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Abstract: Cotton fabrics are prone to wrinkles and can be treated with citric acid (CA) to
obtain good anti-wrinkle properties. However, the yellowing of the CA-treated fabrics is one
big obstacle to the practical application of citric acid. The changing sequence order of CA
anhydride and unsaturated acid (the reason for yellowing), such as aconitic acid (AA), has not
been investigated. Herein, Fourier transform infrared (FTIR) spectroscopy, two-dimensional
correlation spectroscopy (2Dcos), and Gaussian calculation were employed to characterize the
reaction mechanism between CA with cellulose. FTIR spectra of the CA-treated fabrics heated
under different temperatures were collected and further analyzed with 2Dcos. The results indicated
the changing sequence order: 1656 cm−1

→1784 cm−1
→1701 cm−1, (“→” means earlier than), i.e.,

unsaturated acid→anhydride→ester. Moreover, a change of Gibbs free energy (∆G) showed that
trans-AA (∆G =−22.10 kJ/mol) is more thermodynamically favorable to be formed than CA anhydride
1 (∆G = −0.90 kJ/mol), which was proved by Gaussian computational modeling. By taking cellobiose
as a model of cellulose, the ∆G results proved that O(6)–H(6) on the glucose ring is the most
likely hydroxyl to react with anhydride originated from CA or AA, especially with the terminal
carbonyl group.

Keywords: anti-wrinkle; mechanism; citric acid; yellowing; two-dimensional correlation spectroscopy

1. Introduction

Cellulose is one of the most abundant renewable natural fibers on the earth [1] and has been widely
used for apparels. The cellulose-based derivatives have also played an important role in various fields,
including food packaging [2,3] and adsorbent materials [4,5]. Usually, cotton fabrics are chemically
modified before practical use to obtain specific functions, such as flame-retardant [6], anti-bacterial [7,8],
hydrophobic [9] and anti-wrinkle properties [10,11], and so on. The easy wrinkling of cotton fabrics
due to the cellulose chain movement brings a great obstacle to their applications [12]; therefore,
anti-wrinkle finishing has always attracted the interests of researchers, usually forming covalent
crosslinkage between different cellulose chains by chemical agents. However, the dominant agents are
still the formaldehyde-based compounds at present (especially the dimethylol dihydroxyethyleneurea
(DMDHEU)), which will release carcinogenic formaldehyde during manufacturing, storage, and
wearing [13,14]. Alternatively, formaldehyde-free agents have been extensively investigated with the
hope of replacing formaldehyde-based compounds, and polycarboxylic acids (PCAs) are regarded as
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the most promising ones. Among PCAs, 1,2,3,4-butanetetracarboxylic acid (BTCA) [11,15,16], citric
acid (CA) [17–19] and 3,3′,4,4′-benzophenonetetracarboxylic acid (BPTCA) [20,21] show outstanding
performance. Furthermore, CA is a cheap and renewable compound, but it will result in yellowing of
the treated fabrics [17,18].

Yang confirmed the formation of various unsaturated acids from CA in the anti-wrinkle finishing
process [18] and adopted polyols to improve the whiteness index of the CA-treated fabrics [17].
Consequently, the whiteness index of the CA-treated fabrics was improved by polyols, especially
xylitol, due to the dicitrate that is formed between CA and polyols being more thermally stable than
CA. However, this method means more chemicals being required for the anti-wrinkle finishing of
cotton fabrics and brings a greater burden on the environment.

Hydrogen peroxide (H2O2) is a strong and green oxidant that can break the C=C bonds, which is
the basic principle for the bleaching of raw cotton fabrics. Similarly, H2O2 was employed to bleach the
CA-treated fabrics under alkaline conditions (alkaline post-bleaching) [22] or ultraviolet B conditions
(UVB post-bleaching) [23], which are aimed at improving the whiteness index. Interestingly, the
whiteness index of the CA-treated fabrics was improved, but the anti-wrinkle properties decreased
a little. Luo [24] reported that the active agent N-[4-(triethylammoniomethyl)benzoyl] caprolactam
chloride (TBCC) could be used in H2O2 bleaching of the CA-treated fabrics at a lower temperature
and near-neutral conditions (TBCC post-bleaching). Although TBCC post-bleaching improved the
whiteness index, the strength retention of the bleached fabrics decreased. The application of TBCC is
also restricted because of its poor solubility and high price.

It has been accepted that yellowing is attributed to the formation of unsaturated acids, and CA
should form the active intermediates of anhydrides before reacting with cellulose, both of which are
resulted from the dehydration of CA at an elevated temperature [17,19]. However, the issues related to
whether unsaturated acids are formed earlier or later than anhydrides and which sites of CA carboxyl
and cellulose hydroxyl participate in the reactions have not been clarified. Therefore, it is important to
clarify the changing sequence order of anhydride and unsaturated acid in order to fully understand
the reaction mechanism and further develop more effective strategies to solve the yellowing problem.
The clarification of reaction sites will provide a direction to develop new anti-wrinkle finishing agents
with designed structures.

2Dcos was firstly proposed by Noda [25] as a powerful mathematical method to analyze the
complex molecular spectroscopy. With the assistance of 2Dcos technology, some overlapped peaks in
the original FTIR spectra can be well separated. Moreover, FTIR-2Dcos can be used to determine the
response order of functional groups in reactions [26]. 2Dcos has been widely applied in the analyses of
hydrogen bonds (H-bonds) regarding changes of cellulose and cellulose diacetate [27,28] as well as the
phase transition of materials [29].

In this study, FTIR spectra of the reactions between CA and cellulose heated under consecutive
increasing temperatures were obtained and further analyzed with 2Dcos. The changing sequence order
of formation of anhydride and unsaturated acid from the dehydration of CA was carefully investigated.
The reaction sites including carboxyls on CA and hydroxyls on cellobiose molecules were analyzed
from the viewpoint of reaction thermodynamics by Gaussian computational modeling.

2. Materials and Methods

2.1. Materials

Plain woven pure cotton fabrics (14.6 tex × 14.6 tex, 117 g/m2), which were desized, scoured,
bleached, and mercerized in advance, were provided by Hualun Printing & Dyeing Co., Ltd. (Shanghai,
China). Citric acid (CA) and sodium hypophosphite (SHP) were both analytical agents that were
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Potassium bromide (KBr)
was spectral grade agent and purchased from Tianjin Botianshengda Technology Development Co.,
Ltd. (Tianjin, China).
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2.2. Fabric Treatment

The fabrics were dipped into a finishing bath twice containing CA (7.0% wt) and SHP (3.9% wt)
and then nipped by a padder (Xiamen Rapid Precion Machinery Co., Ltd., Xiamen, China) to obtain a
wet pickup about 95%. After being dried at 80 ◦C for 5 min, the predried fabrics were cured at different
temperatures for 3 min, washed in tap water for 3 min to remove the unreacted CA and SHP, and dried
at 80 ◦C for 5 min again before tests of the anti-wrinkle properties. Alternatively, the predried fabrics
were cut into fine powders for further use.

2.3. FTIR and 2Dcos

The powders of the predried fabrics (2.0 mg) were mixed with 200.0 mg of dried KBr and then
pressed to be a transparent tablet. The tablet was heated in a solid transmission accessory (Pike
Technologies Inc., Madison, WI, USA) set up into the instrument (Nicolet iS10, Thermo Fisher Scientific,
Waltham, MA, USA) from 40–210 ◦C at a rate of 2 ◦C/min, and the FTIR spectra of samples were
collected every other 2 ◦C.

2Dcos analyses of the FTIR spectra were operated by 2D Shige v.1.3 software (Shigeaki Morita,
Kwansei-Gakuin University, Nishinomiya, Japan, 2004−2005). The final contour maps were obtained
by an Origin Program v.8.0, and the pink colors and grey colors indicated positive and negative
intensities, respectively.

2.4. Anti-Wrinkle Properties

Before measurement, fabrics were stored for at least 4 h in a condition room with temperature
(21 ± 1) ◦C and relative humidity (65 ± 2)%, respectively. The wrinkle recovery angle (WRA) of
fabrics was measured with a SDL Atlas crease recovery tester (SDL Atlas Ltd., Rock Hill, SC, USA)
according to the American Association of Textile Chemists and Colorists (AATCC) Testing Method
66-2008. Tear strength was tested with a YG(B) 033D digital tearing instrument (Darong Instrument
Co., Ltd., Wenzhou, China) according to the American Society of Testing Materials (ASTM) method
D1424-2009. The whiteness index of fabrics was obtained by a Datacolor 650 instrument (Datacolor
Inc., Lawrenceville, NJ, USA) according to the AATCC Testing Method 11-2005.

2.5. Gaussian Calculation

The structures of compounds (Scheme 1) were built with a ChemBioOffice Ultra 2010 software
(Perkin Elmer, Inc., Waltham, MA, USA) and were processed with MM2/Minimize energy program
in sequence. The geometry of a compound was optimized with a Gaussian 09W software (Gaussian,
Inc., Wallingford, CT, USA) in the density functional theory (DFT) unrestricted B3LYP/6-31G(d) level,
and furthermore in the DFT unrestricted B3LYP/6-31G(d,p) level [30–32]. The frequency calculation
confirmed no imaginary frequency. The calculated results and the structures of compounds were
obtained with GaussView 5.0 software (Gaussian, Inc., Wallingford, CT, USA).
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3. Results

3.1. Effects of Temperature on Peak Intensities

The Fourier transform infrared (FTIR) spectra of fabrics heated under different temperatures were
collected, and the peak intensity at 1725 cm−1, which was attributed to the absorbance of carboxyl
carbonyl (C=O) of CA on the fabrics, was statistically analyzed. Figure 1a indicates that the peak
at 1725 cm−1 shifts to 1727 cm−1 with the temperature rising due to the cleavage of H-bonds, and
that the peak intensity related to the carbonyl absorbance changes with the rising temperature. The
peak intensity at 1725 cm−1 firstly increases due to the highest value and levels off at about 74–84 ◦C
(Figure 1b), which may be attributed to the removal of the water molecules absorbed by the cellulose.
The peak intensity decreases with temperature arising to 160 ◦C and then levels off, which is due to the
reactions between CA and cellulose. Above 200 ◦C, the peak intensity decreases further. Considering
that the predried fabrics were heated at 80 ◦C (Section 2.2), the FTIR spectra between 80 ◦C and 210 ◦C
were selected for the following analysis.

Figure 2 shows that the peak intensities at 1784 cm−1 and 1701 cm−1, which are attributed to
absorbance of anhydride and ester bond, respectively, increase overall with temperature rising. This
increase is because the higher temperature is beneficial to the formation of CA anhydride and the
esterification between anhydride and cellulose [19]. It was noticed that the anhydride intensity is lower
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than the ester bond intensity, and the possible reason is that active anhydride reacts with cellulose
quickly at heated conditions [19].Polymers 2019, 11, x FOR PEER REVIEW 5 of 12 
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Figure 2. Anhydride (a) and carboxyl (b) intensities of the citric acid (CA)-treated cotton fabrics heated
under 80–210 ◦C.

3.2. Reaction Mechanism

CA should form active anhydride intermediates before reacting with cellulose [17,19]. However,
the hydroxyl in CA molecule can also dehydrate with the adjacent α-hydrogen (α-H) under a high
temperature to form unsaturated acid, which is the reason for the yellowing of CA-treated fabrics.
Therefore, it is important to clarify the changing sequence order of anhydride and unsaturated acid
in order to fully understand the reaction mechanism and further develop more effective strategies to
solve the yellowing problem. Firstly, the absorbance peaks were tentatively assigned (Table 1).

Table 1. Assignments of different absorbance peaks.

Wavenumber (cm−1) Tentative Assignments [27,33–35]

3544 ν(O–H) (free)
3446 ν(O(2)–H(2) . . . O(6))(intrachain)
3417 ν(O(6)–H(6) . . . O(3)’) (interchain)
3334 ν(O(3)–H(3) . . . O(5)) (intrachain)
3271 ν(O–H) (weak hydrogen bond)
1784 ν(C=O) (anhydride)
1725 ν(C=O) (carboxyl)
1701 ν(C=O) (ester)
1656 ν(C=C) (unsaturated polycarboxylic acid)
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Overall, there are mainly three sites of hydroxyls on a glucose ring of cellulose, i.e., O(2)–H(2) (the
2-hydroxyl group), O(3)–H(3) (the 3-hydroxyl group), and O(6)–H(6) (the 6-hydroxyl group). With
the assistance of two-dimensional correlation spectroscopy (2Dcos), the changing sequence order of
different absorbance peaks of hydroxyls can be identified. According to Noda’s rule [25], if the cross
peak (ν1, ν2) (wavenumber ν1 > ν2) shows the same signs in the synchronous and asynchronous
contour maps (both positive or negative), the change of ν1 is earlier than that of ν2; if there are
different signs, the change of ν2 is earlier. For example, the cross peak of (3544 cm−1, 3446 cm−1) shows
negative signs in both the synchronous map (Figure 3a) and the asynchronous map (Figure 3c); thus,
the change of 3544 cm−1 is earlier than that of 3446 cm−1. Through careful analyses of the cross-peak
signs in Figure 3, it can be concluded that 3544 cm−1

→3271 cm−1
→3334 cm−1

→3417 cm−1
→3446 cm−1

(“→” means earlier than, because the peaks shift with temperature rising, the wavenumbers were
obtained from the original FTIR spectrum at 80 ◦C), i.e., ν(O–H) (free)→ν(O–H) (weak hydrogen
bond)→ ν(O(3)–H(3) . . . O(5)) (intrachain)→ν(O(6)–H(6) . . . O(3)) (interchain)→ν(O(2)–H(2) . . . O(6))
(intrachain) (Table 1). This can be explained by the fact that the water molecules absorbed by cellulose
will be removed with the temperature rising, and free hydroxyls were released. Afterwards, the
H-bonds between hydroxyls were broken up in sequence [27].
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maps of cotton fabrics treated with CA heated under 80–210 ◦C in the range of 3600–3000 cm−1.

In the following, the changing sequence order of formation of anhydride and unsaturated acid
from CA was investigated. According to Noda’s rule [25], it can be concluded from Figure 4 that
the changes of peaks is as follows: 1656 cm−1

→1784 cm−1
→1701 cm−1, i.e., ν(C=C) (unsaturated

polycarboxylic acid)→ν(C=O) (anhydride)→ν(C=O) (ester). Therefore, the formation of unsaturated
acid is earlier than that of anhydride, and then the formed anhydride esterifies with cellulose hydroxyls.
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3.3. Theoretical Calculations

The reaction site in a molecule is related to its frontier molecular orbitals [36]. A narrower energy
barrier (∆E) between the highest occupied molecular orbital (HOMO) of molecule A and the lowest
unoccupied molecular orbital (LUMO) of molecule B is beneficial to the reactivity. Gaussian calculations
were conducted, and cellobiose was selected as a model molecule of cellulose for calculations.

When cellobiose reacts with acid or acid anhydride, the HOMO of cellobiose should attack the
LUMO of acid or acid anhydride. The ∆E values (Table 2) show that the reactivity between cellobiose
with CA anhydride is more active than with CA. Similarly, the reactivity between cellobiose with
trans-AA anhydride 1 (or 2) is more active than with trans-AA, but less active than with cis-AA.
However, the formation of cis-AA from CA is thermodynamically forbidden, and detailed information
will be discussed later. This confirms that for PCAs, the anhydride should be firstly formed before
reacting with cellulose, which provides another proof of the results (changing sequence order: 1784
cm−1

→1701 cm−1) in Section 3.2. Compared with CA anhydride, the reactivity of trans-AA anhydride 1
(or 2) is more active to react with cellobiose. Trans-AA anhydride 1 is a little more active than trans-AA
anhydride 2. It should be noticed that the locations of HOMO and LUMO indicate that CA can form
both CA anhydride and aconitic acid, and that all three kinds of hydroxyls contribute to the HOMO
(Table 2).
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Table 2. Gaussian calculation results of different molecules. AA: aconitic acid, HOMO: highest occupied
molecular orbital, LUMO: lowest unoccupied molecular orbital.

Chemicals HOMO (eV) Location LUMO (eV) Location ∆E (eV) 1

CA −7.1830 O11 2, O13 −0.2982 C1, C8, H18 6.0832
CA anhydride 1 −7.6040 O10, O12 −1.1045 C1, C4, C8 5.2769
CA anhydride 2 −7.8568 O5, O11 −1.1557 C1, C4, C7 5.2257

cis-AA −7.5009 O11, O12 −3.3089 C1, C2, C4, C7 3.0725
trans-AA −7.5311 O11, O12 −2.4831 C1, C2, C3, C4 3.8983

trans-AA anhydride 1 −8.0307 O5, O9, O11 −3.0393 C1, C2, C3, C4 3.3421
trans-AA anhydride 2 −8.0459 O6, O7 −3.0110 C1l, C2, C3, C5 3.3704

cellobiose −6.3814 O14, O15, O17 1.1595 H36, H45 7.5409
1 The energy barrier between the LUMO of the molecule in this row and the HOMO of cellobiose. 2 The number of
atoms can refer to the Scheme 1.

The anti-wrinkle properties of CA-treated fabrics are shown in Figure 5. When the fabric is cured
at 170 ◦C, the wrinkle recovery angle (WRA) reaches a relatively high value, and the tear strength
retention (TSR) is still as high as 56%. The whiteness index always decreases with the temperature
rising. Therefore, 170 ◦C was selected as the optimal curing temperature and for the following
calculation in the thermodynamic analyses. Under the 170 ◦C heating, CA is more thermodynamically
favorable from the viewpoint of change of Gibbs free energy (∆G) to form trans-AA (more negative
∆G) (Scheme 2), which may explain the earlier change of the C=C bond, as discussed in Figure 4.
To the contrary, cis-AA is very difficult to be formed at the tested conditions, and this is why the
reaction between cis-AA and cellulose is not favorable, as discussed in Table 2. Trans-AA can also form
anhydride by dehydration. Scheme 3 shows that trans-AA is more prone to form anhydride 1 (more
negative ∆G) compared with anhydride 2, i.e., the C=C bond is not involved in the anhydride ring. By
comparing Schemes 2 and 3, trans-AA anhydride 1 (∆G = −3.41 kJ/mol) is easier to be formed than CA
anhydride 1 (∆G = −0.90 kJ/mol). All in all, when CA is used for the anti-wrinkle finishing of cotton
fabrics, the possible reaction process is that trans-AA is firstly formed as a result of CA dehydration,
and then trans-AA anhydride 1 is formed; the formation of CA anhydride is later than that of trans-AA.
In other words, for the CA-treated fabrics, yellowing is earlier than anhydride formation.
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Furthermore, the reaction sites of carboxyl on CA molecules and hydroxyl on cellobiose were
investigated in detail. The ∆G values of possible reactions between cellobiose and CA anhydride
1 or trans-AA anhydride 1 were obtained. It can be seen in Scheme 4 that C8 on CA anhydride 1
is more prone to react with O15 on cellobiose (i.e., O(6)–H(6)) (a smaller ∆G). After that, the other
two carboxyls on CA molecule can still form a 5-member cyclic anhydride by dehydration to esterify
with one hydroxyl further; thus, a crosslinkage can be built up between different cellulose chains by
ester bonds and eventually improve the anti-wrinkle properties of the treated cotton fabrics. If C8
reacts with cellulose, O(2)–H(2) (∆G = 43.44 kJ/mol) and O(3)–H(3) (∆G = 41.87 kJ/mol) show similar
reactivity. For trans-AA anhydride 1, C4 is more prone to react with O15 on cellobiose (Scheme 5),
and O(2)–H(2) and O(3)–H(3) show similar reactivity. After reaction, the other two carboxyls can
theoretically form a six-member cyclic anhydride to react with one hydroxyl. Both Schemes 4 and 5
prove that the O(6)–H(6) on cellulose is the most possible one to react with anhydrides, and trans-AA
anhydride 1 may also benefit to improve the anti-wrinkle properties of CA-treated fabrics. Since the
∆G between cellobiose with trans-AA anhydride 1 (Scheme 5) is lower than with CA anhydride 1
(Scheme 4) (indicating that trans-AA anhydride 1 is more thermodynamically favorable to crosslink
with cellulose than CA anhydride 1, and consequently the yellowing substance trans-AA was fixed onto
cellulose), it is suggested that the yellowing of CA-treated fabrics can be resolved after the completion
of anti-wrinkle finishing, which is consistent with the results obtained from 2Dcos analyses (reaction
sequence order: trans-AA→anhydride→ester).
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CC8CO15 means the connection between the number 8 carbon atom on CA anhydride 1 with the
number 15 oxygen atom on cellobiose. Others show the similar meanings. The atomic number can
refer to Scheme 1.
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4. Conclusions

In this study: FTIR combined with 2Dcos was employed to characterize the changing sequence
order of anhydride and unsaturated acid, which were both generated from the dehydration of CA during
the process of anti-wrinkle finishing of cotton fabrics. It confirmed the changing sequence order with
temperature rising: ν(O(3)–H(3) . . . O(5)) (intrachain)→ν(O(6)–H(6) . . . O(3)) (interchain)→ν(O(2)–H(2)
. . . O(6)) (intrachain). The formation of unsaturated trans-AA is earlier than that of CA anhydride,
which is earlier than esterification (i.e., 1656 cm−1

→1784 cm−1
→1701 cm−1). This was also proved with
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thermodynamic computational modeling. In addition, the trans-AA anhydride 1 (∆G = −3.41 kJ/mol)
was more prone to be formed compared with the trans-AA anhydride 2 (∆G = 0.12 kJ/mol). As for the
hydroxyls on cellulose, O(6)–H(6) was the most likely one to firstly esterify with CA anhydride 1 or
trans-AA anhydride 1. Moreover, the terminal carboxyl on the chemical structure of acid molecule
would be the most likely reaction site in the first esterification with anhydride. Considering the higher
reactivity of trans-AA anhydride 1 than CA anhydride 1 by showing a smaller ∆G for the reaction
regarding not only the formation but also the esterification with cellulose, it was proposed to solve the
yellowing problem after the anti-wrinkle finishing of cotton fabrics. This study is expected to motivate
further understanding of the reaction mechanism between CA with cellulose and the development of
effective strategies to solve the yellowing problem of CA-treated cotton fabrics.
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