics calculations. Basic effects of changes in pressure on seismic wave speeds have been
known for a long time (e.g., Birch, 1961; Nur & Simmons, 1969), and such effects have been observed in
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laboratory (e.g., Eberhart-Phillips et al., 1989; Verdon et al., 2008) and field studies (e.g., Fazio et al., 1973;
Silver et al., 2007). Here, we also consider the effects of nonhydrostatic stress changes.

We assume a medium to be prestressed; that is, all elastic constants are at pressure P. We then subject the
medium to an additional induced stress T0. Our theory, summarized below, relates the elastic constants
in the prestressed state to the elastic constants in the prestressed plus induced stress state. All we need to
know are the adiabatic pressure derivatives of the elastic constants in the prestressed state. The underlying
assumption is that the induced stress is a linear perturbation on top of the prestress, and, consequently,
that linear conservation laws hold. This means that our approach is strictly local, as opposed to more global
descriptions based on higher-order elasticity (e.g., Johnson & Rasolofosaon, 1996; Prioul et al., 2004).

2. Effects of Induced Stress on Seismic Waves
Induced stress affects seismic wave propagation in two ways. First, it modifies the equation of motion, and,
second, it modifies the constitutive relationship. In this section, we summarize the effects of stress changes
on seismic wave propagation; for a more in-depth discussion, see Tromp and Trampert (2018).

We express the symmetric induced stress, T0, in the form

T0 = −p0 I + 𝛕0, (1)

where I denotes the identity tensor, p0 the induced pressure,

p0 = −1
3

tr(T0), (2)

and 𝜏0 the symmetric trace-free induced deviatoric stress,

𝛕0 = T0 − 1
3

tr(T0)I. (3)

Before inducing stress, the equation of motion is given by

𝜌𝜕2
t s − 𝛁 ·T = 𝟎, (4)

where 𝜌 denotes the mass density and s the displacement. The stress tensor, T, is linearly related to the
infinitesimal strain tensor,

𝝐 = 1
2
[𝛁 s + (𝛁 s)T)], (5)

(a superscript T denotes the transpose) via Hooke's law:

T = 𝚪 ∶ 𝝐. (6)

The fourth-order elastic tensor, Γ , exhibits the symmetries

Γi𝑗k𝓁 = Γ𝑗ik𝓁 = Γi𝑗𝓁k = Γk𝓁i𝑗 , (7)

which, in the most general case, reduce the number of independent parameters from 81 to 21. It is often
convenient to express the elastic tensor in terms of its isotropic and purely anisotropic parts as

Γi𝑗k𝓁 = (𝜅 − 2
3
𝜇)𝛿i𝑗 𝛿k𝓁 + 𝜇 (𝛿ik 𝛿𝑗𝓁 + 𝛿i𝓁 𝛿𝑗k) + 𝛾i𝑗k𝓁 , (8)

where 𝜅 and 𝜇 denote the isotropic bulk and shear moduli, respectively, and 𝛾ijk𝓁 a purely anisotropic contri-
bution. The elements 𝛾ijk𝓁 exhibit the same symmetries as the elements 𝛾ijk𝓁 , and for purely isotropic media
𝛾ijk𝓁 = 0.

As discussed in Tromp and Trampert (2018), the equation of motion in a medium with an additional induced
stress takes the modified form (see also Dahlen & Tromp, 1998, equation 3.58 without density and gravity
perturbations or rotational terms)

𝜌𝜕2
t s − 𝛁 ·TL1 − 𝛁[s · (𝛁 ·𝛕0)] + 𝛁 ·(s · 𝛁𝛕0) = 𝟎, (9)
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and Hooke's law is modified to become

TL1 = 𝚪 ∶ 𝝐 + ΔT. (10)

The quantity TL1 denotes the symmetric incremental Lagrangian Cauchy stress (Dahlen & Tromp, 1998),
and the effects of the induced stress are captured by the symmetric second-order tensor

ΔT = [(𝜅′ − 2
3
𝜇′) tr(𝝐)I + 2𝜇′

𝝐]p0 + 1
2
[(𝛕0 ∶ 𝝐)I − tr(𝝐)𝛕0]

− 1
2
(𝜅′ − 2

3
𝜇′) [(𝛕0 ∶ 𝝐)I + tr(𝝐)𝛕0] − 𝜇′ (𝛕0 · 𝝐 + 𝝐 · 𝛕0)

+ 𝛚 · 𝛕0 − 𝛕0 · 𝛚.

(11)

Note that the two additional terms in the equation of motion (9) depend only on the induced deviatoric
stress, 𝜏0. The modification of Hooke's law, captured by equation (11), involves adiabatic pressure derivatives
of the isotropic moduli, 𝜅 ′ and 𝜇

′ , the induced pressure and deviatoric stress, p0 and 𝜏0, and the infinitesimal
strain tensor (5) and the antisymmetric infinitesimal vorticity tensor

𝛚 = −1
2
[𝛁 s − (𝛁 s)T)]. (12)

The goal of this paper is to compare predictions based on the theory summarized in this section with ab
initio mineral physics calculations.

3. Elastic Tensor Under Induced Stress
Ab initio calculations are based on the assumption that the Lagrangian internal energy per unit mass, UL,
is quadratic in the Lagrangian strain tensor,

EL = 1
2
[𝛁 s + (𝛁 s)T)] + 1

2
(𝛁 s) · (𝛁 s)T , (13)

that is (e.g., Barron & Klein, 1965; Dahlen & Tromp, 1998; Karki et al., 2001),

𝜌0 UL = T0 ∶ EL + 1
2

EL ∶ 𝚵 ∶ EL. (14)

Here 𝜌0 denotes the density before straining the material, and T0 denotes the induced stress. For conve-
nience, we have assumed that the Lagrangian internal energy density vanishes in the absence of strain.

The symmetric second Piola-Kirchhoff stress is defined in terms of the Lagrangian internal energy via

TSK = 𝜌0 𝜕UL

𝜕EL = T0 + TSK1, (15)

where TSK1 denotes the symmetric incremental second Piola-Kirchhoff stress, namely,

TSK1 = 𝚵 ∶ EL. (16)

The components of the fourth-order tensor 𝚵 are given by

Ξi𝑗k𝓁 = 𝜌0 𝜕2UL

𝜕EL
i𝑗 𝜕EL

k𝓁

. (17)

Equation (17) implies that 𝚵 exhibits the usual symmetries, namely,

Ξi𝑗k𝓁 = Ξ𝑗ik𝓁 = Ξi𝑗𝓁k = Ξk𝓁i𝑗 . (18)

The incremental Lagrangian Cauchy stress (10) and the incremental second Piola-Kirchhoff stress (16) are
related via (Dahlen & Tromp, 1998, equation 3.37)
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TSK1 = TL1 + T0 𝛁 ·s − (𝛁 s)T · T0 − T0 · 𝛁 s. (19)

The last equation ties the ab initio calculations to the equation of motion (9).

Tromp and Trampert (2018) demonstrate that the tensor Ξijk𝓁 may be expressed in terms of the unstressed
elastic tensor Γijk𝓁 , the induced stress T0, and the pressure derivatives 𝜅 ′ and 𝜇

′ as

Ξi𝑗k𝓁 = Γi𝑗k𝓁 +
1
2
(1 − 𝜅′ + 2

3
𝜇′) (T0

i𝑗 𝛿k𝓁 + T0
k𝓁 𝛿i𝑗)

− 1
2
(1 + 𝜇′) (T0

ik 𝛿𝑗𝓁 + T0
𝑗k 𝛿i𝓁 + T0

i𝓁 𝛿𝑗k + T0
𝑗𝓁 𝛿ik).

(20)

This theory makes testable predictions: given an induced stress T0 and pressure derivatives 𝜅
′ and 𝜇

′ ,
equation (20) implies changes in the elastic tensor that may be benchmarked against ab initio mineral
physics calculations.

Before doing so, we wish to generalize equation (20). The effects of the induced stress are captured by the
terms

1
2
(T0

i𝑗 𝛿k𝓁 + T0
k𝓁 𝛿i𝑗) −

1
2
(T0

ik 𝛿𝑗𝓁 + T0
𝑗k 𝛿i𝓁 + T0

i𝓁 𝛿𝑗k + T0
𝑗𝓁 𝛿ik)

− 1
2
(𝜅′ − 2

3
𝜇′) (T0

i𝑗 𝛿k𝓁 + T0
k𝓁 𝛿i𝑗) −

1
2
𝜇′ (T0

ik 𝛿𝑗𝓁 + T0
𝑗k 𝛿i𝓁 + T0

i𝓁 𝛿𝑗k + T0
𝑗𝓁 𝛿ik),

which may be rewritten in the form

1
2
(T0

i𝑗 𝛿k𝓁 + T0
k𝓁 𝛿i𝑗) −

1
2
(T0

ik 𝛿𝑗𝓁 + T0
𝑗k 𝛿i𝓁 + T0

i𝓁 𝛿𝑗k + T0
𝑗𝓁 𝛿ik) −

1
4
Θi𝑗k𝓁mn T0

mn,

where

Θi𝑗k𝓁mn = 𝛿𝑗n [(𝜅′ − 2
3
𝜇′)𝛿im 𝛿k𝓁 + 𝜇′ (𝛿km𝛿i𝓁 + 𝛿𝓁m 𝛿ik)]

+ 𝛿in [(𝜅′ − 2
3
𝜇′)𝛿𝑗m 𝛿k𝓁 + 𝜇′ (𝛿km 𝛿𝑗𝓁 + 𝛿𝓁m 𝛿𝑗k)]

+ 𝛿𝓁n [(𝜅′ − 2
3
𝜇′)𝛿km 𝛿i𝑗 + 𝜇′ (𝛿im 𝛿𝑗k + 𝛿𝑗m 𝛿ik)]

+ 𝛿kn [(𝜅′ − 2
3
𝜇′)𝛿𝓁m 𝛿i𝑗 + 𝜇′ (𝛿im 𝛿𝑗𝓁 + 𝛿𝑗m 𝛿i𝓁)].

(21)

The tensor Θijk𝓁mn must exhibit the “elastic” symmetries

Θi𝑗k𝓁mn = Θ𝑗ik𝓁mn = Θi𝑗𝓁kmn = Θk𝓁i𝑗mn, (22)

as well as the symmetries imposed by the induced stress,

Θi𝑗k𝓁mn = Θi𝑗k𝓁nm. (23)

We recognize terms of the form (𝜅′ − 2
3
𝜇′)𝛿im 𝛿k𝓁 +𝜇′ (𝛿km𝛿i𝓁 + 𝛿𝓁m 𝛿ik) as pressure derivatives of an isotropic

elastic tensor. This motivates a generalization of the tensor Θijk𝓁mn while retaining its required symmetries
(22) and (23), namely,

Θi𝑗k𝓁mn = 1
2
(𝛿𝑗nΓ′

imk𝓁 + 𝛿𝑗mΓ′
ink𝓁 + 𝛿inΓ′

𝑗mk𝓁 + 𝛿imΓ′
𝑗nk𝓁

+ 𝛿𝓁nΓ′
kmi𝑗 + 𝛿𝓁mΓ′

kni𝑗 + 𝛿knΓ′
𝓁mi𝑗 + 𝛿kmΓ′

𝓁ni𝑗),
(24)

where Γ′

ijk𝓁 denote pressure derivatives of the elements of the elastic tensor. Thus, the generalization of
equation (20) is

Ξi𝑗k𝓁 = Γi𝑗k𝓁 + Γ′
i𝑗k𝓁 p0 − p0 (𝛿i𝑗 𝛿k𝓁 − 𝛿ik 𝛿𝑗𝓁 − 𝛿𝑗k 𝛿i𝓁)

+ 1
2
(𝜏0

i𝑗 𝛿k𝓁 + 𝜏0
k𝓁 𝛿i𝑗) −

1
2
(𝜏0

ik 𝛿𝑗𝓁 + 𝜏0
𝑗k 𝛿i𝓁 + 𝜏0

i𝓁 𝛿𝑗k + 𝜏0
𝑗𝓁 𝛿ik)

− 1
4
(Γ′

imk𝓁 𝜏
0
m𝑗

+ Γ′
𝑗mk𝓁 𝜏

0
mi + Γ′

kmi𝑗 𝜏
0
m𝓁 + Γ′

𝓁mi𝑗 𝜏
0
mk).

(25)
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The ab initio calculations will be based on the tensor elements Ξijk𝓁 and its pressure derivatives Ξ′

ijk𝓁 . Upon
differentiating equation (25) with respect to pressure, we see that the pressure derivative Ξ′

ijk𝓁 is related to
the pressure derivative Γ′

ijk𝓁 via

Ξ′
i𝑗k𝓁 = Γ′

i𝑗k𝓁 − (𝛿i𝑗 𝛿k𝓁 − 𝛿ik 𝛿𝑗𝓁 − 𝛿𝑗k 𝛿i𝓁). (26)

Thus, in termsΞ′

ijk𝓁 rather thanΓ′

ijk𝓁 , we find that changes in the elastic tensor induced by the stress, 𝛿Ξijk𝓁 =
Ξijk𝓁 − Γijk𝓁 , are given by

𝛿Ξi𝑗k𝓁 = Ξ′
i𝑗k𝓁 p0 − 1

4
(Ξ′

imk𝓁 𝜏
0
m𝑗

+ Ξ′
𝑗mk𝓁 𝜏

0
mi + Ξ′

kmi𝑗 𝜏
0
m𝓁 + Ξ′

𝓁mi𝑗 𝜏
0
mk). (27)

This is the equation that we compare against ab initio calculations in the next section. We shall consider
prestressed samples of NaCl and MgO under mantle conditions and subject them to an additional induced
stress.

4. Ab Initio Calculations
Ab initio methods based on Density Functional Theory (Hohenberg & Kohn, 1964; Kohn & Sham, 1965)
have been used to calculate elastic coefficients of complex materials since the mid-1990s (Wentzcovitch
& Price, 1996). Such calculations are currently routinely performed at high pressures and temperatures
(Wentzcovitch et al., 2010). Here we apply these methods to compute the static elastic tensor under hydro-
static and nonhydrostatic conditions. The present calculations do not include vibrational contributions to
the elastic coefficients. They are strictly static lattice calculations (zero kelvin without zero-point motion
effects). Here we present ab initio calculations of the elastic tensor components for NaCl and MgO in the
rock-salt cubic structure. NaCl is commonly encountered in offshore exploration seismology in the form of
salt domes, and MgO is one of the primary constituents of the Earth's lower mantle. We used the Quan-
tum ESPRESSO software to perform the calculations and the local-density approximation functional for the
exchange-correlation energy (Giannozzi et al., 2009). The electronic wave functions of Mg and O were cal-
culated using norm-conserving pseudopotentials. For NaCl we used the projector augmented wave method.
We sampled the NaCl electronic states on displaced 8 ×8× 8 k-mesh, using an energy cutoff of 100 Ry. For
MgO, we used a 12 ×12× 12 displaced k-mesh with energy cutoff of 160 Ry. These plane wave energy cutoffs
and k-meshes are very high in general, but the small differences in the stress tensor caused by the prestressed
case requires extra accuracy. Both crystals have cubic symmetry; therefore, there are only three independent
elastic coefficients, namely, Ξ1111, Ξ1122, and Ξ2323. In Voigt notation, the elastic matrix takes the symmetric
form

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ξ1111 Ξ1122 Ξ1122 0 0 0
Ξ1111 Ξ1122 0 0 0

Ξ1111 0 0 0
Ξ2323 0 0

Ξ2323 0
Ξ2323

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (28)

The three elastic moduli of NaCl and MgO under hydrostatic conditions in relevant pressure ranges are
shown in Figure 1, while the associated pressure derivatives are shown in Figure 2. These results are obtained
by calculating the elastic parameters at 12 equally spaced pressures identified by the dots in Figure 1. The
crystal cells are optimized at each pressure with variable cell shape molecular dynamics (Wentzcovitch,
1991; Wentzcovitch et al., 1993), and pressure is calculated by fitting the Lagrangian energy per unit volume,
E = 𝜌0 UL, as a function of volume, V , to a third-order finite strain equation of state (Poirer, 2000):

E(V) = E0 + 9
2

V 0𝜅0𝑓 2 [1 + 𝑓
(
𝜅′0 − 4

)]
, (29)

where

𝑓 = 1
2
[(V 0∕V)

2
3 − 1], (30)
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Figure 1. Elastic moduli of NaCl (left) and MgO (right), which have cubic symmetry, plotted as a function of pressure
in the range from −3 to 30 GPa. The colored dots correspond to the 10 pressures that were used for interpolation based
upon the finite strain equation of state (29).

thereby determining E0 , V0 , 𝜅0 and 𝜅
′ 0 . Upon differentiating equation (29) with respect to V , ana-

lytical expressions for pressure P and bulk modulus 𝜅 as a function of volume are obtained, using the
thermodynamic identities

P(V) = −
(
𝜕E
𝜕V

)
S
= 3𝜅0𝑓 (1 + 2𝑓 )

5
2

[
1 + 3

2

(
𝜅′ 0 − 4

)]
, (31)

and (discarding second-order terms in f )

𝜅(V) = −V
(
𝜕P
𝜕V

)
T
= 𝜅0(1 + 2𝑓 )

5
2

[
1 +

(
3𝜅′ 0 − 5

)
𝑓

]
. (32)

Here S and T denote entropy and temperature, respectively, where in this case T = 0 K and S is constant
and equal to 0. At each pressure, the elastic matrix (28) was calculated by applying positive and negative
Lagrangian strains (EL

kl) of 0.5% and calculating the stress tensor with the stress theorem (Nielsen & Martin,
1985). The elastic coefficients may be obtained via the linear stress-strain relationship (16) (Karki et al.,
2001; Wentzcovitch & Price, 1996); that is,

TSK1
i𝑗 = TSK

i𝑗 + P𝛿i𝑗 = Ξi𝑗kl EL
kl, (33)

Figure 2. Pressure derivatives of the three elastic moduli of NaCl (left) and MgO (right) plotted as a function of
pressure in the range from −3 to 30 GPa.
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where P denotes the pressure associated with the isotropic prestress −P I .

The elastic parameters are assumed to have the same volume dependence as the bulk modulus; therefore,

Ξi𝑗kl(V) = Ξ0
i𝑗kl(1 + 2𝑓 )

5
2

[
1 +

(
3Ξ′ 0

i𝑗kl − 5
)
𝑓

]
. (34)

The calculated values of Ξijk𝓁 are fitted to equation (34), which determines Ξ0
i𝑗k𝓁 and Ξ′ 0

i𝑗k𝓁 . Pressure
derivatives of the elastic moduli, Ξ′

ijk𝓁 , are calculated analytically via

Ξ′
i𝑗k𝓁 = 1

3𝜅
Ξ0

i𝑗k𝓁(1 + 2𝑓 )
5
2

[
5 +

(
3Ξ′ 0

i𝑗k𝓁 − 5
)
(1 + 7𝑓 )

]
. (35)

At this point, we have the pressure derivatives we need to use equation (27) to predict changes in the elas-
tic parameters due to induced stresses. Now that the pressure dependence of the elastic moduli has been
established, we can subject our sample to an induced stress at a chosen pressure. In other words, we take a
sample at pressure P, having cubic elastic moduli Ξijk𝓁(P) of the form (28), and subject it to an induced stress
T0 of the form (1). Explicitly, we have

TSK1
i𝑗 = TSK

i𝑗 + P𝛿i𝑗 + p0 𝛿i𝑗 − 𝜏0
i𝑗 = (Ξi𝑗kl + 𝛿Ξi𝑗k𝓁)EL

kl. (36)

The presstressed sample at pressure P is deformed by the induced stress, −p0 𝛿i𝑗 + 𝜏0
i𝑗 , and the resulting

changes in the elastic moduli, 𝛿Ξijk𝓁 , are recorded.

4.1. Induced Pressure
The first test is aimed at confirming the predicted induced pressure dependence of the elastic parameters.
Equation (27) predicts that this change is of the simple form

𝛿Ξi𝑗k𝓁 = Ξ′
i𝑗k𝓁 p0. (37)

With this goal in mind, the NaCl and MgO samples are subjected to a strain of the form

𝜖11 = 𝜖22 = 𝜖33 = 𝜖0 = 0.01. (38)

The resulting induced pressure is of the form

p0 = −(Ξ1111 + 2Ξ1122)𝜖0, (39)

and there is no induced deviatoric stress: 𝜏0 = 0 . According to equation (37), the expected changes in the
three elastic moduli are given by

𝛿Ξ1111 = Ξ′
1111 p0, (40)

𝛿Ξ1122 = Ξ′
1122 p0, (41)

𝛿Ξ2323 = Ξ′
2323 p0. (42)

In Figure 3 we compare these predictions against ab initio calculations, and we conclude that the two meth-
ods are in excellent agreement for both NaCl and MgO. Error bars were assigned to the ab initio calculations
and the continuum mechanics predictions based on an analysis summarized in Appendix A.

4.2. Induced Uniaxial Stretch
In the next test we subject the NaCl and MgO samples to a uniaxial stretch in the z direction, resulting in a
strain given by

𝜖33 = 𝜖0 = 0.01. (43)
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Figure 3. Comparison of changes in the elastic moduli of NaCl (left) and MgO (right) due to an induced pressure
determined based upon ab initio calculations (solid lines) and continuum mechanics (dashed lines) as a function of
pressure in the range from −3 to 30 GPa. At a given pressure, a cubic NaCl or MgO sample is subjected to a strain of the
form 𝜖11 = 𝜖22 = 𝜖33 = 0.01, which results in an additional induced pressure. The resulting changes in the moduli
are determined based on ab initio calculations as well as equation (37). Error bars for the ab initio calculations and the
continuum mechanics predictions are determined based on an analysis discussed in Appendix A. The two sets of error
bars are staggered for clarity of viewing.

In this case the induced stress (1) involves both an induced pressure and an induced deviatoric stress,
namely,

p0 = −1
3
(Ξ1111 + 2Ξ1122)𝜖0, (44)

𝜏0
11 = 𝜏0

22 = 𝜏0 = −1
3
(Ξ1111 − Ξ1122)𝜖0, (45)

𝜏0
33 = −2𝜏0. (46)

According to equation (39), the expected changes in the elastic moduli are given by

𝛿Ξ1111 = 𝛿Ξ2222 = Ξ′
1111 (p

0 − 𝜏0), (47)

𝛿Ξ1122 = Ξ′
1122 (p

0 − 𝜏0), (48)

Figure 4. Comparison of changes in the elastic moduli of NaCl (left) and MgO (right) due to a uniaxial stretch
determined based upon ab initio calculations (solid lines) and continuum mechanics (dashed lines) as a function of
pressure in the range from −3 to 30 GPa. At a given pressure, a cubic NaCl or MgO sample is subjected to a uniaxial
strain of the form 𝜖33 = 0.01, which results in an additional induced stress. The resulting changes in the moduli are
determined based on ab initio calculations as well as equation (27).
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Figure 5. Comparison of differences between changes in the elastic moduli of NaCl (left) and MgO (right) due to a
uniaxial stretch determined based upon ab initio calculations (solid lines) and continuum mechanics (dashed lines) as
a function of pressure in the range from −3 to 30 GPa. Plotted are the three differences 𝛿Ξ3333 − 𝛿Ξ1111,
𝛿Ξ1212 − 𝛿Ξ2323, and 𝛿Ξ1122 − 𝛿Ξ1133, which are expected to depend only on the induced deviatoric stress, 𝜏0.

𝛿Ξ1133 = 𝛿Ξ2233 = Ξ′
1122 (p

0 + 1
2
𝜏0), (49)

𝛿Ξ3333 = Ξ′
1111 (p

0 + 2𝜏0), (50)

𝛿Ξ2323 = 𝛿Ξ1313 = Ξ′
2323 (p

0 + 1
2
𝜏0), (51)

𝛿Ξ1212 = Ξ′
2323 (p

0 − 𝜏0). (52)

In Figure 4 we compare these predictions against the ab initio calculations for a uniaxial stretch, and we
conclude that the two methods are in good agreement for both NaCl and MgO within one standard deviation.

To highlight contributions of the induced deviatoric stress, we consider the following three differences:

𝛿Ξ3333 − 𝛿Ξ1111 = 3Ξ′
1111 𝜏

0, (53)

𝛿Ξ1212 − 𝛿Ξ2323 = −3
2
Ξ′

2323 𝜏
0, (54)

𝛿Ξ1122 − 𝛿Ξ1133 = −3
2
Ξ′

1122 𝜏
0. (55)

Note that these three differences depend only on 𝜏0. In Figure 5 we compare these predictions against the
ab initio calculations, and we conclude that the two methods are in good agreement.

To highlight contributions of the induced pressure, we consider the following three combinations of changes
in the elastic tensor:

𝛿Ξ3333 + 2𝛿Ξ1111 = 3Ξ′
1111 p0, (56)

𝛿Ξ1212 + 2𝛿Ξ2323 = 3Ξ′
2323 p0, (57)

𝛿Ξ1122 + 2𝛿Ξ1133 = 3Ξ′
1122 p0. (58)

Note that these three combinations depend only on p0. In Figure 6 we compare these predictions against the
ab initio calculations, and we conclude that the two methods are in good agreement.
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Figure 6. Comparison of combinations of changes in the elastic moduli of NaCl (left) and MgO (right) due to a
uniaxial stretch determined based upon ab initio calculations (solid lines) and continuum mechanics (dashed lines) as
a function of pressure in the range from −3 to 30 GPa. Plotted are the three combinations 𝛿Ξ3333 + 2 𝛿Ξ1111,
𝛿Ξ1212 + 2 𝛿Ξ2323, and 𝛿Ξ1122 + 2 𝛿Ξ1133, which are expected to depend only on the induced pressure, p0.

5. Implications for Seismic Wave Speeds
The speeds of seismic waves are determined based on a plane wave analysis of the equation of motion (9). As
demonstrated by Tromp and Trampert (2018), the wave speeds are determined by the eigenvalue problem

B · a = c2 a, (59)

where B denotes the symmetric Christoffel tensor with elements

𝜌B𝑗𝓁 = (Γi𝑗k𝓁 + Γ′
i𝑗k𝓁 p0) k̂i k̂k +

1
2
𝜏0

ik k̂i k̂k 𝛿𝑗𝓁 −
1
2
𝜏0
𝑗𝓁

− 1
2
(Γ′

imk𝓁 𝜏
0
m𝑗

+ Γ′
𝑗mk𝓁 𝜏

0
mi) k̂i k̂k.

(60)

Here k̂i denotes a component of the unit plane wave vector. Because B is a symmetric positive-definite tensor,
the eigenvalue problem (59) has three positive eigenvalues, c2, and associated orthogonal eigenvectors, a.

For isotropic materials, Tromp and Trampert (2018) demonstrated that the wave speeds take on the simple
approximate forms

𝜌c2
P = (𝜅 + 𝜅′ p0) + 4

3
(𝜇 + 𝜇′ p0) − (𝜅′ + 4

3
𝜇′) k̂0 · 𝛕0 · k̂0, (61)

and

𝜌c2
S1,2

= (𝜇 + 𝜇′ p0) + 1
2
(1 − 𝜇′) k̂0 · 𝛕0 · k̂0 − 1

2
(1 + 𝜇′) â0

1,2 · 𝛕
0 · â0

1,2. (62)

Here k̂0 denotes the unit wave vector prior to inducing stress, and â0
1,2 the unit shear wave polarization

directions prior to inducing stress. Note that k̂0 · â0
1,2 = 0 . Given the elastic moduli, 𝜅 and 𝜇 , and their

pressure derivatives, 𝜅 ′ and 𝜇
′ , equations (61) and (62) may be used to assess the effects of induced stress

on seismic wave speeds in exploration geophysics.

In global seismology, the effects of a nonhydrostatic prestress on seismic wave speeds may be accommodated
as follows. Given seismologically determined profiles of compressional and shear wave speeds as a function
of depth, the pressure dependence and related pressure derivatives of the elastic moduli may be determined.
Thus, given 𝜅 = 𝜅(P) and 𝜇 = 𝜇(P) and 𝜅

′ = d𝜅∕dP and 𝜇
′ = d𝜇∕dP, the effect of a deviatoric induced

stress 𝜏0— in this case taking the form of a nonhydrostatic prestress—on seismic wave speeds is determined
by

𝜌c2
P = 𝜅 + 4

3
𝜇 − (𝜅′ + 4

3
𝜇′) k̂0 · 𝛕0 · k̂0, (63)
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𝜌c2
S1,2

= 𝜇 + 1
2
(1 − 𝜇′) k̂0 · 𝛕0 · k̂0 − 1

2
(1 + 𝜇′) â0

1,2 · 𝛕
0 · â0

1,2. (64)

These expressions may be used to infer nonhydrostatic prestress from global seismic observations. Trans-
verse isotropy—or a more general anisotropic background model—may be accommodated based on minor
modifications, using Voigt averages for the pressure derivatives. As discussed by Tromp and Trampert (2018),
the current theory used by global seismologists effectively assumes that the pressure derivatives 𝜅 ′ and 𝜇

′

are equal to 0, rendering the compressional wave speed (63) independent of the induced deviatoric stress.
The ab initio tests conducted in this study demonstrate that this is an incorrect assumption.

6. Conclusions
Motivated by a formulation commonly used in global seismology (Dahlen, 1972a, 1972b; Dahlen & Tromp,
1998), Tromp and Trampert (2018) investigated the effects of induced stress on the elastic wave equation and
constitutive relation. Without employing higher-order elasticity theory (e.g., Egle & Bray, 1976; Hughes &
Kelly, 1953; Murnaghan, 1951; Prioul et al., 2004) nor theories for preexisting or induced cracks (e.g., Bruner,
1976; Henyey & Pomphrey, 1982; Nur, 1971; O'Connell & Budiansky, 1974; Zheng, 2000), their formulation
leads to trends observed in measurements based on laboratory data.

Here, we compare predictions of changes in the elastic moduli due to an induced stress based upon the con-
tinuum mechanics theory of Tromp and Trampert (2018) with corresponding ab initio calculations. Using
NaCl and MgO—which exhibit cubic symmetry—as examples, we have shown that the continuum mechan-
ics theory accurately predicts the effects of both induced pressure and induced deviatoric stress on elastic
moduli over a wide range of background pressures.

The current theory used by global seismologists for capturing the effects of a nonhydrostatic prestress on
seismic wave propagation contains two quantities, a and b, which may be chosen to obtain a particular
equation of state (see Dahlen & Tromp, 1998, equations 3.135–3.137). Global seismologists prefer to choose
a = −b = 1∕2, thereby rendering the formulation independent of the hydrostatic prestress. By rewriting
a and b in terms of two new parameters, namely, 𝜅 ′ and 𝜇

′ , Tromp and Trampert (2018) showed that the
predicted seismic wave speeds, defined by equations (61) and (62), take on experimentally expected forms
when one interprets the parameters 𝜅

′ and 𝜇
′ as the adiabatic pressure derivatives of the bulk and shear

moduli with respect to pressure. This implies that one no longer chooses the values of a and b, but rather,
these values are determined by the pressure derivatives of the moduli. The ab initio calculations presented
in this paper confirm that this is the correct approach, because without such derivatives the theory fails to
make accurate predictions.

Appendix A: Error Analysis
Variances for the predicted changes in the elements of the elastic tensor, 𝜎2

𝛿Ξi𝑗k𝓁
, based on the continuum

mechanics theory are given by (Bevington & Robinson, 2003)

𝜎2
𝛿Ξi𝑗k𝓁

= 𝜎2
Ξ′

i𝑗k𝓁

(
𝜕𝛿Ξi𝑗k𝓁

𝜕Ξ′
i𝑗k𝓁

)2

+ 𝜎2
p0

(
𝜕𝛿Ξi𝑗k𝓁

𝜕p0

)2

+ 𝜎2
𝜏0

(
𝜕𝛿Ξi𝑗k𝓁

𝜕𝜏0

)2

, (A1)

where 𝜎2
Ξ′

i𝑗k𝓁
, 𝜎2

p0 , and 𝜎2
𝜏0 are the variances for Ξ′

ijk𝓁 , p0, and 𝜏0, respectively. Changes in the elastic tensor,
𝛿Ξijk𝓁 , are given by (40)–(42) for an induced pressure and by (47)–(51) for an induced uniaxial stretch. The
variances 𝜎2

p0 and 𝜎2
𝜏0 are obtained by propagating the errors for expressions (44) and (45):

𝜎2
p0 = 1

9
(𝜖0)2

(
𝜎2
Ξ1111

+ 4𝜎2
Ξ1122

)
, (A2)

and

𝜎2
𝜏0 = 1

9
(𝜖0)2

(
𝜎2
Ξ1111

+ 𝜎2
Ξ1122

)
. (A3)

The variances 𝜎2
Ξ1111

and 𝜎2
Ξ1122

are determined by fitting the mean squared error of the corresponding elastic
coefficient to equation (34):
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𝜎2
Ξi𝑗k𝓁

= 1
N

∑(
Ξfit

i𝑗k𝓁 − Ξab initio
i𝑗k𝓁

)2
, (A4)

Here Ξfit
i𝑗k𝓁 and Ξab initio

i𝑗k𝓁 are the elastic coefficients obtained based on equation (34) and the ab initio calcu-
lations, respectively, and N denotes the number of pressures calculated computationally. Variances for the
pressure derivatives are determined by

𝜎′2
Ξi𝑗k𝓁

Ξ′2
i𝑗k𝓁

=
𝜎2

g

g2 +
𝜎2
𝜅

𝜅2 , (A5)

where 𝜎2
𝜅

is the variance for 𝜅 and g the numerator of equation (35). Thus,

𝜎2
g = 𝜎2

Ξ0

(
𝜕g
𝜕Ξ0

)2

+ 𝜎2
𝑓

(
𝜕g
𝜕𝑓

)2

+ 𝜎2
Ξ′0

(
𝜕g
𝜕Ξ′0

)2

. (A6)

Here 𝜎2
Ξ0 and 𝜎2

Ξ′0 are the variances for the fitting parameters of equation (34), and 𝜎2
𝑓

is given by

𝜎2
𝑓
= 1

9

(𝜎V0

V 0

)2
(

V 0

V

) 4
3
. (A7)

Here 𝜎2
V0 is the variance for V0, obtained via fitting equation (29) to the calculated data. Thus, we have the

necessary ingredients to calculate the errors in the predicted 𝛿Ξijk𝓁 based on equation (A1).

Errors for the ab initio calculations are determined using the fitted mean squared error of each elastic coef-
ficient. Errors in pressure are obtained based on the difference between equation (31) and the trace of the
stress tensor. Thus, variances for 𝛿Ξijk𝓁 obtained via the ab initio calculations are determined by

𝜎2
𝛿Ξab initio

i𝑗k𝓁
= 𝜎2

Ξu
i𝑗k𝓁

+ 𝜎2
Ξs

i𝑗k𝓁
+ 𝜎2

P, (A8)

where 𝜎2
Ξu

i𝑗k𝓁
and 𝜎2

Ξs
i𝑗k𝓁

are the variances given by equation (A4) for the unstrained and strained configura-

tions, respectively, and 𝜎2
P is the variance in pressure.
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