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Abstract

Lower socioeconomic status is associated with faster biological aging, the gradual and progressive decline in system integrity that
accumulates with advancing age. Efforts to promote upward social mobility may, therefore, extend healthy lifespan. However, recent
studies suggest that upward mobility may also have biological costs related to the stresses of crossing social boundaries. We tested
associations of life-course social mobility with biological aging using data from participants in the 2016 Health and Retirement Study
(HRS) Venous Blood Study who provided blood-chemistry (n = 9,255) and/or DNA methylation (DNAm) data (n = 3,976). We quanti-
fied social mobility from childhood to later-life using data on childhood family characteristics, educational attainment, and wealth
accumulation. We quantified biological aging using 3 DNAm “clocks” and 3 blood-chemistry algorithms. We observed substantial so-
cial mobility among study participants. Those who achieved upward mobility exhibited less-advanced and slower biological aging.
Associations of upward mobility with less-advanced and slower aging were consistent for blood-chemistry and DNAm measures of
biological aging, and were similar for men and women and for Black and White Americans (Pearson-r effect-sizes ∼0.2 for blood-
chemistry measures and the DNAm GrimAge clock and DunedinPoAm pace-of-aging measures; effect-sizes were smaller for the
DNAm PhenoAge clock). Analysis restricted to educational mobility suggested differential effects by racial identity; mediating links
between educational mobility and healthy aging may be disrupted by structural racism. In contrast, mobility producing accumulation
of wealth appeared to benefit White and Black Americans equally, suggesting economic intervention to reduce wealth inequality may
have potential to heal disparities in healthy aging.
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Significance Statement:

Upward social mobility may disrupt effects of early-life disadvantage on aging-related health decline. However, the stresses of
crossing social boundaries can have biological costs. To investigate the balance of these forces, we analyzed social mobility from
reports of childhood circumstances, education, and later-life wealth in 9,286 older adults in the US HRS. We quantified life-course
health impacts of social mobility from blood-chemistry and DNAm analysis of biological aging. We found that educational mobility
alone benefited Black Americans less than White Americans, whereas mobility that produced accumulation of wealth into later-
life was associated with delayed biological aging across social categories. Black–White disparities in healthy-aging outcomes of
educational mobility may reflect inequalities in social gains realized from education.

Introduction
Children who grow up poor get sick and die younger than their
peers who grow up in more socioeconomically advantaged fam-
ilies (1, 2). This inequality is mediated by a range of chronic dis-
eases and health problems that become more frequent as indi-
viduals age, suggesting that childhood disadvantage may actually
accelerate the aging process (3). Breakthroughs in aging biology

have revealed a set of molecular changes that accumulate as in-
dividuals grow older, undermining resilience and driving vulnera-
bility to multiple different chronic diseases, disability, and mortal-
ity (4). While there is currently no gold standard to measure this
progressive loss of system integrity, several methods have been
proposed (5). Current state-of-the-art methods are algorithms
that combine information from multiple clinical or genomic
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measurements to track changes that occur in peoples’ bodies
as they age. In longitudinal studies that track children through
midlife, these algorithm-based methods reveal that people who
grew up in disadvantaged households are biologically older and
are aging more rapidly as adults as compared to peers with
more advantaged childhoods, and vice versa (6–10). In cross-
sectional studies, children and adults in higher socioeconomic-
status households exhibit less-advanced and slower biological ag-
ing as compared to those with lower socioeconomic status (11,
12). These findings suggest that upward socioeconomic mobility,
in which children climb the social ladder to achieve higher lev-
els of status attainment than their family of origin, may interrupt
processes that accelerate aging.

Conversely, upward mobility may also have biological costs.
The stresses of climbing the social ladder, such as prolonged, high-
effort coping, can damage health (13–17). This effect may be espe-
cially pronounced for groups facing structural barriers to upward
mobility, such as Black Americans. If upward mobility accelerates
biological aging, then interventions to build opportunity for at-
risk children will need to devise additional strategies to offset po-
tential health costs.

We tested if life-course socioeconomic mobility was associated
with slower or faster biological aging in a national sample of US
adults, the US Health and Retirement Study (HRS). We quantified
social mobility from childhood to later-life based on retrospec-
tive reports by participants about their childhood socioeconomic
conditions and structured interviews about household wealth. We
quantified biological aging using DNA methylation (DNAm)- and
physiology-based methods. Our analysis proceeded in 3 steps. We
first tested how life-course socioeconomic disadvantage was asso-
ciated with accelerated biological aging. We next tested whether
upward social mobility was associated with blunting or ampli-
fication of associations between early-life socioeconomic disad-
vantage and accelerated biological aging. Finally, we tested if as-
sociations of mobility with biological aging were consistent for
men and women and for Black and White adults to evaluate the
hypothesis that the cost of social mobility could be more pro-
nounced for groups who face structural barriers to upward mo-
bility. We conducted parallel analysis of participants’ educational
mobility.

Methods
Data and participants
We analyzed data from participants in the 2016 HRS who pro-
vided blood-chemistry and DNAm data in the Venous Blood Study
(VBS). The HRS is a nationally representative longitudinal sur-
vey of US residents ≥ 50 years of age and their spouses (https:
//hrs.isr.umich.edu/documentation). The HRS has been fielded ev-
ery 2 years since 1992. A new cohort of 51–56-y-olds and their
spouses is enrolled every 6 years to maintain representativeness
of the US population over 50 years of age. Participants are asked
about 4 broad areas: income and wealth; health, cognition, and
use of healthcare services; work and retirement; and family con-
nections. As of the 2016 data release, the HRS included data col-
lected from 42,515 individuals in 26,600 households. The 2016 VBS
collected biomarker data from a subset of HRS participants who
consented to a venous blood draw, as part of a larger effort to un-
derstand biological mechanisms linking social factors and health
(n = 9,286). DNAm assays were done on a nonrandom subsam-
ple of VBS participants representative of the larger HRS sample
(n = 3,989). We linked HRS data curated by the RAND Corporation

with new data collected as part of the HRS’s 2016 VBS ((18, 19).
Our final analytic sample included all individuals who (1) partici-
pated in the 2016 wave of the HRS, (2) provided biomarker and/or
DNAm data through the VBS, and (3) provided retrospective re-
ports of socioeconomic indicators in childhood, middle adulthood,
and later-life. The final analytic sample was 9,255 for analyses us-
ing biomarker measures of biological aging and 3,976 for analy-
ses using DNAm measures of biological aging. Comparison of VBS
participants to the full HRS is reported in Table S1 (Supplementary
Material; Panel A).

Measures
Biological aging
Biological aging is the gradual and progressive decline in system
integrity that occurs with advancing chronological age, mediat-
ing aging-related disease and disability (20). While there is no gold
standard measure of biological aging (5), current state-of-the-art
methods use machine learning to sift through large numbers of
candidate biomarkers and parameterize algorithms that predict
aging-related parameters, including chronological age, mortality
risk, and rate of decline in system integrity. Algorithms are de-
veloped in reference datasets and can then be applied to new
datasets to test hypotheses.

For our analysis, we selected 3 blood-chemistry measures and 3
DNAm measures of biological aging shown in the previous work to
predict morbidity and mortality (6, 21–25), and which also demon-
strated more advanced or more rapid aging in low socioeconomic
status adults (6, 7, 26, 27). We compared different measures of bi-
ological aging to evaluate robustness of findings and to compare
the sensitivity of blood-chemistry and DNAm biological-aging al-
gorithms.

Blood-chemistry measures of biological aging were derived us-
ing 3 published methods: Phenotypic Age (22), Klemera–Doubal
Method (KDM) Biological Age (28), and Homeostatic Dysregula-
tion (29) applied to clinical chemistries and complete blood count
data from venous blood draws. Algorithm parameterization for
the KDM biological age and homeostatic dysregulation measures
was conducted using the NHANES III data. PhenoAge parameter-
ization was taken directly from the published article by Levine
et al. (22). All blood-chemistry measures were implemented in
the HRS data using the BioAge R package (https://rdrr.io/github/d
ayoonkwon/BioAge/) (30). Blood-chemistry and DNAm measures
were moderately correlated in our sample (Pearson’s r range: 0.18–
0.35, Fig. 1).

DNAm measures of biological aging were obtained from the
HRS (18). We conducted analysis of 3 measures: the PhenoAge
clock (22), the GrimAge clock (31), and the DunedinPoAm Pace of
Aging (6).

We refer to individual differences in the measures of biologi-
cal aging as reflecting more/less advanced biological aging in the
case of the blood-chemistry measures and DNAm clocks, and as
reflecting faster/slower aging in the case of the DunedinPoAm
DNAm measure. The blood-chemistry measures and the DNAm
clocks have similar interpretation: They quantify how much bio-
logical aging a person has experienced up to the time of measure-
ment. For those whose clock-ages are older/younger than their
chronological ages, biological aging is more/less “advanced” rel-
ative to expectation. In contrast, DunedinPoAm measures how
rapidly a person has been aging over the recent past. Values above
the benchmark range of 1 year of change per 12-months interval
indicate “faster” biological aging, whereas values below 1 indicate

https://hrs.isr.umich.edu/documentation
https://rdrr.io/github/dayoonkwon/BioAge/
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Fig. 1. Correlations among 3 blood-chemistry and 3 DNAm measures of biological aging among Black and White participants in the US HRS. Biological
aging measure labels are listed on the matrix diagonal. Pearson correlations are shown above the diagonal. Correlations are reported for the biological
aging measures listed below and to the left of the cell. Scatterplots and linear fits illustrating associations are shown below the diagonal. The Y-axis of
the plots correspond to the biological aging measure to the right of the cell. The X-axis of the plots correspond to the biological aging measure above
the cell. Sample sizes for correlations among blood-chemistry measures are n = 9,255. Sample sizes for correlations between blood-chemistry and
DNAm measures and among DNAm measures are n = 3,976.

“slower” biological aging. Measures are described in more detail
in Table 1 and A1.

Social mobility
We measured social mobility from participant reports about their
socioeconomic circumstances before age 16, and from structured
interviews about later-life wealth conducted by HRS between 1993
and 2016.

Childhood social origins

We constructed a childhood social origins index based on partic-
ipants’ retrospective reports about their family’s general finan-
cial circumstances relative to other families, their father’s occupa-
tion, the family’s experiences of economic hardship (family had to
move due to financial difficulties, family received financial help,
and father unemployed), and their parents’ educational attain-
ment. We composed the childhood social origins index as follows:
first, we conducted principal components analysis of financial cir-
cumstances, father’s occupation, family economic hardship, and
parents’ education scores for HRS participants with complete data
on all items (n = 30,062). Second, we imputed missing values
for father’s occupation and parents’ education at the means for
groups of participants matched on race, HRS birth cohort, and
family financial circumstances score. Third, to compute the final

factor scores, we multiplied the values of variables by their fac-
tor loadings from the complete-case principal component analy-
sis and then averaged the products. Factor scores were computed
for participants with nonmissing or imputed data on at least 3 of
the 4 social origins variables (n = 37,620, of whom father’s occupa-
tion was imputed for n = 4,279 and family educational attainment
was imputed for n = 2,276). Additional details are reported in A2.
For analysis, we converted factor scores to Z scores (M = 0 and
SD = 1) and percentile ranks within 5-year birth cohorts. For the
final childhood social origins index, higher values indicate more
advantaged families of origin and lower values indicate less ad-
vantaged families of origin.

Later-life socioeconomic attainment

We measured later-life socioeconomic attainment from wealth
data collected during structured interviews with participants
about assets (including second homes) and liabilities over the
course of multiple waves of participation in the HRS. Wealth data
were chosen on the basis of evidence that wealth is more informa-
tive about social status in older adults as compared with income
and educational level (32, 33), and shows clear associations with a
range of aging-related health and functional deficits (34). We used
wealth data compiled by the RAND Corporation (35) and merged
with data distributed by the HRS. Because wealth data were
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Table 1. Measures of biological aging included in analysis. The table reports the 6 measures of biological aging included in the analysis.
For each measure, the table reports the criterion used to develop the measure and the interpretation of the measure’s values. Criterion
refers to the quantity the biological aging algorithm was developed to predict. Interpretation refers to the inference about biological
aging that can be made on the basis of the values of the measure.

Measure Criterion Interpretation

Blood-chemistry measures. All algorithms were parameterized using data from NHANES III and included the following blood chemistries: albumin,
alkaline phosphatase, creatinine, C-reactive protein (log), white blood cell count, lymphocyte %, mean cell volume, and red cell distribution width.
PhenoAge additionally included glucose. KDM Biological Age and Homeostatic Dysregulation additionally included glycated hemoglobin (HbA1C).
PhenoAge and KDM Biological Age algorithms included information about chronological age. For analysis, PhenoAge and KDM Biological Age were
differenced from chronological age to calculate biological-age advancement values.

PhenoAge Mortality Age at which the participant’s biomarker-predicted mortality risk matches the norm in the
reference population (NHANES III).

KDM Biological
Age

Chronological Age Age at which the participant’s biomarker-predicted physiological integrity matches the
norm in the reference population (NHANES III).

Homeostatic
Dysregulation

Deviation from
healthy youth

Log biomarker-Mahalanobis distance of participant from young, healthy reference
population (nonobese NHANES III participants aged 20–30 years).

DNAm measures. DNAm measures were developed from analysis of genome-wide DNAm measured on Illumina 27 k and 450 k arrays in a range of
different datasets. The Horvath Clock was developed from the analysis of 82 different datasets. The Hannum Clock was developed from analysis of
research volunteers at UC San Diego, University of Southern California, and West China Hospital. The PhenoAge Clock was developed from analysis of
NHANES III and the InCHIANTI Study. The GrimAge clock was developed from analysis of the Framingham Heart Study Offspring Cohort. The
DunedinPoAm Pace of Aging was developed from analysis of the Dunedin Study. DNAm measures were calculated by the HRS investigators. For
analysis, DNAm clocks were residualized on chronological age to calculate biological-age advancement values.

Second generation DNAm clocks
PhenoAge Clock Blood-chemistry

PhenoAge
DNAm prediction of the age at which the participant’s biomarker-predicted mortality risk
matches the norm in the NHANES III reference population (based on analysis of the
InCHIANTI Study).

GrimAge Clock Mortality Age at which the participants’ DNAm-predicted mortality risk matches the norm in the
reference population (Framingham Heart Study Offspring cohort). The GrimAge clock was
derived by first developing DNAm surrogates for blood proteins and smoking history, and
then developing a mortality prediction model based on these DNAm surrogates, sex, and
chronological age.

Pace of aging
DunedinPoAm
Pace of Aging

Change over 12 years
of follow-up in 18
system-integrity
biomarkers

Years of physiological decline experienced per 1 year of calendar time over the recent past.
DunedinPoAm was developed by modeling a composite of change scores for 18 biomarkers
of organ system integrity from DNAm data. The expected value of DunedinPoAm in midlife
adults is 1. Values > 1 indicate accelerated aging. Values < 1 indicate slowed aging.

combined across multiple years of measurement, we inflated all
values to constant 2012 dollars. We applied an inverse-hyperbolic-
sine transformation to reduce skew (36). Finally, we applied a theta
transformation including adjustment for age and sex to achieve
an approximately normal distribution of values (37). For analysis,
we converted the transformed wealth values to Z scores (M = 0
and SD = 1) and percentile ranks to form later-life socioeconomic
attainment scores. Higher values of the later-life socioeconomic
attainment score indicate higher levels of attainment and lower
values indicate lower levels of attainment.

Mobility

We measured social mobility from childhood to later-life using
2 complementary approaches. (1) Residualized-change: we re-
gressed participants’ later-life-socioeconomic-attainment z-score
on their childhood-social-origins z-score and calculated residual
values as a measure of mobility. This approach quantifies mobil-
ity as the difference between the attainment a person achieved
and the attainment expected based on their social origins. (2)
Difference-score: we calculated mobility as the difference be-
tween the later-life socioeconomic attainment z-score and the
childhood social origins z-score. This approach quantifies mobil-
ity as the absolute difference in rank between attainment and

origins. These 2 measures of mobility were highly correlated
(r = 0.76). We conducted parallel analysis of both measures. We
also conducted analysis of social mobility measured in terms of
percentile-rank change from childhood to later-life using both
residualized-change and difference score approaches. Details of
social mobility variables are reported in Table S1 (Supplementary
Material; Panel B).

Disaggregating effects of mobility from effects of status at-
tained through mobility
The effects quantified in our mobility analysis reflect combina-
tions of the effects of the status attained through mobility and of
mobility itself. Methods have been proposed to disaggregate these
effects, although there remains no gold standard (38). A widely
used method is the Diagonal Reference Model (DRM) first devel-
oped by Sobel (39, 40). The DRM estimates unique parameters to
quantify the effects of status and the effects of mobility. DRM
analysis is reported in A3.

Educational mobility
We conducted parallel analysis of mobility from participant re-
ports about their own education and the education of their par-
ents.
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Parental education

We coded parental education in 3 categories based on years
of schooling. To account for secular trends in educational
attainment, we normalized parental educational attainments to
5-year birth cohorts of participants. We classified those with edu-
cational attainment below the 25th percentile as having low edu-
cational attainment, those with educational attainment between
the 25th and 75th percentile as having average educational at-
tainment, and those with educational attainment above the 75th
percentile as having high educational attainment. We assigned
the highest attainment category of either parent as the partici-
pant’s parental educational attainment. This approach classified
20% of participants with low parental educational attainment,
57% with average parental educational attainment, and 23% with
high parental educational attainment.

Participant education

We coded participant education into 3 categories: those who had
not graduated from high school (22%), those who had graduated
from high school but had not completed a college degree (53%),
and those who had completed at least a college degree (25%).

Mobility

We calculated educational mobility as the difference in education
categories between participants and their parents. We assigned
index scores of 1, 2, and 3 to respondents’ educational attainment
(less than high school, high school, and more than high school)
and their parents’ educational attainment (low, medium, and
high). We calculated educational mobility by subtracting parental
education index scores from participant education index scores,
such that negative values represent downward social mobility
and positive values represent upward social mobility (range −2
to 2, mean = 0.02, and SD = 0.71). Details of educational mobil-
ity variables are reported in Table S1 (Supplementary Material;
Panel C).

Analysis
We used linear regression to test associations of social mobility
with biological aging using the following specification:

BA = α + β ∗ SEST + γ ∗ X + ε,

where BA is the measure of biological aging, SES is the socioeco-
nomic circumstances measure (childhood social origins, later-life
socioeconomic attainment, or social mobility), and X is a matrix
of covariates. All models included covariate adjustment for
chronological age, specified as a quadratic term, sex, whether
the respondent self-identified as Hispanic, self-identified race
(White, Black, and other), and the interactions of age terms with
sex, race, and Hispanic ethnicity. ε represents the error term.
The coefficient β tests the association of the SES measure with
biological aging. We report results for z-score transformations of
mobility in the main text and report results for both metrics in
the Supplemental Tables.

We tested if associations of social mobility with biological aging
varied by childhood socioeconomic status, sex, or race by adding
cross-product interaction terms to our models: BA = alpha +
(beta∗SES_T)+(delta∗SES

BA = α + β ∗ SEST + δ ∗ SEST ∗ Z + γ ∗ X + μ + ε,

where BA, SES, and X terms are the same as in the previ-
ous model and Z denotes the stratification variable (childhood
socioeconomic position, sex, or Black/White racial identity). The

coefficient δ tests the hypothesis that the association of mobility
with biological aging varies across levels/strata of Z.

We used the same models to test associations of educational
mobility with biological aging. In these models, the SES terms were
replaced with terms for parents’ educational attainment, partici-
pants’ educational attainment, and the difference in attainments
between parents and participants.

For all models, effect-sizes are scaled in standard deviation
units of the outcome measure. Positive effect-sizes indicate more-
advanced or faster biological aging; negative effect-sizes indicate
less-advanced or slower biological aging. For social-mobility mod-
els, effect-sizes are reported for a 1 SD difference in the exposure.
For educational mobility models, effect-sizes are reported for a
single-category increases in educational attainment.

To account for nonindependence of observations of couples
who share a household, we clustered standard errors at the house-
hold level. We conducted all analyses in RStudio Version 1.3.1093.

Results
Sample overview
HRS participants included in analysis showed substantial social
mobility (percentile-rank mobility SD=25). Compared to the full
2016 HRS sample, participants in the VBS subsample and the
DNAm subsample for whom biological aging measures could
be computed were somewhat more likely to be White and to
experience more upward social mobility. Comparison of socio-
demographic characteristics of the analysis sample to the full
2016 HRS panel is reported in Table S1 (Supplementary Material)
and Figure S4 (Supplementary Material).

HRS participants who grew up in more
socioeconomically advantaged households
exhibited less-advanced and slower biological
aging in later-life
We combined participants’ retrospective reports about their
parents’ education, childhood experiences of economic hard-
ship, and perceptions of their family’s relative socioeconomic
standing into a single index of childhood social origins. Par-
ticipants who grew up in more socioeconomically advantaged
households exhibited less-advanced and slower biological ag-
ing across all 6 aging measures included in our analysis (effect-
size range β= [−0.07, −0.03], where ‘β’ represents an effect-
size denominated in standard deviations of biological aging per
standard deviation difference in social origins; Fig. 2a; Table S2,
Supplementary Material). However, effect-sizes were small, con-
sistent with a prior report from this cohort (21).

HRS participants with higher levels of later-life
socioeconomic attainment exhibited
less-advanced and slower biological aging
We measured later-life socioeconomic attainment from house-
hold wealth data collected from structured interviews with par-
ticipants about their assets and liabilities and compiled by RAND
corporation. Participants with higher levels of attainment exhib-
ited less-advanced and slower biological aging across all 6 mea-
sures of biological aging included in our analysis (attainment Z-
score range β= [−0.25, −0.18], except for DNAm PhenoAge (β=
−0.09), where ‘β’ represents an effect-size denominated in stan-
dard deviations of biological aging per standard deviation differ-
ence in attainment; Fig. 2b; Table S2, Supplementary Material).
These effect-sizes were larger relative to the association of child-
hood social origins with biological aging.
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Fig. 2. Effect-sizes for associations of childhood and later-life socioeconomic circumstances and social mobility with 6 blood-chemistry and DNAm
measures of biological aging. The figure plots effect-sizes and 95% CIs from analysis of association between measures of social origins, social
attainment, and social mobility with 6 measures of biological aging. Effect-sizes are reported in standard deviation units of the aging measures per
standard deviation increment in the predictor, interpretable as Pearson’s r. Blood-chemistry measures are shown in red (n = 9,255). 2nd generation
DNAm clocks are shown in blue (n = 3,976). DunedinPoAm Pace of Aging is shown in turquoise (n = 3,976). All models are adjusted for age, sex, race,
and Hispanic ethnicity.

HRS participants who climbed up the social
ladder showed less-advanced and slower
biological aging in later-life
We measured socioeconomic mobility in 2 ways. First, we com-
puted mobility as the difference in the level of later-life socioeco-
nomic attainment achieved from the level of attainment expected
based on childhood social origins (the residual from a regression
of later-life socioeconomic attainment on childhood social ori-
gins; hereafter “residualized-change mobility”). Participants with
more upward mobility exhibited less-advanced and slower biolog-
ical aging (residualized-change mobility Z-score range β= [−0.23,
−0.16], except for DNAm PhenoAge (β= −0.09), where ‘β’ repre-
sents an effect-size denominated in standard deviations of bio-
logical aging per standard deviation difference in mobility). Sec-
ond, we computed mobility as a simple difference score (later-
life socioeconomic attainment—childhood social origins; here-
after “difference-score mobility”). Consistent with results from
our first approach, participants with more upward mobility exhib-
ited less-advanced and slower biological aging (difference-score
mobility Z-score range β= [−0.09, −0.06] except for DNAm Phe-
noAge (β= −0.02)); Figs 2c, 2d; Fig. 3 ; Table S2, Supplementary
Material).

Sensitivity analyses
We conducted sensitivity analyses to evaluate consistency of as-
sociations between social mobility and biological aging across 3
sets of groups facing different barriers to social mobility: those
who grew up in more as compared with less disadvantaged fami-
lies; women as compared with men; and Black as compared with
White Americans.

Childhood social origins

The association between upward social mobility and biological ag-
ing was similar across the distribution of childhood social origins
(interaction P-values > 0.237). This finding remained consistent
when we restricted analysis to participants in the middle 50% of
the childhood social origins distribution. Results are reported in
Table S4 (Supplementary Material) and Figure S1 (Supplementary
Material).

Sex

For both women and men, upward social mobility was associ-
ated with less-advanced and slower biological aging (for women,
residualized-change mobility effect-size range β= [−0.26, −0.15]

except for DNAm PhenoAge (β= −0.08), difference-score mobility
effect-size range β= [−0.10, −0.05] except for DNAm PhenoAge
(β= −0.004); for men, residualized-change mobility effect-size
range β= [−0.28, −0.12] except for DNAm PhenoAge (β= −0.07),
difference-score mobility effect-size range β= [−0.10, −0.04]).
In residualized-change analysis, effect-sizes for blood-chemistry
PhenoAge and Homeostatic Dysregulation measures of biological
aging indicated somewhat stronger associations of mobility with
biological aging for women as compared to men (interaction term
range β= [−0.09, −0.04]). However, DNAm measures of aging did
not show consistent differences, and effect-size differences were
not generally statistically significant at the alpha = 0.05 level.
In difference-score mobility analysis, effect-size differences be-
tween men and women were not statistically significant at the
alpha = 0.05 level (P > 0.113). Results are reported in Table S5 (Sup-
plementary Material) and Figure S2 (Supplementary Material).

Racial identity

For both White and Black adults, upward social mobility was as-
sociated with less-advanced and slower biological aging (for Black
adults, residualized-change mobility effect-size range β= [−0.25,
−0.16] except for DNAm PhenoAge (β= −0.09), difference-score
mobility effect-size range β= [−0.11, −0.08] except for DNAm Phe-
noAge (β= −0.05); for White adults, residualized-change mobility
effect-size range β= [−0.25, −0.15] except for DNAm PhenoAge
(β= −0.09), difference-score mobility effect-size range β= [−0.09,
−0.03]). Effect-size differences between White and Black adults
were not statistically significant at the alpha = 0.05 level (P-values
for tests of interaction > 0.052). Results are reported in Table S6
(Supplementary Material) and Figure S3 (Supplementary Mate-
rial).

The consistency of effect-sizes for social-mobility associations
with biological aging between White and Black HRS participants
contrasts with reports that associations of socioeconomic attain-
ment with health may be weaker for Black as compared to White
Americans (14, 16, 17, 41). In these studies, socioeconomic attain-
ment was measured from education. We, therefore, repeated our
analysis with a mobility measure derived by comparing educa-
tional attainments of participants to those of their parents (here-
after, “educational mobility”).

Analysis of educational mobility
Effect-sizes for educational-mobility associations with biological
aging were somewhat smaller than effect-sizes for social-mobility
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Fig. 3. Effect-sizes for associations of life course social mobility with 3 blood-chemistry and 3 DNAm measures of biological aging. The histogram at
the top of the figure shows the distribution of social mobility in percentile rank terms in the full HRS VBS (n = 9,255; red bars) and the DNAm
subsample (n = 3,976; blue bars). The line plot at the bottom of the figure shows the association of social mobility with 6 measures of biological aging.
Blood-chemistry-based measures are plotted in red shades. DNAm measures are plotted in blue shades. The figure shows that, across methods,
upward social mobility was associated with less-advanced and slower biological aging.

associations (range β= [−0.13, −0.02], Table S3 [Supplementary
Material]). As in analysis of social mobility, blood-chemistry
measures of biological aging indicated somewhat larger effect-
sizes for women as compared to men (for women, effect-size
range β= [−0.14, −0.06]; for men, effect-size range β= [−0.13,0.03];
Table S7 [Supplementary Material]). For Black and White adults,
upward educational mobility was associated with less-advanced
and slower biological aging (for Black adults, effect-size range
β= [−0.20, −0.04]; for White adults, effect-size range β= [−0.17,
−0.05]). Effect-sizes were smaller in Black as compared to White
adults with the exception of DunedinPoAm analysis, which
showed the reverse pattern. However, differences were not statis-
tically significant at the alpha = 0.05 level in the DNAm sample.
Results are reported in Table S8 (Supplementary Material).

Discussion
We tested how life-course socioeconomic mobility related to
healthy aging in a national sample of older adults in the United
States. We measured healthy aging using blood-chemistry and
DNAm measures of the state and pace of biological aging. There
were 3 main findings. First, older adults who had grown up in

socioeconomically at-risk families and those who had accumu-
lated less wealth across their lives exhibited more-advanced and
faster-paced biological aging as compared to those who grew up in
more socioeconomically advantaged families. Second, those who
overcame early-life disadvantage and climbed the social ladder
to achieve upward mobility had less-advanced and slower-paced
biological aging in later life as compared with those who were
nonmobile or downwardly mobile. Third, upward-mobility associ-
ations with healthy aging were generally consistent for men and
women, for White and Black adults, and for those who started life
at different levels of socioeconomic position. In sum, we did not
find evidence of net biological costs associated with the stresses of
climbing the social ladder. Instead, findings suggest that upward
socioeconomic mobility contributes to healthy aging, including in
groups that face structural barriers to socioeconomic attainment.

Our findings were consistent across metrics of aging de-
rived from different biological levels of analysis and devel-
oped using different models of the aging process. Childhood
socioeconomic disadvantage, lower levels of wealth in later-
life, and downward social mobility were each associated with
more-advanced/faster biological aging across 3 blood-chemistry
measures (blood-chemistry PhenoAge, KDM Biological Age, and
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Homeostatic Dysregulation) and 3 DNAm measures (PhenoAge
Clock, GrimAge Clock, and DunedinPoAm Pace of Aging), although
effect-sizes were smaller for the DNAm PhenoAge Clock. These 6
measures comprise biological clocks that estimate the extent of
aging in a person (KDM Biological Age, the PhenoAge measures,
and GrimAge), a measure of physiologic deviation from a healthy,
youthful state (homeostatic dysregulation), and a Pace of Aging
measure that estimates the ongoing rate of decline in system
integrity (DunedinPoAm). Consistency of findings across biologi-
cal levels of analysis and conceptually distinct measures of aging
builds confidence in the robustness of the association of upward
social mobility with healthy aging.

Our results contrast with some previous reports suggesting
that there may be physical health costs from upward social mo-
bility (14–17, 41). A possible explanation is that we measured
life-course socioeconomic attainment from data on wealth accu-
mulation, whereas previous studies had focused on educational
attainment (14, 16, 17, 41). When we conducted analysis of ed-
ucational mobility, our findings were more consistent with prior
studies; effect-sizes for upward educational mobility were 2–4
times larger in analysis of White as compared to Black partici-
pants, with the exception of the DunedinPoAm Pace of Aging mea-
sure, for which the educational-mobility effect-size was larger in
Black as compared to White participants. (In tests of interaction,
effect-size differences were not statistically significant at the al-
pha = 0.05 level for any of the measures.)

The difference in findings in analysis of social mobility as com-
pared to educational mobility may reflect differences in the life
stage timing of the measurements used to quantify these pro-
cesses and in the ways that the different mobility processes them-
selves affect the lives of Black and White Americans. The data we
used to quantify life-course attainment in social mobility analysis
was derived from structured interviews the HRS conducted with
participants about their assets and liabilities during follow-ups
spanning 1992–2016. These data capture levels of resource par-
ticipants accumulated across their lives and had access to during
the years leading up to the blood draws from which we derived our
measures of healthy aging. Conversely, participants mostly com-
pleted their education decades before aging measurements were
taken. Educational attainment plausibly represents young adult
potential to accumulate socioeconomic and material resources
that may affect healthy aging. However, this potential is likely un-
equally realized for Black and White Americans (42). An expla-
nation for why educational mobility showed weaker associations
with healthy aging in Black as compared to White participants
is that Black Americans, who face racism in educational, work,
and community environments, and who are part of extended fam-
ily networks with lower levels of resources overall, do not realize
the same social and material gains from their education as their
White peers, e.g. (43, 44).

We acknowledge limitations. There is no gold standard mea-
sure of biological aging (5). Our conclusions are circumscribed by
the precision and validity of available measurements. Our analy-
sis included DNAm- and blood-chemistry-based measures. Other
proposed levels of analysis for quantification of biological ag-
ing include proteomics, metabolomics, and physical performance
tests. Ultimately, integrating information across levels of anal-
ysis may yield more precise measurements (45). However, con-
sistency of results across different blood-chemistry and DNAm
methods build confidence in findings. Social mobility was mea-
sured from participant-reported information. Reporting biases
cannot be ruled out. Childhood socioeconomic circumstances,
which were retrospectively reported, may be subject to recall bias.

If aging trajectories affect recall of early-life adversity, or if par-
ticipants’ anchoring their responses to different perceptions of
normative socioeconomic conditions is related to other causes of
aging, our findings may over- or under-estimate the true effects
of social mobility on healthy aging. Studies are needed that can
link measures of biological aging with administrative records that
objectively record dimensions of social mobility. Our sample was
made up of adults aged 50 years and older and their spouses. To
the extent that socioeconomic disadvantage and downward mo-
bility are associated with premature mortality, our sample may
underrepresent the most at-risk population segments, potentially
biasing our results toward the null. Further, mortality differences
across demographic groups mean that differences between Black
and White participants, and between men and women, may be
underestimated. Participation biases may compound this survival
bias, especially for Black–White comparisons; Black participants
in the VBS were younger and healthier than the full sample of
Black participants in the HRS (46). Our estimates of Black–White
disparities are, therefore, likely to be conservative.

The observation that upward social mobility is associated with
slower biological aging builds on evidence that people with more
socioeconomic resources appear biologically younger than peers
of the same chronological age with fewer socioeconomic re-
sources (47). Mobility findings advance evidence for the hypoth-
esis that intervention to promote economic well-being in adult-
hood can help to address disparities in healthy aging. But whether
associations of upward mobility with slowed biological aging re-
flect effects of the resources acquired through upward mobility
or from resources and characteristics that made mobility possi-
ble remains to be determined. A critical next step is to clarify
when in the life course intervention can be most impactful and
what mechanisms are most effective in delivering not just eco-
nomic justice, but aging health equity. Collection of bio-samples
from participants in studies of interventions to promote success-
ful early-childhood development (48), increase educational at-
tainment (49), and reduce poverty and promote stable housing
and employment in adults (50, 51), can advance understanding
of when and how interventions to address inequalities in social
determinants of health can most powerfully affect inequalities in
healthy aging.
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