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Fig. 1. Possible applications of aptamers. Aptamers bind to target 
molecules with high affinity and specificity. Because of these and 
other unique properties, aptamers are ideal tools for broad appli-
cations in therapeutics, diagnostics, and basic research.
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Aptamers, composed of single-stranded DNA or RNA oligonu-
cleotides that interact with target molecules through a specific 
three-dimensional structure, are selected from pools of com-
binatorial oligonucleotide libraries. With their high specificity 
and affinity for target proteins, ease of synthesis and modifica-
tion, and low immunogenicity and toxicity, aptamers are con-
sidered to be attractive molecules for development as antican-
cer therapeutics. Two aptamers - one targeting nucleolin and a 
second targeting CXCL12 - are currently undergoing clinical tri-
als for treating cancer patients, and many more are under 
study. In this mini-review, we present the current clinical status 
of aptamers and aptamer-based cancer therapeutics. We also 
discuss advantages, limitations, and prospects for aptamers as 
cancer therapeutics. [BMB Reports 2015; 48(4): 234-237]

APTAMERS AS ATTRACTIVE CANDIDATES FOR 
TARGETED CANCER THERAPIES

While ‘traditional’ cytotoxic chemotherapies usually kill rap-
idly dividing cells in the body by interfering with cell division, 
targeted cancer therapies are designed to interfere with specif-
ic molecules needed for tumor growth and progression. Given 
their greater precision and potential for causing fewer side ef-
fects, targeted cancer therapies have become a major focus of 
cancer research. Typically, targeted cancer therapeutics are 
classified broadly as small chemicals, peptides, nucleic acids, 
and monoclonal antibodies. Of these, therapies based on mon-
oclonal antibodies, which can bind to target molecules with 
high specificity and affinity, are among the most successful 
and important current strategies for treating cancer patients (1). 
More than 30 therapeutic antibodies have been used clin-
ically, and hundreds more are undergoing clinical trials (2). 
Although monoclonal antibodies have many advantages, mon-

oclonal antibody-based medications face a number of issues 
that have prevented their more widespread use. For example, 
the high cost of therapeutic monoclonal antibody develop-
ment is beyond the easy reach of many researchers. The ex-
tremely high production costs reflect the requirements for very 
large cultures of mammalian cells and extensive purification 
steps under Good Manufacturing Practice (GMP) conditions, 
but they hamper the widespread use of these drugs (3). 
Another issue is the therapeutic efficacy of monoclonal anti-
bodies: because monoclonal antibodies are large (∼150 kDa), 
tumor penetration may be limited (3-5), especially in the case 
of solid tumors, where entry into tumor tissue from blood ves-
sels is critical for drug efficacy (6). As a consequence of these 
limitations, whereas over 85% of human cancers are solid tu-
mors (7), only eight monoclonal antibodies that have obtained 
US Food and Drug Administration (FDA) approval for cancer 
therapy are used routinely with solid tumors.
　Aptamers, which are composed of short, single-stranded 
DNA or RNA oligonucleotides, are often compared to anti-
bodies because of their shared high specificity and affinity for 
target molecules (8, 9). Since the development in 1990 of the 
‘SELEX’ (systematic evolution of ligands by exponential enrich-
ment) system-an aptamer screening method-aptamers have 
come to be regarded as powerful therapeutic, diagnostic, and 
basic research tools (Fig. 1) (10-12). Over the past two deca-
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Properties Requirements Candidates 

Target specificity & Binding affinity Low nM∼pM Antibodies, Aptamers, Peptides 
Screening & Production Efforts Screening: in vitro Fast, Low cost Peptides, Aptamers 
Immunogenicity Low Humanized antibodies, Aptamers 
Modification Easy to conjugation Small molecules, Peptides, Aptamers 
Stability High pharmacokinetics & pharmacodynamics Antibodies 

Table 1. Points to consider for successful cancer therapeutics

des, aptamers have attracted increasing attention in the field of 
cancer therapeutics because they have several important ad-
vantages over other targeted therapeutics (Table 1). The fact 
that aptamers are obtained by chemical synthesis reduces their 
production costs, compared with monoclonal antibodies. It al-
so means that chemical modifications can be easily and accu-
rately introduced to fulfill different diagnostic and therapeutic 
purposes (15). Aptamers also show good thermostability and 
longterm stability as dry powders or in solution (16), and ex-
hibit low immunogenicity and toxicity (17). Notably, aptamers 
are relatively small, compared with therapeutic monoclonal 
antibodies, and are thus expected to show greater penetration 
into tumor tissues (13).

APTAMERS IN CLINICAL TRIALS FOR CANCER 
TARGETS

AS1411. AS1411, a quadruplex-forming guanine-rich (G-rich) 
26-mer DNA aptamer, is the most advanced aptamer and the 
first to enter clinical trials as a cancer therapeutic agent. 
AS1411 targets the protein nucleolin (18), which plays essen-
tial roles in cell growth and death through its involvement in 
rRNA transport and DNA transcription, replication, and re-
combination (19). Nucleolin, a nucleus- and cytoplasm-resi-
dent protein in normal cells, is overexpressed in the plasma 
membrane of many types of cancer, including lung cancer, 
breast cancer, prostate cancer, lymphocytic leukemia, and 
hepatocellular carcinoma (20). AS1411, developed by 
Antisoma, inhibits the proliferation of a wide range of cancer 
cell lines through a mechanism thought to involve disruption 
of the interaction of nucleolin with its binding partners. The 
steps involved in AS1411-induced cancer cell death have been 
proposed to include aptamer internalization via membrane nu-
cleolin, interference with DNA replication, causing S-phase ar-
rest, and stabilization of the mRNA for the anti-apoptotic pro-
tein, B-cell lymphoma protein 2 (BCL-2) (18, 20). AS1411, 
which exhibits minimal toxicity in patients with advanced sol-
id tumors (21), is currently in Phase II clinical trials for acute 
myeloid leukemia (AML) and metastatic renal cell cancer (20).
　NOX-A12. NOX-A12, which is developed by Noxxon Phar-
ma, is a 45-mer long configuration (Spiegelmer) RNA aptamer 
that is linked to a 40-kDa polyethylene glycol (PEG). NOX-A12 
targets CXCL12/SDF-1 (CXC chemokine ligand 12/stromal cell 

derived factor-1) (22), a chemokine that acts through binding 
to CXCR4 and CXCR7 chemokine receptors to play diverse 
roles in cancer biology, including regulation of leukemia stem 
cell migration to the bone marrow (23) and tumor growth and 
metastasis. CXCL12/SDF-1 expressed on leukemic cells also re-
sponds to the tissue microenvironment to play a role in the 
pathophysiology of chronic lymphocytic leukemia (CLL) (24). 
Neutralization of CXCL12/SDF-1 by NOX-A12 also has the po-
tential to interfere with anchoring of leukemia stem cells in the 
bone marrow, allowing these cells to re-enter the cell cycle 
and become available for chemotherapeutic attack (25). The 
unique mirror-image configuration of NOXA12 makes the oli-
gonucleotide resistant to hydrolysis and prevents hybridization 
with other nucleic acids (26). It has also recently been re-
ported that NOX-A12 effectively inhibits cancer recurrence fol-
lowing irradiation in a glioblastoma multiforme model (27). 
NOX-A12 is currently in Phase II studies, designed to assess its 
therapeutic potential against CLL and multiple myeloma (26).

APTAMER-BASED TARGETED CANCER THERAPIES

One of the biggest advantages of aptamers, compared with an-
tibodies, is the ease with which they can be modified chemi-
cally while retaining target specificity. Accordingly, there have 
been numerous efforts to combine the high target-specificity of 
aptamers with other anticancer modalities to provide targeted 
delivery of a variety of drug payloads. In these applications, 
aptamers that target cancer-specific membrane proteins medi-
ate precise delivery of anti-cancer agents, such as nano-
particles, siRNA/miRNA, or cytotoxic drugs, to tumor cells 
(28). After binding target membrane proteins, aptamers are in-
ternalized into the cell together with their drug payload. 
Ultimately, the drugs are then released from the target mole-
cules and exert their anticancer functions by damaging DNA 
or inhibiting microtubule polymerization (29). In one example 
of a nanoparticle designed for prostate cancer therapy, an RNA 
aptamer targeting prostate-specific membrane antigen (PSMA) 
was conjugated with a PLA (polylactide)-PEG or PLGA (polyla-
ctide-co-glycolide)-PEG nanoparticle encapsulating docetaxel 
(30, 31). In another example, paclitaxel-containing PLGA con-
jugated with an aptamer against mucin-1 (MUC1) was used to 
target MUC1-expressing cancer cells (32). siRNA/miRNA pay-
loads have also been conjugated directly to aptamers. For ex-
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ample, chimeric complexes of Plk1 or Bcl2 siRNA-PSMA ap-
tamers and doxorubicin-PSMA aptamers have been developed 
for inhibiting PSMA-expressing prostate cancers (33). Aptamer- 
drug conjugates (ApDCs), which are conceptually similar to 
antibody-drug conjugates (ADCs), are also promising technolo-
gies for targeted cancer therapy because they can enhance 
therapeutic efficacy while reducing associated toxicities (34). 
Several potential problems with the ADCs approach remain to 
be resolved, such as undefined antibody-toxin ratios due to 
heterogeneous drug conjugation, a tendency to aggregate dur-
ing synthesis, poor pharmacokinetics, and loss of immune re-
activity (35). However, the beneficial properties of aptamers, 
such as accurate site conjugation and high solubility (＞ 150 
mg/ml) (16), may ultimately surmount these potential issues.

LIMITATIONS OF APTAMERS AS CANCER 
THERAPEUTICS

When aptamers were first introduced, they garnered consid-
erable attention as cancer therapeutics because of their advan-
tages over monoclonal antibody therapeutics, highlighted 
above. However, even after 20 years, only two aptamers have 
reached clinical trials. Before aptamers can achieve wide-
spread clinical application, they must clear several hurdles.
　Degradation by nucleases. Because aptamers are composed 
of DNA or RNA oligonucleotides, they are rapidly degraded 
by exo- and endonucleases (36): the half-life of unmodified nu-
cleotide aptamers in blood can be as short as 2 min (37). To 
increase the serum half-life of aptamers, researchers have in-
troduced chemical modifications into the sugar moiety or pho-
sphodiester linkages. “Capping” oligonucleotides by mod-
ification of 3’ and/or 5’ends of nucleic acid strands protects ap-
tamers from attacks by exonucleases (36). One commonly 
used approach that achieves such a protective effect is in-
corporation of an inverted oligonucleotide at the 3’-terminus. 
The most widely used method for protecting against degrada-
tion by endonucleases is the incorporation of a fluoro or 
O-methyl group at the 2’position of the sugar moiety (38). 
Such modifications are typically combined to confer maximal 
protection. For example, pegaptanib sodium (Macugen), the 
first aptamer approved by the FDA in 2004, is 3’-capped, 
5’-PEGylated, and internally modified with 2’-fluoro-pyr-
imidines and 2’-O-methyl-purines modifications that collec-
tively extended the aptamer half-life to 131 h (39). Various 
modified nucleotides, including 2’amino pyrimidines, bor-
anophosphate internucleotide linkages, 5-modified pyrimidines, 
and/or 4’thio pyrimidines, have also been used to increase the 
nuclease-resistant properties of aptamers (36).
　Renal clearance. Aptamers usually range in size from 5 to 
15 kDa (40). Thus, they are susceptible to rapid elimination 
from the blood by renal filtration. Target accessibility can be 
enhanced by increasing the size of an aptamer through con-
jugation to bulky molecules, such as high-molecular-weight 
PEG polymers, cholesterol, or certain peptides (41). Because 

the molecular mass cutoff for the renal glomerulus is 3050 
kDa (42), 40-kDa PEGylation has been used extensively for ex-
tending the circulation half-life of aptamers. The circulation 
halflife of un-PEGylated aptamers is less than 20 min, but in-
creases to as long as 1 day for 40-kDa PEGylated aptamers 
(43).

CONCLUSIONS AND PERSPECTIVES

Although aptamers have many properties that make them po-
tentially advantageous for use as cancer therapeutics, their cur-
rent market prospects are discouraging. Notable in this context 
is the failure of pegaptanib to make inroads in the marketplace 
dominated by therapeutic antibodies, such as bevacizumab 
(Avastin) or ranibizumab (Lucentis) (44, 45). Despite such set-
backs, aptamers remain attractive molecules with the oppor-
tunity for development as cancer therapeutics. For aptamers to 
achieve success in the cancer therapeutic market, they will 
need to take full advantage of their unique features, rather than 
compete directly with antibody therapeutics. Our expectation 
is that efficacious aptamer-based anticancer agents will be de-
veloped in the near future.
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