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Abstract: The market of gluten-free (GF) products has been steadily increasing in last few years. Due
to the technological importance of gluten, the GF food production is still a challenge for the industry.
Indeed, large quantities of fat, sugars, structuring agents, and flavor enhancers are added to GF
formulations to make textural and sensorial characteristics comparable to conventional products,
leading to nutritional and caloric intake imbalances. The formulation of the novel “clean-label” GF
bread included a commonly used mixture of maize and rice flour (ratio 1:1) fortified with selected
protein-rich flours. Naturally hydrocolloids-containing flours (psyllium, flaxseed, chia) were included
in the bread formulation as structuring agents. A type-II sourdough was obtained by using a selected
Weissella cibaria P9 and a GF sucrose-containing flour as substrate for fermentation to promote the
exo-polysaccharides synthesis by the starter lactic acid bacterium. A two-step protocol for bread-
making was set-up: first, the GF sourdough was fermented (24 h at 30 ◦C); then, it was mixed with
the other ingredients (30% of the final dough) and leavened with baker’s yeast before baking. Overall,
the novel GF bread was characterized by good textural properties, high protein content (8.9% of dry
matter) and in vitro protein digestibility (76.9%), low sugar (1.0% of dry matter) and fat (3.1% of dry
matter) content, and an in vitro predicted glycemic index of 85.

Keywords: gluten-free bread; sourdough; clean-label

1. Introduction

Although the consumption of bread has showed a progressive decrease in recent
decades, bread is considered one of the most important staple foods in the world. Its
consumption in the last years was reported to be approximately 60 kg per capita per year
in the Western countries [1].

Bread is commonly made using wheat flour, in which gluten is the main protein source.
However, a growing part of the population is affected by several diseases related to gluten
intake. Indeed, celiac disease (CD) is the most common and increasing food intolerance,
affecting approximately 1% of the worldwide population [2]. In addition to CD, there are
several disorders related to gluten intake, called gluten-related disorders, which include
non-celiac gluten sensitivity (NCGS), dermatitis herpetiformis, wheat allergy, gluten ataxia,
and other chronic inflammatory diseases (e.g., inflammatory bowel diseases, IBD), usually
co-occurring with CD [3,4].

The primary treatment to avoid complications related to gluten assumption is the
strict adherence to a gluten-free diet (GFD) [5]. Overall, among GF ingredients, corn and
rice flours are extensively used to make GF bread [6]. However, several technological
issues lead to difficulties in the production of GF bread. Indeed, gluten is the main
structuring agent in wheat dough and confers its baking quality [7]. Several approaches
were investigated to overcome the absence of wheat protein network, including the use
of a wide range of ingredients and additives [8,9]. Structuring ingredients are usually
classified in three different categories, which include (i) water-binding and film-forming
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ingredients (e.g., hydrocolloids or thickening agents), (ii) structure-forming, volume-filling,
and taste-giving ingredients (e.g., proteins, fats, and low molecular weight carbohydrates),
and (iii) surface-active substances (e.g., emulsifiers). However, the inclusion of many
ingredients and additives give the perception of a high processed food, thus leading to
consumers’ dissatisfaction. Indeed, in recent years, the consumer’s choice is continuously
evolving toward a niche of products considered safer, which are referred to as “clean-label
products” [10,11]. “Clean-label” is not a scientific definition, but it is a popular definition
broadly accepted by the food industry, consumers, the scientific community, and even
regulatory agencies. The definition refers to products made by using as few ingredients
as possible, making sure they could be easily identified by the consumers as no-artificial,
no-synthetic, wholesome ingredients [10,11].

The inclusion of non-wheat plant ingredients and the application of new technologies
were recently proposed to overcome this issue. Being water-binding, film-forming, and
a source of protein, fiber, and minerals [12,13], the use of pseudo-cereals and pulses in
breadmaking has largely been encouraged, both in gluten-containing and gluten-free
products [14–16].

In addition to flours deriving from legumes and pseudo-cereals, whose importance in
the GF sector is mainly related to the nutritional and functional properties, other flours
gained the attention of the producers as texture improvers. Psyllium flour is reported as
one of the most important ingredients already used in commercial GF bread due to its
structuring properties [9,17]. Other seeds (or derived flours) such as chia and flaxseed have
been proposed thanks to their water-binding capacity and production of mucilage [18],
which favor the workability and cohesiveness of the GF doughs, and the hydration and
softness of the GF breads.

In addition to the selection of proper ingredients, bioprocessing could moreover affect
the nutritional and functional properties of GF bread. In particular, sourdough fermentation
has largely been reported as a natural and effective biotechnology to improve the textural,
sensorial, and nutritional properties as well as the shelf life of GF baked goods [19,20]. A
proper selection of lactic acid bacteria (LAB) having specific metabolic traits able to affect
the technological and the nutritional features of the product is strongly suggested [21].
Among all, the synthesis of exopolysaccharides (EPS) has recently gained attention due
to the ability to counteract the negative effects associated with high levels of sourdough
acidification and enhance the loaf volume [22]. EPS-producing strains belonging to the
Weissella genus were widely investigated as potential starters to be employed in food
fermentations. Indeed, the relevance of these heterofermentative LAB is related to their
ability to grow at wide temperature, aw, and pH ranges [23] and to produce EPS that may
improve the rheological properties of doughs [24].

This study aimed at optimizing a formulation and breadmaking procedure to ob-
tain a novel “clean-label” GF bread. The formulation of the recipe was based on the
selection of different ingredients naturally characterized by (i) high protein content, (ii)
structuring properties, and (iii) high sucrose concentration, this latter able to promote
the in situ EPS production by the selected Weissella cibaria P9. The bread made with the
optimized production protocol was characterized for the main technological, nutritional,
and sensory features.

2. Materials and Methods
2.1. Flours Selection

GF commercially available rice (Oryza sativa) (IPAFOOD, Frigento, Italy), psyllium
(Plantago psyllium) (Biotiva, Straßlach-Dingharting, Germany), quinoa (Chenopodium quinoa)
(Food For All, Settimo di Pescantina, Italy), chickpea (Cicer arietinum) (Effegi s.r.l., Spo-
leto, Italy), chestnut (Castanea sativa Miller) (Ki Group s.p.a., Torino, Italy), red lentil
(Lens culinaris), pea (Pisum sativum), flaxseed (Linum usitatissimum), faba (Vicia faba); lupin
(Lupinus albus L.,) (Il Fior di Loto s.r.l., Orbassano, Italy), wholemeal teff (Eragrostis tef ), and
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corn (Zea mays) (EcorNaturaSì s.p.a., Verona, Italy) flours; and whole chia (Salvia hispanica)
seeds (EcorNaturaSì s.p.a., Verona, Italy) were used in this study.

Prior to use, chia seeds were milled using a laboratory mill Ika-Werke M20 (GMBH,
and Co. KG, Staufen, Germany). The proximate composition of flours is reported in Table 1.
Sucrose in chestnut and quinoa flours was determined by Megazyme kits (Megazyme,
Bray, Ireland) K-SUFRG following the manufacturer’s instructions.

Table 1. Proximate composition (percentage) of the flours used in this study as reported on the commercial labels.

Energy
Value

(kJ/100 g)
Moisture

Total
Carbohy-

drates
Sugars Dietary

Fibers Lipids Saturated
Lipids Proteins Salt

Rice 1478 10.6 80.0 1.2 0.5 0.6 0.1 7.0 0.01
Corn 1449 12.9 73.0 0.9 4.5 1.3 0.2 7.2 n.d.

Chestnut 1527 11.0 69.2 26.6 10.5 3.6 0.6 5.6 0.03
Quinoa 1632 12.1 66.0 6.0 3.8 5.7 1.7 12.4 0.02

Teff 1431 14.6 65.2 1.5 7.6 3.2 0.6 9.4 0.01
Chickpea 1402 10.1 51.5 3.5 13.1 4.6 0.6 20.7 0.02

Faba 1570 10.1 53.8 4.8 6.8 2.9 0.5 26.4 n.d.
Lupin 1.519 11.0 18.2 2.9 29.0 6.4 1.9 35.4 0.03

Red lentil 1477 12.0 50.6 2.2 12.9 0.3 0.1 24.2 0.01
Pea 1427 11.0 48.2 2.8 20.3 1.0 n.d. 19.5 0.01

Psyllium 779 11.8 1.6 n.d. 85.0 0.6 0.1 1.6 0.10
Flaxseed 2196 10.3 1.7 1.6 23.0 42.0 3.4 23.0 0.07

Chia 1856 11.7 1.6 0.9 31.9 32.1 3.6 22.7 0.01

2.1.1. Selection of the Ingredients

Thanks to the widely proven suitability in GF bread [19], a blend of rice and corn flours
in a ratio of 1:1 (wt/wt) was used here as the basic formula for breadmaking [25]. Aiming
at increasing the protein content and improving the leavening capacity and the structural
characteristics of the bread, the addition of protein-rich flours (>9% proteins) (quinoa, teff,
chichpea, faba bean, lupin, red lentil and pea flours) and structuring agents-containing
flours (psyllium, chia and flaxseed, below reported as “structuring flours”) (Table 1) to the
basic formula was evaluated. Chia flour was used as such or after hydration, as previously
described by Steffolani et al. [26].

Dough yield (DY, dough weight × 100/flour weight) was 210 for all the formulations
and the level of fortification was 10% (wt/wt, on the flours total weight) for each protein-
rich flour and 4% (wt/wt, on the flours total weight) for the structuring flours, when singly
used. Mixtures of the psyllium flour with either chia or flaxseed (ratio 4:2), and both of
them (4:1:1) were also used. When mixtures were used, the level of fortification of the
structuring flours was 6% (wt/wt) on the flours’ total weight. All the recipes are reported
in Supplementary Table S1. Baker’s compressed yeast (Lesaffre, Trecasali, Italy) at 1.25%
(wt/wt final dough weight) was used according to the producer suggestion. Doughs (200 g)
were mixed at 60× g for 5 min with an IM 5-8 high-speed mixer (Mecnosud, Flumeri, Italy),
proofed at 30 ◦C for 2 h, and baked at 220 ◦C for 30 min (Combo 3, Zucchelli, Verona, Italy).
Dough containing only rice and corn flours (ratio 1:1) was used as control (CT). Dough and
bread were made in triplicate and analyzed twice.

2.1.2. Evaluation of Leavening Capability and Structural Properties

The leavening capacity, by means of volume increase (∆V, mL), was determined by
measuring the dough volume at the end and beginning of the proofing and calculated as
the differences between the values [27]. The leavening performance was expressed as the
percentage of volume increase.

After baking, the loaves were cooled for 2 h before being weighed. Loaf volume
was determined by the rapeseed displacement method AACC 10-05.01 [28]. The alveolus
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percentage of the bread crumb (ratio of the gas cell area on the total area of the bread slice)
was evaluated after 24 h of storage using the image analysis technology. The UTHSCSA
ImageTool software was used, as previously described by Rizzello et al. [29].

2.2. Sourdough Making and Characterization
2.2.1. Sourdough Making

According to an abundant literature [7,22,30,31], the use of sourdough and EPS in the
production of GF bread leads to several improvements in terms of structural and sensory
properties as well as prolonged shelf life. However, the microbial synthesis of EPS is
affected by the fermentable sugars, in particular from sucrose concentration [32]. According
to the above consideration, Type-II sourdoughs (DY, 210) were prepared using a mixture
of rice and corn flours (ratio, 1:1 wt/wt) as a basic recipe, quinoa and chestnut flours (at
different level of fortification) as sucrose source, and Weissella cibaria P9 (previously isolated
from pineapple and belonging to the culture collection of the Department of Soil, Plant and
Food Sciences) as an EPS-producer strain [33]. Sourdough formulations are summarized in
Table 2. Overall, 5 sourdoughs were prepared using either quinoa or chestnut flours at 10
and 20% (wt/wt on flours total weight) level of fortification. Moreover, a combination 1:1
of the two flours (20% wt/wt on the flours total weight) was also included (Supplementary
Table S2). Cell suspensions were prepared as described by Rizzello et al. [34] and inoculated
in doughs. The initial cell density of the lactic acid bacterium in dough was 7.0 log10 cfu/g.
The fermentation was carried out at 30 ◦C for 24 h.

Table 2. Formulations of the experimental sourdough (DY = 210) prepared using rice and corn four
substituted from 10 to 20% with quinoa and chestnut flours. Sourdoughs were fermented by Weissella
cibaria P9 (initial cell density in dough of 7.0 log10 cfu/g) at 30 ◦C for 24 h.

s-CT s-C10 s-C20 s-Q10 s-Q20 s-CQ10

Rice 23.81 21.43 19.05 21.43 19.05 19.05
Corn 23.81 21.43 19.05 21.43 19.05 19.05

Chestnut n.i. 4.76 9.52 n.i. n.i. 4.76
Quinoa n.i. n.i. n.i. 4.76 9.52 4.76
Water 52.38 52.38 52.38 52.38 52.38 52.38

Data are expressed as percentage (%) of total dough weight. n.i., not included.

2.2.2. Sourdough Characterization

Kinetics of the growth and acidification of W. cibaria P9 in the different sourdoughs
were determined and modeled in agreement with the Gompertz equation, as modified by
Zwietering et al. [35]. The experimental data were modeled by the non-linear regression
procedure of the Statistica 12.0 software (Statsoft, Tulsa, OK, USA). The pH of doughs was
determined by a M.507 pHmeter (Crison, Milan, Italy) equipped with a food penetration
probe. Total Titratable Acidity (TTA) was determined after homogenization of 10 g of
dough with 90 mL of distilled water and expressed as the amount (mL) of 0.1 M NaOH
required to neutralize the solution to pH 8.4.

Water/salt-soluble extracts (WSE) were used to analyze organic acid, peptides, and
free amino acids (FAA). Organic acids were determined by Megazyme kits (Megazyme,
Bray, Ireland) K-DLATE and K-ACET (sum of D- and L- lactic and acetic acids, respectively)
following the manufacturer’s instructions. The fermentation quotient (FQ) was determined
as the molar ratio between lactic and acetic acids. Peptides concentration was determined
by the o-phtaldialdehyde (OPA) method as described by Church et al. [36]. FAA were
analyzed by a Biochrom 30+ series Amino Acid Analyzer (Biochrom Ltd., Cambridge
Science Park, England) with a Li-cation-exchange column (20 by 0.46 cm inner diameter).

2.2.3. Evaluation of EPS Production

The content of soluble dextran produced during fermentation by W. cibaria P9 was
determined by an enzyme-assisted method using a mixture of dextranase (Sigma-Aldrich,
Darmstadt, Germany) and α-glucosidase (Megazyme, Bray, Ireland) according to the
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method reported by Katina et al. [37]. Dextranase from Chaetomium erraticum and α-
glucosidase from Aspergillus niger were purchased from Sigma-Aldrich (Germany). About
100 mg of freeze-dried dough was placed in 10 mL centrifuge tubes with 3 mL of wa-
ter/ethanol (50:50 v/v) solution at 100 ◦C for 5 min. Another 3 mL of aqueous ethanol
solution was added; then, the mixture was centrifuged at 10,000× g for 10 min. A further
sample cleaning was made by re-suspending and centrifuging the pellet in 5 mL aqueous–
ethanol solution. The pellet was re-suspended in 4.5 mL of sodium citrate buffer 0.05 M
(pH 5.5) and kept at 100 ◦C for 5 min, vigorously vortexing after 2 min. The solutions
cooled before the addition of a mixture of dextranase (100 nkat/mL) and α-glucosidase
(10 nkat/mL), reaching the final volume of 5 mL with a hydrolysis temperature of 30 ◦C for
48 h. The reaction was stopped by keeping the samples in a boiling water bath for 10 min,
after which the glucose formed was quantified using a K-GLUC glucose kit (Megazyme,
Bray, Ireland).

2.3. Optimization of the Bread Formulation and Set-Up of the Breadmaking Protocol
2.3.1. Formulation

According to the previous analysis, teff, lentil, and quinoa flours were selected as the
best-performing high-protein flours, while the combination of psyllium, hydrated chia, and
flaxseed (4:1:1) was the best mixture of structuring flours. The sourdough containing 20%
(wt/wt on flours total weight) of chestnut flour was selected as the optimal compromise
among EPS production and biochemical properties. Five different bread formulations were
evaluated (Table 3).

Table 3. Formulations of the experimental breads. Sourdough (DY = 210) was prepared using rice,
corn, and chestnut flours (4:4:2). Fermentation by Weissella cibaria P9 at 30 ◦C lasted 24 h. Baker’s
yeast was used at 1.25% (wt/wt).

b-CT b-S b-SQ b-ST b-SL

Rice 22.38 15.24 12.86 12.86 12.86
Corn 22.38 15.24 12.86 12.86 12.86

Quinoa n.i. n.i. 4.76 n.i. n.i.
Teff n.i. n.i. n.i. 4.76 n.i.

Lentil n.i. n.i. n.i. n.i. 4.76
Sourdough n.i. 30.00 30.00 30.00 30.00

Psyllium 1.90 1.90 1.90 1.90 1.90
Hydrated chia * 1.90 1.90 1.90 1.90 1.90

Flaxseed 0.48 0.48 0.48 0.48 0.48
Water 50.96 35.25 35.25 35.25 35.25

Data are expressed as percentage (%) of total dough weight. * The hydration process (chia flour: tap water ratio,
1:3) was carried out for 30 min at 20 ◦C. n.i., not included.

All the breads contained rice and corn flours (1:1) and 6% (wt/wt) of the mixture (4:1:1)
of psyllium, hydrated chia, and flaxseed. Teff, lentil, or quinoa flours were used at 10%
(wt/wt) and sourdough inoculum was of 30% (wt/wt). Sourdough breads (DY 210) were
manufactured at the pilot plant of the Department of Soil, Plant and Food Science of the
University of Bari (Italy), according to the two-stage protocol including the production of
sourdough (fermentation for 24 h at 30 ◦C, step I), and the mixing with flours (rice and
corn), structuring agents, water, and compressed baker’s yeast, followed by incubation
for 1.5 h at 30 ◦C (step II). Aiming at evaluating the effect of the protein-rich flours and
sourdough on bread characteristics, a bread containing neither sourdough nor protein-rich
flours (b-CT) and bread without protein-rich flours (b-S) were made and used as control.
Baker’s yeast was added at the percentage of 1.25% (wt/wt) in all breads. Doughs were
mixed at 60× g for 5 min with an IM 5-8 high-speed mixer (Mecnosud, Flumeri, Italy). All
breads were baked at 210 ◦C for 30 min (Combo 3, Zucchelli, Verona, Italy).
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2.3.2. Sensory and Textural Characterization of the Experimental Breads

Sensory analysis of breads was carried out by 8 trained non-celiac panelists (4 male
and 4 females, mean age: 32 years, range: 26–45 years). The training of panelists was
conducted according to the method described by Elia [38]. The sensory attributes were
discussed with the assessors during the introductory sensory training sessions. Before
the sensory evaluation, the loaves were thawed at room temperature for 5–6 h and then
cut into slices 1.5 cm thick. Each panelist received a piece per each sample. The color
of crust and crumb, elasticity, crumbliness, acidic smell and taste, sweetness, bitterness,
grassy (fresh-tasting notes of cut grass and herbs), and salty taste were the attributes used
to describe different samples using a scale from 0 to10, with 10 being the highest score.

Texture profile analysis was performed by using an FRTS-100N Texture Analyzer
(Imada, Toyohashi, Japan) equipped with a cylinder probe FR-HA-30J on boule-shaped
loaves (200 g) stored for 24 h at room temperature after baking. The instrument settings
were test speed 1 mm/s, 30% deformation of the sample, and two compression cycles,
and the parameters evaluated were (i) hardness, (ii) springiness, and (iii) cohesiveness.
The crumb features were determined as reported above. A commercial GF bread (Panini,
BiAglut, Latina, Italy) was included in both analyses and used as control.

2.4. Characterization of the Selected “Clean-Label” GF Bread

According to the data collected, bread containing quinoa flour as an additional protein
source, chestnut sourdough, and the mixture of the structuring flours was selected and
characterized for proximate composition and nutritional features. The nutritional features
of the experimental “clean-label” GF bread were compared to a reference dataset referring
to commercial GF breads available in the Italian market [39].

2.4.1. Proximate Composition

Protein (total nitrogen × 5.7), total lipids, ash, salt, and moisture contents were
determined according to the AACC approved methods 46-11, 30-10.01, 08-01, 40-61.02, and
44-15A, respectively [28], while the determination of total dietary fibers was carried out by
AOAC-approved methods 991.42 [40]. Total available carbohydrates were calculated as the
difference [100 − (moisture + proteins + lipids + ash + total dietary fibers)] [41]. Saturated
lipids were analyzed by Enotecnolab (Conversano, Italy). Proteins, lipids, carbohydrates,
and ash were expressed as percentage of total weight.

2.4.2. Protein Digestibility, Starch Hydrolysis, and Predicted Glycemic Index

The in vitro protein digestibility (IVPD) of the bread was determined by the method
of Akeson and Stahmann [42]. One gram of sample was incubated with 1.5 mg of pepsin,
in 15 mL of 0.1 M HCl, at 37 ◦C for 3 h. After neutralization with 2 M NaOH and addition
of 4 mg of pancreatin, in 7.5 mL of phosphate buffer (pH 8.0), 1 mL of toluene was added to
prevent microbial growth, and the solution was incubated at 37 ◦C for 24 h. After 24 h, the
enzyme was inactivated by the addition of 10 mL of trichloroacetic acid (20%, wt/v), and
the undigested protein was precipitated. The volume was made up to 100 mL with distilled
water and centrifuged at 5000 rpm for 20 min. The precipitate was subjected to protein
extraction, according to Weiss et al. [43], and the protein concentration in the solutions was
determined by Bradford method [44]. The IVPD was expressed as the percentage of the
total protein, which was solubilized after enzyme hydrolysis.

The analysis of starch hydrolysis, mimicking the in vivo digestion of starch [45], was
carried out in a portion, containing 1 g of starch, of bread made using the final formulation
of bread. The glucose content was measured with a D-Fructose/D-Glucose assay kit
(Megazyme, Bray, Ireland). The degree of starch digestion was expressed as the percentage
of potentially available starch hydrolyzed at different times (30, 60, 90, 120, 150, and
180 min). A non-linear model [45] was applied to describe the kinetics of starch hydrolysis
obtaining a curve following the first-order equation: C = C∞ (1 – e − kt) where C is the
concentration at t time, C∞ is the equilibrium concentration, k is the kinetic constant,
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and t is the chosen time. Wheat flour bread (WB) was used as the control to estimate
the hydrolysis index (HI = 100). The predicted GI was calculated using the equation:
GI = 0.549 × HI + 39.71 [46] with wheat bread as the reference (GI wheat bread = 100).

2.5. Statistical Analysis

Data were subjected to one-way ANOVA; pair-comparison of treatment means was
obtained by Tukey’s procedure at p < 0.05, using the statistical software Statistica 12.0
(StatSoft Inc., Tulsa, OK, USA).

3. Results
3.1. Flour Selection

The influence of the fortification of the rice–corn blend with protein-rich and struc-
turing flours on the technological properties of dough and bread was evaluated by means
of the volume increase of dough after leavening, the specific volume of the loaf, and the
alveolus percentage of the bread slices, respectively (Figure 1A–C).

Among protein-rich flours, quinoa led to the highest volume increase of dough
(+33.3 ± 1.6%) and the highest specific volume of bread (1.27 ± 0.03 mL/g), while the
highest alveolus percentage was observed when lentil flour was added to the bread recipe
(22.2 ± 2.7%). No significant (p < 0.05) differences were found in alveolus percentage and
specific volume of bread when quinoa or teff were used, while the addition of the latter
one led to a significantly lower volume increase of the dough (26.4 ± 1.6%) (Figure 1A).
Conversely, when lupin flour was added, similar results to control dough and bread (made
using only rice and corn flours) were found in terms of volume increase of dough and
specific volume of bread. Moreover, no significant differences were found in alveolus per-
centage of control bread and chickpea-fortified bread, and specific volume of control bread
and pea-fortified bread. Regarding the structuring flours, all (singly or mixed) positively
affected the specific volume of bread; however chia, hydrated chia, and the mixture 4:1:1
(psyllium: hydrated chia: flaxseed) corresponded to the best results in terms of volume
increment of dough, alveolus percentage of bread slice, and specific volume of bread,
compared to the others. When structuring flours were added singly, hydrated chia led
to better results for all the parameters considered: (i) volume increase (+33.3 ± 4.8%), (ii)
specific volume (1.33 ± 0.03 mL/g), and (iii) alveolus percentage (24.3 ± 2.9%) with no
significant (p < 0.05) difference in leavening capability and specific volume compared to
psyllium flour fortification. However, the combination of structuring flours (4:1:1) led to
the best results: (i) volume increase (+34.7 ± 1.6%), (ii) alveolus percentage (26.4 ± 3.3%),
and (iii) specific volume of bread (1.42 ± 0.02 mL/g) (Figure 1A–C).

According to these results, quinoa, teff, or lentil flours, and the mix of psyllium (4% wt/wt),
hydrated chia (1% wt/wt), and flaxseed (1% wt/wt) were selected for further analysis.

3.2. Sourdough Characterization and EPS Production

Chestnut and quinoa flours were used as sucrose sources to promote the synthesis
of EPS by W. cibaria P9 during sourdough fermentation. Their total sugars content corre-
sponded to 26.6% and 6.0%, respectively, while sucrose concentration was 15.22 ± 0.27%
(of dry matter) in chestnut and 2.95 ± 0.12% (of dry matter) in quinoa. The mathematical
modulation of cell density during fermentation showed the lowest µmax value in rice–corn
sourdough (s-CT, 0.65 ± 0.03 ∆log cfu/h). A significant higher µmax was found when
alternative flours were used; however, the highest values were found in s-Q10 and s-Q20
(1.16 ± 0.06 and 0.98 ± 0.07 ∆log cfu/h, respectively). The shortest lag time was found for
s-C20, s-CT, and s-CQ10 (circa 1.81 h). Conversely, the acidification kinetics showed the
longer lag time in s-C10 and s-CT, while the shortest ones were detected in s-CQ10 and
s-C20 (0.84 ± 0.05 and 1.04 ± 0.05 h, respectively). The pH before fermentation (T0) ranged
from 5.81 ± 0.03 (s-C20) to 6.01 ± 0.06 (s-CT), and it decreased during the fermentation
with pH values lower than 4.3 in all the sourdoughs. The highest and lowest pH were
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found in s-C20 (4.28 ± 0.05) and s-CT (3.94 ± 0.08), respectively after 24 h of incubation
(T24) (Table 4).
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Table 4. Chemical evaluation of sourdoughs.

s-CT s-Q10 s-Q20 s-C10 s-C20 sCQ10

pH T0 6.01 ± 0.06 a 5.97 ± 0.05 a 5.94 ± 0.08 a 5.86 ± 0.05 ab 5.81 ± 0.03 b 5.89 ± 0.04 ab

pH T24 3.94 ± 0.08 d 4.03 ± 0.06 cd 4.13 ± 0.06 b 4.11 ± 0.06 bc 4.28 ± 0.05 a 4.17 ± 0.04 b

TTA T0 (mL NaOH 0.1 M) 1.4 ± 0.1 c 2.0 ± 0.2 b 2.0 ± 0.1 b 1.8 ± 0.1 b 2.8 ± 0.2 a 2.8 ± 0.1 a

TTA T24 (mL NaOH 0.1 M) 6.2 ± 0.2 e 7.0 ± 0.3 d 8.6 ± 0.2 b 7.6 ± 0.3 c 8.5 ± 0.2 b 9.0 ± 0.1 a

Peptides T0 (mg/kg) 915 ± 33 d 1328 ± 71 b 1401 ± 82 b 1231 ± 16 c 1875 ± 40 a 1553 ± 78 b

Peptides T24 (mg/kg) 1021 ± 11 e 1354 ± 98 d 3199 ± 79 a 1875 ± 54 c 2052 ± 29 b 1397 ± 26 d

TFAA T0 (mg/kg) 281 ± 11 f 413 ± 9 e 555 ± 10 d 918 ± 7 c 1593 ± 14 a 1098 ± 16 b

TFAA T24 (mg/kg) 1648 ± 18 d 1609 ± 16 e 2600 ± 13 a 1774 ± 11 c 2108 ± 21 b 1648 ± 14 d

Acetic acid (mmol/kg) 36.8 ± 0.8 c 37.2 ± 0.7 bc 30.4 ± 0.8 d 38.4 ± 0.8 ab 39.7 ± 1.1 a 39.3 ± 1.0 a

Lactic acid (mmol/kg) 91.9 ± 2.2 c 115.3 ± 1.5 b 136.8 ± 1.8 a 95.2 ± 2.1 c 86.9 ± 2.3 d 69.3 ± 1.4 e

FQ 2.50 3.10 4.50 2.48 2.19 1.77
Dextran (g/kg) 0.07 ± 0.02 e 0.21 ± 0.03 d 0.43 ± 0.02 b 0.40 ± 0.03 b 0.65 ± 0.06 a 0.32 ± 0.04 c

s-CT, sourdough made with rice and corn flours (ratio 1:1); s-Q10, sourdough made with rice and corn flours (ratio 1:1), and 10% (wt/wt, on
flours total weight) of quinoa flour; s-Q20, sourdough made with rice and corn flours (ratio 1:1), and 20% (wt/wt, flours total weight) of
quinoa flour; s-C10, sourdough made with rice and corn flours (ratio 1:1), and 10% (wt/wt, on flours total weight) of chestnut flour; s-C20,
sourdough made with rice and corn flours (ratio 1:1), and 20% (wt/wt, on flours total weight) of chestnut flour; s-QC10, sourdough made
with rice and corn flours (ratio 1:1), 10% (wt/wt, on flours total weight) of quinoa flour, and 10% (wt/wt, on flours total weight) of chestnut
flour. Fermentation was carried out with Weissella cibaria P9 (initial cell density of 7 log10 cfu/g) at 30 ◦C for 24 h. All sourdoughs had DY
of 210. TTA, Total Titratable Acidity; TFAA, Total Free Amino Acids; FQ, Fermentation Quotient. a–e Values in the same row with different
superscript letters differ significantly (p < 0.05).

TTA was positively correlated with the inclusion of alternative flour before (r = 0.79,
p < 0.001) and after (r = 0.96, p < 0.001) fermentation. The inclusion of quinoa or chestnut
flours led to the highest increase of lactic or acetic acids, respectively. Therefore, lower
FQ were found in s-C20 (2.19) as compared to s-Q20 (4.50). Moreover, the lowest FQ was
found in s-CQ10 due to the lower content of lactic acid (69.3 ± 1.4 mmol/kg). The use of
protein-rich and structuring flours led to a higher concentration of peptides and TFAA in
doughs prior to fermentation (T0). The concentration of TFAA and peptides up to 5.6- and
2-folds higher were found in fortified sourdough (T0) as compared to s-CT (T0). Moreover,
a more intense proteolysis occurred in sourdoughs fortified with the alternative flours
compared to s-CT. Indeed, values up to 2 g/kg (peptides) and 1 g/kg (TFAA) higher were
found in fortified sourdoughs (T24) as compared to s-CT (T24), and the highest values were
detected in s-Q20 (Table 4).

As expected, the sucrose provided with quinoa and chestnut flours supplementation
led to a higher content of EPS after fermentation, which was mainly represented by dextran.
The highest amount was detected in s-C20 (0.65 ± 0.06 g/kg), while no significant differ-
ences were found between s-C10 and s-Q20 (0.40 ± 0.03 and 0.43 ± 0.02 g/kg, respectively).
Only 0.07 ± 0.02 g/kg of dextran were detected in the control s-CT.

3.3. Sensory Analysis and Structural Properties

Sensory analysis was performed to evaluate the impact of (i) structuring flours, (ii)
protein-rich flours, and (iii) sourdough on the organoleptic characteristics of bread. Overall,
the use of sourdough significantly changed the sensory profile of breads. As expected,
compared to b-CT, higher values of elasticity, saltiness, color of crust and crumb, acidic
smell, and taste were perceived by the panelists when sourdough was included in the
formulation. Although the acidic taste decreased, a further increase of the saltiness, crust,
and crumb color was found with the use of protein-rich flours, as compared to b-S (Table 5).
Moreover, the highest value of salty and grassy tastes (5.2 ± 0.4 and 4.2 ± 0.7) were detected
when teff was used.
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Table 5. Sensory and texture profile analysis of breads.

b-CT b-S b-SQ b-ST b-SL b-CGF

Crust colour 2.5 ± 0.4 c 4.7 ± 0.7 b 6.3 ± 0.6 a 4.5 ± 0.8 b 5.7 ± 0.8 ab 2.7 ± 0.8 ab

Crumb colour 2.9 ± 0.3 b 5.3 ± 0.6 a 6.1 ± 0.6 a 5.5 ± 0.7 a 5.6 ± 0.7 a 1.6 ± 0.7 a

Elasticity 6.1 ± 0.8 c 7.7 ± 0.4 ab 8.3 ± 0.4 a 7.5 ± 0.8 b 7.0 ± 0.6 bc 3.0 ± 0.6 bc

Crumbliness 3.9 ± 0.5 a 3.8 ± 0.9 a 3.3 ± 0.8 ab 2.5 ± 0.8 b 3.3 ± 0.9 ab 3.3 ± 0.9 ab

Acid smell 0.6 ± 0.4 c 3.8 ± 0.7 ab 3.5 ± 0.7 ab 3.3 ± 0.5 b 4.3 ± 0.7 a 1.3 ± 0.7 a

Acid taste 0.5 ± 0.3 c 5.2 ± 0.7 a 4.2 ± 0.3 b 4.3 ± 0.7 ab 4.4 ± 0.3 ab 1.4 ± 0.3 ab

Sweetness 5.6 ± 0.6 a 3.1 ± 0.7 b 3.7 ± 0.6 b 4.0 ± 0.7 b 3.7 ± 0.8 b 2.7 ± 0.8 b

Bitterness 2.3 ± 0.7 ab 2.8 ± 0.7 a 1.8 ± 0.6 b 1.8 ± 0.5 b 2.7 ± 0.8 a 2.4 ± 0.8 a

Grassy 1.1 ± 0.5 c 2.7 ± 0.7 b 2.2 ± 0.5 b 4.2 ± 0.7 a 1.5 ± 0.4 c 0.5 ± 0.4 c

Salty 2.7 ± 0.3 c 4.0 ± 0.5 b 4.5 ± 0.4 b 5.2 ± 0.4 a 4.2 ± 0.2 b 5.1 ± 0.2 b

Hardness (N) 59.06 ± 2.45 a 46.47 ± 2.74 b 39.56 ± 2.68 c 39.16 ± 2.81 c 33.75 ± 1.87 d 32.34 ± 1.59 d

Cohesiveness 0.267 ± 0.038 ab 0.249 ± 0.025 ab 0.272 ± 0.024 a 0.238 ± 0.019 b 0.277 ± 0.026 a 0.279 ± 0.018 a

Springiness 0.544 ± 0.114 b 0.760 ± 0.087 a 0.779 ± 0.107 a 0.836 ± 0.098 a 0.713 ± 0.094 a 0.886 ± 0.097 a

b-CT, bread made with rice and corn flours (ratio 1:1) and 6% (wt/wt) of structuring flours (psyllium, hydrated chia, and flaxseed, ratio
4:1:1); b-S, bread made with rice and corn flours (ratio 1:1), 30% (wt/wt) of s-C20, and 6% of structuring flours (psyllium, hydrated chia,
and flaxseed, ratio 4:1:1); b-SQ, bread made with rice and corn flours (ratio 1:1), 30% (wt/wt) of s-C20, 10% (wt/wt) of quinoa flour, and 6%
of structuring flours (psyllium, hydrated chia, and flaxseed, ratio 2:1:1); b-ST, bread made with rice and corn flours (ratio 1:1), 30% (wt/wt)
of s-C20, 10% (wt/wt) of teff flour, and 6% of structuring flours (psyllium, hydrated chia, and flaxseed, ratio 4:1:1); b-SL, bread made with
rice and corn flours (ratio 1:1), 30% (wt/wt) of s-C20, 10% (wt/wt) of red lentil flour, and 6% of structuring flours (psyllium, hydrated chia,
and flaxseed, ratio 4:1:1). All doughs had DY of 200. Baker’s yeast was used at 1.25% (wt/wt). Proofing was at 30 ◦C for 2 h and baking at
200 ◦C for 45 min. b-CGF, a commercial gluten free bread (Panini, BiAglut, Latina, Italy) was included in the analyses and used as control.
a–d Values in the same row with different superscript letters differ significantly (p < 0.05).

The instrumental analysis of texture showed a decrease of hardness when bread loafs
were made using sourdough (Table 5) and the inclusion of protein-rich flours led to a further
decrease, with the lowest value found in b-SL (Table 5). Conversely, springiness, which
represents the rate at which a deformed material returns to the undeformed condition after
deforming force is removed, increased. The cohesiveness, which represent the strength
of the internal bonds making up the body of the product, was found similar in all breads.
The only statistical differences (p < 0.05) were found comparing b-ST with b-SQ, b-SL,
and b-CGF, representing the negative effect, for this parameter, of teff flour inclusion. No
statistical differences were found for b-CT and b-S when compared with other breads.

The image analysis of bread crumb showed the increase of alveolus percentage in all
experimental breads, as compared to b-CT (14.59 ± 0.43) (Figure 2A). Indeed, the inclusion
of sourdough in bread formulation led to higher gas retention during leavening with a
significant (p < 0.05) increase of white spots, which were doubled in b-S (30.66 ± 4.18) and
tripled in bread made using protein-rich flour (from 48.17 ± 1.94 to 48.82 ± 3.53).

Therefore, quinoa flour was chosen to increase the protein content of the final recipe
without affecting the structural and sensorial value of the experimental bread.

3.4. Nutritional Characterization of Bread

The proximate composition and nutritional features of the bread made by using the
new biotechnological protocol were investigated; results are reported in Table 6. The
experimental bread was characterized by higher moisture (43.6 ± 2.4%) and carbohydrates
(47.0 ± 1.7 g/100 g) content compared to the reference dataset, with only 0.6 ± 0.2 g/100 g
represented by sugar. The amount of lipids was very low (1.8 ± 0.4 g/100 g), and only
0.3 ± 0.1 g/100 g was represented by saturated ones. Dietary fibers concentration was
lower than the median of commercial counterparts. The protein content of bread was
5.0 ± 0.2 g/100 g representing 8.7% of the total calories provided by bread. This value
represents a protein content two-fold higher than the reference value characterizing com-
mercial products [39]. No additional salt was included in the final bread formulation;
therefore, the sodium amount corresponded to that naturally present in flours.
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Figure 2. Representative images including digital images of bread showing the original gray-level
images and computed binary results from gray-level thresholding at the two-cluster of bread crumb.
b-CT (A), bread made with rice and corn flours (ratio 1:1) and 6% (wt/wt) of structuring flours
(psyllium, hydrated chia, and flaxseed, ratio 4:1:1); b-S (B), bread made with rice and corn flours
(ratio 1:1), 30% (wt/wt) of s-C20, and 6% of structuring flours (psyllium, hydrated chia, and flaxseed,
ratio 4:1:1); b-ST (C), bread made with rice and corn flours (ratio 1:1), 30% (wt/wt) of s-C20, 10%
(wt/wt) of teff flour, and 6% of structuring flours (psyllium, hydrated chia, and flaxseed, ratio 4:1:1);
b-SL (D), bread made with rice and corn flours (ratio 1:1), 30% (wt/wt) of s-C20, 10% (wt/wt) of red
lentil flour, and 6% of structuring flours (psyllium, hydrated chia, and flaxseed, ratio 4:1:1); b-SQ (E),
bread made with rice and corn flours (ratio 1:1), 30% (wt/wt) of s-C20, 10% (wt/wt) of quinoa flour,
and 6% of structuring flours (psyllium, hydrated chia, and flaxseed, ratio 4:1:1). All doughs had DY
of 200. Baker’s yeast was used at 1.25% (wt/wt). Proofing was at 30 ◦C for 2 h and baking at 200 ◦C
for 45 min.

Table 6. Proximate composition and nutritional evaluation of the experimental “clean-label” gluten-
free (GF) bread.

Experimental Bread Reference *

Energy (kJ) 962 ± 45 1032
Moisture (%) 43.6 ± 2.4 37.0

Total carbohydrates (g/100 g) 47.0 ± 1.7 45.9
Sugar (g/100 g) 0.6 ± 0.2 1.9

Dietary fiber (g/100 g) 1.7 ± 0.3 8.8
Total lipids (g/100 g) 1.8 ± 0.4 3.8

Saturated lipids (g/100 g) 0.3 ± 0.1 1.0
Protein (g/100 g) 5.0 ± 0.2 2.7

Salt (g/100 g) 0.1 ± 0.1 1.6
In vitro protein digestibility (%) 76.9 ± 2.7 21.17

Predicted glycemic index 85.0 ± 3.1 81.5
Results were compared to a reference dataset referring to commercial gluten-free breads available in the Italian
market reported by Rizzello and colleagues [39]. * Data correspond to the median values of the distribution of the
results obtained for all the commercial products [39].

The IVPD of the experimental bread was circa 77%, while a median value of circa 21%
characterized commercial GF products. Moreover, the predicted glycemic index, which
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was calculated evaluating starch hydrolysis kinetics during 3 h of mimicked digestion, was
85 ± 3.1 (Table 6).

4. Discussion

In addition to celiac patients, the increasing consumer demand for products with
“reduced” or “no gluten” content categories to face gluten sensitivity and lactose intoler-
ance disturbances requires the innovation and differentiation of gluten-free products [47].
Moreover, the amount of attention on the “free-from” foods, mainly because consumers
consider them healthier [48], is also forcing the industries toward the production of “clean-
label” products. Although, a unique definition of this term as well as the features that
a “clean label” food should highlight are still debated [10], the preparation of a “clean
label” GF bread should avoid the use of chemical additives [10], which in turn are usu-
ally included in such bread formula. Indeed, although the technological process allowed
acquiring significant achievements in the overall quality of the gluten-free products, the
absence of gluten still represents an industrial challenge to produce baked goods [49].
Moreover, concerns about the nutritional composition of gluten-free foods are often re-
ported [50]. To face nutritional deficiencies, the inclusion of a protein source in GF bread is
a consolidate strategy; nevertheless, the final protein content tends to be lower than that
of wheat-containing counterparts [50,51]. Overall, plant-derived proteins are preferred
to animal protein sources (e.g., egg and dairy products) because, thanks to their better
water-retention capacity, they exert positive effects on the texture of GF bread [52].

Sourdough technology has widely been used to improve the physicochemical, sensory,
and nutritional attributes of GF bread [53]. Indeed, different GF cereals such as sorghum,
millet, rice, corn, and buckwheat have been investigated as ingredients to develop GF
sourdough breads [53–56].

The positive effects of sourdough are mainly due to the metabolic activities of the
lactic acid bacteria performing the fermentation, and recently, the use of Weissella species
as novel starter cultures for sourdough bread production has been reported by several
authors [57–60].

In this framework, the present study aimed at optimizing a GF bread formulation
including not-refined plant-based flours as a source of protein and structuring ingredients.
The use of a Type-II sourdough obtained through Weissella cibaria P9 fermentation, an
EPS-producing strain, has also been evaluated. The effect of the ingredients and sourdough
fermentation on the main structural, sensory, and nutritional properties of the bread has
been investigated.

A preliminary evaluation of the effect of protein-rich flours on the dough leaven-
ing performance (volume increase) and bread structural properties (specific volume and
alveolus percentage) has shown a positive influence of quinoa, teff, and lentil flours. The
inclusion of quinoa and teff has already been reported as effective in improving the leav-
ening capability of GF bread [61,62], such as the nutritional and sensorial quality of GF
bread [14,63]. Moreover, Asif and colleagues demonstrated that lentil protein isolates
possess good foaming and emulsifying properties [64]. The effects of teff, quinoa, and
lentil flours on the sensory profile of bread were also assessed. The inclusion of quinoa led
to the enhancement of crust and crumb color, as previously reported by Turkut and col-
leagues [62], meeting the consumer concerns about the common light color of GF bread [65].
Moreover, the inclusion of 20–25% of quinoa flour was already proposed by several authors
as a reliable tool to improve the sensory acceptability of conventional and GF breads [39,66].

The natural structuring ingredients chia (raw and hydrated), flaxseed, and psyllium
flours were tested singly and as a mixture to evaluate the technological effect in GF bread
formulation. Studies on commercial GF breads revealed the use of a combination of several
starchy sources or gluten replacers to optimize bread quality [9]. Despite the increasing
inclusion in GF commercial bread, very few research studies incorporate psyllium, and
no study evaluated psyllium-based formulas including other natural structuring ingredi-
ents [9,67]. In this work, the supplementation of all the structuring flours improved the
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volume increase and the structural properties when singly used, as already reported else-
where [26,67–70]. However, when psyllium, hydrated chia, and flaxseed were combined, a
further enhancement of the textural quality of dough and bread was achieved.

Aiming at setting up a “clean-label” product, EPS were produced in situ by using
W. cibaria P9 on matrices naturally containing sucrose. Although belonging to the natural
microbiota of several fermented food products [71], Weissella species have not yet been
included in the Qualified Presumption of Safety (QPS) list of European Food Safety Author-
ity (EFSA) due to the safety concerns [71,72]. However, the rare and opportunistic features
of the infection cases related to Weissella strains have recently been highlighted, and its
species been proposed to be granted the QPS status [72].

EPS display physiochemical properties similar to commercial purified hydrocolloids,
allowing the improvement of bread structure and loaf volume, enhancing crumb softness
and delaying bread staling [22]. Moreover, dextrans produced by W. cibaria were recently
associated with a positive modulation of gut microbiota and influence on body weight
and metabolism [73]. The in situ formation of EPS (homo-polysaccharides) in sourdough
was reported to be more effective than external addition [30] and does not require labeling;
thus, this strengthens their case for use in “clean-label” products [74].

As expected, the higher the content of the sucrose in the dough, the higher the EPS
content at the end of the fermentation. Although the highest percentage of chestnut flours
to avoid sensory or technological adverse effects was used [47], a low amount of EPS was
produced during sourdough fermentation. The relatively low amount of sucrose in the
dough and the short fermentation time [75,76] were reported as responsible for the poor
EPS synthesis during fermentation [77,78]. However, the role of texture improvers was, in
the proposed formulation, synergistic among different components, including the different
structuring flours.

The final formulation of GF bread, including (i) quinoa as a protein source, (ii) the
mixture of psyllium, hydrated chia, and flaxseed as a structuring (4:1:1) agent, and (iii) the
chestnut sourdough containing EPS as improver, was characterized by a protein content
that was more than 50% higher than a GF product usually found in the market [39,50], and
it also had a high value of in vitro protein digestibility (76.9 ± 2.7) [39,51]. Moreover, the
optimized bread formula contained a low amount of lipids, which were mainly represented
by unsaturated fatty acids, previously characterized by an optimal n-6/n-3 polyunsaturated
fatty acids ratio and recognized as carriers of nutraceutical components such as tocopherols
and sterols [18,79,80]. Finally, the low sugar content of bread led to a similar in vitro
glycemic index as compared to commercial GF bread [39,81].

5. Conclusions

Here, the formulation of the novel “clean-label” GF bread has been optimized by
using (i) a mixture of corn and rice flour (ratio 1:1); (ii) quinoa flour (10%) as a source
of protein, and (iii) psyllium, flaxseed, and hydrated chia (6%) as structuring agents.
Moreover, a type-II sourdough, which was obtained by using a selected Weissella cibaria
P9 and chestnuts flour as a sucrose source to promote the in situ exo-polysaccharides
syntheses, was included (30% of the final dough) in the bread formulation. Overall, the
novel GF bread was characterized by good textural properties, high protein content (8.9%
of dry matter) and in vitro protein digestibility (76.9%), low sugar (1.0% of dry matter) and
fat (3.1% of dry matter) content, and an in vitro predicted glycemic index of 85. Moreover,
common sourdough bread features, i.e., acidic taste and darker color of both crust and
crumb, were identified in the “clean-label” GF bread. This work demonstrates that a proper
selection of raw materials (unprocessed flours), together with the use of traditionally
inspired biotechnology, allow the production of high-quality bread, meeting the demand
of the modern consumer for novel clean-label GF products.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2304-815
8/10/2/462/s1. Table S1: Formulations of the experimental doughs (DY = 210) made using protein-
rich or structuring flours. Baker’s yeast was used at 1.25% (wt/wt). Table S2. Formulations of the
experimental sourdoughs (DY = 210) made with rice and corn flours, and supplemented with quinoa
and chestnut flours (10 or 20% of the flours total weight). Sourdoughs were fermented by Weissella
cibaria P9 (initial cell density in dough of 7.0 log10 cfu/g) at 30 ◦C for 24 h.
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