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A wide variety of cultural practices have a ‘tacit” dimension, whose prin-
ciples are neither obvious to an observer, nor known explicitly by experts.
This poses a problem for cultural evolution: if beginners cannot spot the
principles to imitate, and experts cannot say what they are doing, how can
tacit knowledge pass from generation to generation? We present a
domain-general model of ‘tacit teaching’, drawn from statistical physics,
that shows how high-accuracy transmission of tacit knowledge is possible.
It applies when the practice’s underlying features are subject to interacting
and competing constraints. Our model makes predictions for key features
of the teaching process. It predicts a tell-tale distribution of teaching out-
comes, with some students near-perfect performers while others receiving
the same instruction are disastrously bad. This differs from standard cultural
evolution models that rely on direct, high-fidelity copying, which lead to a
much narrower distribution of mostly mediocre outcomes. The model also
predicts generic features of the cultural evolution of tacit knowledge. The
evolution of tacit knowledge is expected to be bursty, with long periods of
stability interspersed with brief periods of dramatic change, and where
tacit knowledge, once lost, becomes essentially impossible to recover.

1. Introduction

One of the hallmarks of human knowledge is its ‘tacit’ dimension; as Polanyi
suggested, we start with ‘the fact that we can know more than we can tell’ [1].
A vast array of complex cultural practices have a significant tacit dimension,
with key principles that cannot be verbalized. The tacit dimension goes by
many names, including ‘working knowledge’ [2], ‘practical’ knowledge [3],
‘know-how’ [4] and ‘knowing-how’ [5,6]. A significant tacit dimension is
found in everything from sports [7,8] and artistic performance [9] to architec-
ture [10], medicine [11] and science itself [12], and has been studied in
contexts ranging from traditional crafts [13] to the professions [14] and
organizations [15,16] of the modern world.

For any practice, it is important to distinguish knowledge along the tacit
dimension from both explicit knowledge (with which it is usually contrasted),
and yet other forms. Explicit knowledge is usually defined as knowledge that
can be readily codified, accessed and shared, but not all unverbalizable knowl-
edge is tacit knowledge in the original sense. Recent work by Hoksbergen et al.
[17], for example, draws attention to the ‘dimension X’ of knowledge: knowledge
that is lost, not understood, or misappropriated, or even distorted or suppressed.

Ways in which knowledge can transform from one type to another have also
drawn attention. For instance, explicit knowledge can become tacit once the
code required to express it is lost, and tacit knowledge can become explicit in
cases where it can be codified. The transmission question is crucial here, and
the socialization, externalization, combination and internalization (SECI)
model [16], for example, suggests that tacit knowledge is acquired through
socialization and sharing direct experience and interactions with others. Tacit
knowledge, in their model, can sometimes be made explicit through

© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2022.0238&domain=pdf&date_stamp=2022-10-19
mailto:sdedeo@andrew.cmu.edu
https://doi.org/10.6084/m9.figshare.c.6238482
https://doi.org/10.6084/m9.figshare.c.6238482
http://orcid.org/
http://orcid.org/0000-0003-0896-1167
http://orcid.org/0000-0002-5346-9393
http://creativecommons.org/licenses/by/4.0/

externalization, when it is crystallized and made public. Con-
versely, explicit knowledge can become tacit when it is
internalized. Work by Wheeler [18], meanwhile, suggests
that while the transmission of the explicit dimension might
be the province of deductive or inductive reasoning, the
tacit dimension is often implicated in abductive forms of
cognition [19].

Central to all these questions is the fact that the tacit
dimension of any practice must, just as much as anything
else, be transmitted from one generation to the next. The
details of that transmission are expected to have a decisive
impact on its evolution over time; for example, transmission
needs to meet minimal levels of accuracy for evolution to
be possible at all [20,21]. As we shall see, however, the very
nature of tacit knowledge poses a direct challenge to the
standard accounts of how transmission happens.

In cultural evolution, standard transmission mechanisms
include teaching (where a teacher communicates their under-
standing to a learner), emulation (copying an end product)
and imitation (copying the actions that produce the product)
[22-25]. While these three mechanisms can account for part of
how culture is transmitted, they can struggle to explain trans-
mission of the tacit dimension. Three aspects, in particular,
make the task challenging.

First, tacit knowledge is a mental representation. To be
transmitted, that representation must be in some way made
public [26]. One main way to do so is verbal instruction,
and a great deal of culture is passed down by speech alone
[25,27]. However, tacit knowledge cannot be transmitted in
this fashion [28,29], because, by definition, even those who
have the knowledge would not know what to say.

Second, tacit knowledge is combinatorially complex. It
provides those who possess it with a set of contingently
deployed, interconnected skills [30,31]. Key aspects of an
expert’s tacit knowledge may become relevant so rarely—
say, ‘under pressure’, or in an exceptional context—that
even the most diligent student may never encounter them
through observation alone. This makes it difficult for a
standard alternative to explicit instruction: the target goals,
and their contingencies, are too various and mutable for
straightforward imitation or emulation to work.

Third, tacit knowledge includes knowing which aspects of
behaviour constitute the practice, and which are incidental.
This can make imitation difficult: if a learner is to acquire
skills through imitation, she needs to know, or be able to
infer, what is relevant to imitate, including whether an
action is understood as instrumental or not [32]; in purely
observational situations, overimitation is common [33,34].
Knowledge of what is relevant, however, is itself tacit. I may
be able to improve my technique by watching a skilled perfor-
mer, but only after I have enough tacit knowledge to know the
relevant from the incidental. A novice at the violin cannot learn
by watching an orchestra perform. Similar challenges occur for
emulation: when knowledge is tacit, a learner cannot determine
which features of the end product matter.

This paper presents a domain-general model that shows
how, despite these challenges, tacit knowledge may be
faithfully transmitted. The solution we propose sees tacit
knowledge as the emergent product of a network of interact-
ing constraints, and transmission as a process of guiding a
learner to a solution by the simultaneous, and mutually inter-
fering, demands of both a teacher and the environment. The
knowledge is tacit even in transmission because only an

enigmatic fragment is ever present to the mind of either tea-
cher or learner. The structure necessary to reconstruct the
practice emerges from the interaction between the prac-
titioner and the environment, and the teacher’s task is to
guide a learner towards the correct use of that structure. In
particular, by careful intervention on a small fraction of the
features, a teacher can guide the learner to discover the full
structure of the culturally specific solution.

Our model shows how only around 10% of the task need
be conveyed by a teacher’s intervention. This helps make
sense of a key feature of teaching seen across the anthropologi-
cal record, where the most common forms of teaching in the
cultural record are low-cost and involve significant underspe-
cification; see, e.g. [35]. This is, of course, in contrast to the
‘Western’, or WEIRD [36], image of teaching as rationalized,
explicit and high-cost.

Our model can also, as we show, help explain a puzzling
feature of cultural evolution: the fact that culture often
appears to proceed in a bursty fashion, with long periods
of stasis interspersed with short bursts of chaotic innovation
leading to rapid and dramatic changes. Bursty evolution is
common in cultural evolution (see, e.g. [37]). It is also a defin-
ing feature of prehistory: bursty changes in material culture,
for example, provide the basis for how we divide prehistoric
cultures into distinct periods (see [38] for a discussion). This
alternation of periods of stasis and of short periods of rapid
changes is seen in the evolution of technological systems
[39,40] and is a focus for recent accounts of technological
innovation [41] that emphasize analogies to biological evol-
ution [42-44]. The theory of parasitism [45,46], where a
technology’s payoffs depend on the existence and spread of
another technology, also predicts stepwise changes [47]
which emerge because of interactions and constraints not
within a system (as in our model), but between systems.

We present our work in three parts. We first present the
model, showing how the mental representation of the prac-
tice is embedded in a network of embodied constraints, and
how a teacher intervenes to help construct the representation
for a learner. We then show how the fragmentary nature of
these interventions combines with the constraints of the
environment to allow for the accurate transmission of knowl-
edge from generation to generation. Finally, we present our
results on the cultural dynamics which arises spontaneously
from the model, namely bursty evolution.

2. Model

Tacit knowledge can appear in a wide variety of domains.
Our model attempts to capture the generalizable features of
tacit knowledge by working at an abstract level. We present
the model in two steps. First, we present the basic definitions,
using a toy example to connect our work to broader questions
in anthropology, archaeology and psychology. Then, we
show how this qualitative account can be captured in a gen-
eral mathematical framework, which allows us to predict
how this process plays out in reality.

2.1. Constraint-based tacit knowledge

Our model shares a number of characteristics with that of
[48]; in particular, both describe different forms of tacit cul-
tural knowledge as systems of constrained and interacting
choices. Formally, a particular case of tacit knowledge is
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defined as a list of conditional behaviours. We refer to these
as ‘facets’. As an example, consider horse-riding. A particular
style of riding corresponds to a tacit knowledge practice, and
each style will involve a complex relationship between how,
for example, the rider places their limbs in response to the
movements of their mount.

In principle, each of these conditional behaviours can be
specified by one of a set of symbols. If the body is in position
so-and-so, and the horse does so-and-so, should the rider
respond by lowering their hands (‘option A for facet one’,
or A; for short), or, alternatively, by raising them (option
B1)? Should they relax their back (option A;) or straighten it
(option B,)? Part of the facet specification for one style of
riding might be A;A,, while another style might be B;B,,
and so forth. The number of facets is potentially very high.

The second step of our model considers the interacting
constraints between these different facets. What a rider does
with one part of her body in a particular context will, because
of the nature of the human or equine body, or because of the
particular artefacts used for riding (the saddle, tack and so
forth), be more or less consonant with what she does with
another part of her body. For example, the combination of
lowering one’s hands and relaxing one’s back may be a par-
ticularly consonant combination, while lowering one’s hands
and straightening one’s back may not—i.e. an ‘incorrect’, or
inexpert, response might be A;B,. A good combination will
be something that, all other things being equal, the person
can receive some sort of feedback on from the environment.
For example, a consonant pairing may take less effort, or
provide some other noticeable benefit such as fluency.

These consonance relationships, taken together, are called
the constraint network. In our model, each facet in the net-
work bears some relationship to the others. This can be a
direct link, as in the example above, or it can be an indirect
link, mediated by intermediate facets. For example, we
might imagine a third conditional behaviour with two possi-
bilities, A3 and B;, and that A; is more consonant with A,,
and Bj is more consonant with B,. The choice for the third
conditional behaviour, in other words, is influenced by the
choice for the second conditional behaviour. Because, how-
ever, the choice of A; versus B is in turn influenced by the
choice of A, versus B,, the choice of A3 versus Bz has an
impact as well. Such a network of interactions operationalizes
intuitions of what makes a practice coherent.

The simplest version of such a model takes each facet to
be a choice between one of two options (A or B; or more
simply 0 or 1), and for the interactions between facets to be
pairwise only. An example of such a network is shown in
blue at the top of figure 1, with the very simple case of six
facets. Each node corresponds to a facet, and lines between
nodes reflect the two different types of consonance relation-
ship. A solid line (e.g. the one connecting facets 1 and 2)
says that the two facets in the ‘same’ state are preferred,
while a dashed line (e.g. the one connecting facets 2 and 6)
says that the two facets prefer to be in the opposite state.
Thus, for example, the setting A;A; is preferred to A;B; (1
and 2 in the same state), all other things being equal, while
ApBg is preferred to A,Ae. For simplicity, we can write out
the full specification of the system as a binary string. One
example of a string that satisfies many, though not all, of
the constraints, is 111000; in this case, among other things,
it satisfies the constraint that aligns facets 1 and 2, and that
anti-aligns the facets 2 and 6.

underlying constraint
network

111000

t1 tt

teacher intervention,
practice one

001001

teacher intervention,
practice two

(rare) learning
error

Figure 1. A constraint model of tacit knowledge transmission. A tacit cultural
practice is a (usually partial) solution to a complex network of interacting
constraints between aspects (facets) of the problem; we show a simple
toy example here with only six facets, each of which takes on a binary
value, i.e. an agent performs any particular aspect of the task in one of
two mutually exclusive ways (red or yellow; written as one or zero, respect-
ively). Constraints are pairwise, preferring either alignment (solid lines) or
anti-alignment (dashed lines) of the facets.

Networks of interacting constraints like these, which
include both preferences for alignment and anti-alignment,
are often difficult, if impossible, to satisfy. In our simple
example, facets 2, 5 and 6 cannot be set in a way that satisfies
all three constraints simultaneously—as can be verified by
trying the different combinations. Any particular specification
for the facets, in other words, leads to difficulties.

Generically, there are different ways to satisfy these com-
peting demands. For instance, similar outcomes can be
obtained through distinct, yet functionally equivalent, move-
ments while making pots [49]. Some specifications are better
than others, and some are worse, but in general any particu-
lar tacit knowledge practice is a matter of how these
difficulties are navigated; ‘practice one’ in our figure, for
example, violates two constraints, while ‘practice two’ vio-
lates four. Others, not shown, are much worse; for example,
the practice 101100 violates six constraints.

When a practice is a reasonably good solution to the con-
straint network, a practitioner who has learned the practice
finds it easy to maintain. Deviations from the standard in
many facets can be sensed and corrected. Consider, for
example, someone implementing practice one. If she deviates
by switching from the ‘0’ state to the ‘1’ state in facet four, she
will experience an increased level of negative feedback from
the environment, since she is now aligning with facet three
(when it is more consonant to anti-align), and anti-aligning
with facet five (when it is more consonant to align). This pro-
vides her with a signal that can be used to return to the
standard. Even if she is unaware of which facet deviated,
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she can make little (i.e. roughly single-facet) adjustments in
her behaviour until consonance returns. When the practice
is a reasonably good solution, in other words, the practitioner
only needs to implement the solution. She does not need to
understand it. Stable solutions like these are candidates for
culturally transmitted tacit knowledge practices.

Transmission of the practice is now a matter of guidance.
If the learner can be guided by a teacher close enough to the
standard practice, the feedback from constraints will be suffi-
cient to maintain her there. A very simple model of guidance
is the intervention of the teacher to fix some of the facets into
the culture’s pattern. These may include physical interven-
tions (to teach fly fishing, for example, a novice may be
guided in proper form by literally tying his wrist to the
rod), scaffolding (use of the barre in ballet), mnemonics
(‘eye on the ball’, which maintains proper stance in tennis),
or simple verbal guidance from the teacher (back straight!).

This way of considering teachers” intervention—as fixing
some sub-part of students” practices—fits with a wide range
of empirical results on teaching. It matches, in particular,
real-life pedagogical interventions in which teachers reduce
the degrees of freedom of their learners’ movements.
Downey [50] reports on this aspect of teaching in the case
of the Brazilian martial art of capoeira, and [51] finds similar
interventions from masters teaching kathak dance. Constrain-
ing interventions are also frequent in various sports involving
athleticism, such as judo and swimming [7].

Careful interventions can do a great deal. In our toy
example, practice one can be efficiently transmitted to the
next generation by fixing only two critical nodes (nodes
three and six). A learner who obeys her teacher’s guidance
in these two facets can learn the full pattern simply by
remaining attentive to environmental feedback. She need
only minimize the number of violated constraints, subject
to the two instructional demands.

That effective subset of interventions (a kernel), when
placed in an embodied context, reliably activates the character-
istic and flexible behaviours of an expert. The nature of tacit
knowledge means that the teacher is unaware of the exact
nature of practice she exemplifies. However, the structure of
the problem also can enable ‘tacit teaching’, which we define
as the transmission of the tacit dimension of a practice through
an attempt involving a teaching expert and a student. In our
model, this is made possible when the teacher intervenes in
only a fraction of the facets but nonetheless passes on the
practice to some of the learners with near-perfect accuracy.

2.2. Mathematical framework
To study this model quantitatively, we need to specify how a
learner responds to the constraint network. We adapt an
approach used in a variety of cognitive models known as
the maximum entropy principle [52-56]. The mathematics
of our model is closely related to the Boltzmann machine in
machine learning [57], Hopfield networks in neuroscience
[58] and the ‘spin glass’ systems in physics [59]. Our model
makes minimal assumptions about how facets interact. In
the absence of teaching, the model fixes only the pairwise
correlations between each pair of facets. The effect of teaching
is to fix the average value of the particular facet being taught.
Once the constraint network is specified, this model has a
free parameter, 8, which governs the learner’s sensitivity to con-
straints. When f is low, the learner pays little attention to the

constraints of her environment; when g is high, she is excep-
tionally rigorous. Assuming that the teacher is obeyed
rigorously enough, our results are not particularly sensitive
to the value of 5, as long as it is past a critical point—essentially,
the learner needs to be reasonably attentive to her environment
(see electronic supplementary material for details).

All the relevant properties of the teaching process can be
captured once we can compute the probability distribution of
the learner over the different facet patterns. Following the dis-
cussion above, we assume that each facet for the learner, o,
can take on only one of two values; for simplicity, the two
choices can be represented as +1 and —1. Then the probability
distribution under the minimal model can be written [52] as

exp (B, 1ijoi0) + T2 et tioi
P({oi}) = ( 7 ) ,

(2.1)

where r; is a matrix that describes the coupling between
facets i and j; a positive value of r; indicates a preference
for the two facets to be in the same state, and a negative
value for them to be in opposite states (corresponding to
the solid and dotted lines in figure 1, respectively). T is the
set of nodes that are taught by intervention (the nodes
marked with arrows in figure 1), ; is the teacher’s interven-
tion (either +1, indicating a preference for the ‘positive’
practice, or —1, indicating a preference for the negative prac-
tice). The two constants g and 7 govern the strength of the
interaction between facets, and the influence of the teacher,
respectively. Finally, Z is a normalization constant.

Equation (2.1) appears in many models in machine learn-
ing (Boltzmann machines [57]), neuroscience (Hopfield
networks [58]) and physics (spin glass models [59]). The sali-
ent feature of all of these systems is the existence of multiple,
distinct, ‘metastable’ (i.e. long-lived) patterns of activation. In
the Hopfield case, these correspond to different ‘memories’;
for us, they correspond to different practices. The goal of
the teacher is to guide the learner to her same solution.

We simulated different interaction configurations, where
r;j in any particular simulation is drawn from a random dis-
tribution, uniform between -1 and +1 (our qualitative
conclusions are insensitive to the precise nature of this distri-
bution, or the topology of the network; see electronic
supplementary material). Once the interactions are fixed,
the key parameters are g and 7. We set 7 to be much larger
than unity (in practice, between four and 10), and f; to be
zero for the facets i that the teacher does not intervene on,
indicating that the teacher can make a strict intervention;
ie. that she can fix that small number of the student’s
facets with near perfection. Meanwhile, § indicates the
extent to which the student is sensitive to the interacting con-
straints of the facets themselves. When f is zero, for example,
the facets that are not being taught are completely free and
uncorrelated. When S is high, the system has low tolerance
for deviations from the patterns set by r;;.

Our qualitative results are insensitive to § as long as it is
past the ‘critical point’ (around unity). Empirically, we find
that the most accurate transmission is possible when 7 is set
to be large, and S is slowly increased from zero to a value
comparable to 7 (see electronic supplementary material).
Once this process has finished, the learner, in turn, can act
as a teacher for a new learner; the old learner/new teacher
intervenes on this new learner in the same fashion.
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Figure 2. Tacit teaching leads to high-accuracy transmission from teacher to student. Shown here is the distribution of learning outcomes for the tacit teaching case (solid
line) for the test case of 30 facets and (only) four teacher interventions. Even though the teacher intervenes in less than 15% of the facets, perfect reproduction occurs
approximately 70% of the time (see the extreme left side of the distribution). The students who fail to learn properly, by contrast, often end up with very different
solutions—the distribution of errors is non-normal (non-binomial) and long leaps are just as, if not more, common as small deviations. A null ‘copy error' model
(dashed line) has very different properties. If it is to achieve the same average accuracy as the tacit model, it must sacrifice any hope of accurate transmission.

All that remains is to determine a good candidate for T,
the set of nodes the teacher intervenes on. We do this in a
‘greedy’ fashion. We first find the best facet for a single inter-
vention (i.e. the facet that, if fixed by the teacher, allows the
learner to best approximate the desired activity). We then
iterate: we find the facet that, when fixed in conjunction
with the first, produces the best outcome, and so forth. This
heuristic can plausibly be followed by a beginning teacher,
who experiments with enforcing different aspects, or an
expert one who can adapt to a slightly changed culture.
Over a decade range of network sizes (from 10 facets to
100), we find only between 10% and 15% of the facets need
be fixed by teaching.

3. Results

We present our results on tacit teaching in two parts. First, we
show how tacit teaching does, indeed, enable high-accuracy
transmission of a practice from one generation to the next.
We then show how the details of this process combine, at
the population level, to leave traces on the long-term
evolution of culture.

3.1. Tacit teaching

We first consider tacit teaching itself. Given a particular con-
straint network and cultural practice, we consider the effect of
different kernel sizes on the accuracy of transmission.
Accuracy is measured by Hamming distance, which counts
the number of facets in which the student differs from the
teacher; a Hamming distance of zero indicates perfect trans-
mission (see electronic supplementary material for further
details and alternative accuracy measures).

The results of our simulations suggest that under a variety
of conditions, perfect transmission can be reliably obtained
even when the number of interventions is significantly smal-
ler than the number of facets. The kernel needs only be a
small fraction of the whole, and a skilled teacher in

possession of that kernel would still be able to transmit the
whole practice to the learner, even if only a small amount
of information is conveyed between them.

An example of this phenomenon is shown in figure 2. In
this case, a 30-facet practice can be transmitted with very high
accuracy by intervening in only four facets. Despite the fact
that, on the surface, only a tiny fraction of the total infor-
mation is conveyed between teacher and student, perfect
accuracy can be achieved nearly 70% of the time.

Neither teacher nor learner need know, in any conscious
fashion, the correct pattern in all 30 facets—indeed, they
need not even know how many facets there are. All that is
needed for effective transmission is (i) that the teacher keep
in mind four key features of the learner’s behaviour and (ii)
that the learner attend to the teacher’s guidance while
remaining attentive to the consonance demands of her
environment. This is not only sufficient to guide the learner
to the full 30-facet practice, but also to avoid other, potentially
tempting—i.e. stable and similarly optimal—solutions that
can be thought of as alternative cultural practices.

Two things are evident from figure 2. First, as noted, a
majority of students learn the practice exactly. If teachers
for the next generation are drawn from this subpopulation,
the practice can persist with high levels of accuracy for mul-
tiple generations. Second, the distribution of errors is highly
non-normal; of those who fail to learn, there are just as
many who learn a practice (say) three Hamming units
away as 20. Poor transmission is therefore expected to be
far more noticeable.

This distribution arises because the underlying constraint
network serves to correlate the errors made in learning: infor-
mally, a failed student learns ‘bad habits’ that connect
together and re-enforce each other, driving the learner into
a totally different part of solution space. This space is usually
less optimal than the correct answer, but may have at least a
modicum of stability. A simple example is in the teaching of
juggling. A minority of learners find a satisfying, but in the
end suboptimal, solution to the problem of juggling two
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balls that involves passing, rather than tossing, one of the
balls from one hand to the other.

Once a student has learned enough of these bad habits,
further teaching may be in vain. Matching the teacher’s prac-
tice would now require shifting a large number of facets
simultaneously. The only other solution to this problem is if
the student can start again—in our simple model, the necess-
ary ‘beginner’s mind’ is a random choice for each facet—and
pay greater attention.

A number of consequences flow from this distribution of
errors. First, it is easy to spot the majority of students who fail
to imitate the practice: their overall behavioural pattern is
generally very different from the cultural norm and (further-
more) the practice they do adopt is expected to be generally
less effective in (for example) competition with learners
who have correctly grasped the norm.

Second, however, not all errors are a combination of bad
habits. It is entirely possible that a small fraction of students
who fail to learn achieve, instead, ‘true’ alternative practices,
meaning solutions to the constraint network that are, if not
equally good as the standard practice of their culture, would
be at least similarly stable. The rare discovery of unusual sol-
utions, quite distant from the original practice, is a prediction
of our model. It also appears to be found in the qualitative lit-
erature, with anecdotal records of sportsmen having unusual,
yet high-performing, practices, like Oh Sadaharu in baseball
[60] or Donald ‘The Don’ Bradman in cricket [61].

This leads to an interesting paradox. On the one hand, tacit
teaching is, despite the fragmentary nature of the teacher’s
interventions, extraordinarily reliable. A majority of students
learn the practice accurately. On the other, however, tacit teach-
ing is also highly evolvable. The deviations that do occur are
often significantly different from the standard practice.

One way to understand this result is to compare it with a
null model, an imitation-like ‘copy error’ model. This model
assumes that all of the facets are observed by the student
and copied independently with some level of error. To com-
pare the copy error model with tacit teaching, we tune the
error rate of copying so that the average Hamming distance
matches that of the tacit model (see electronic supplementary
material for details). The copy error model is shown in figure
2 by a dashed line. In this particular example, the derived
error rate is roughly 15%, which is plausible given what we
know for cultural imitation [62]; however, as can be seen in
the figure, such an error rate for a complex practice makes
it nearly impossible to preserve the practice.

When comparing the two error distributions, two things
stand out. On the one hand, as mentioned, the copy error
model achieves basically zero accuracy: it is essentially
impossible for a learner to match the teacher’s practice,
despite the assumption that he is aware of and can attend
to all of the facets in turn. Second, despite this high error
rate, it is also very hard for the copy error model to make
long leaps and discover viable alternative practices. In this
particular case, the vast majority of outcomes for the copy-
error model lead to ‘close but imperfect’ outcomes, with an
error rate of 1/6; only around 0.1% of learners reproduce
the practice perfectly, and less than 0.01% produce long
leaps that modify more than half of the practice (see
electronic supplementary material for more).

On the other hand, the tacit model produces a spectrum,
with a large number of perfectly accurate students, and a
small number of outlier eccentrics. Most of the outliers, of

course, fail to create a new practice, but a small number
may find novel, but stable and teachable, solutions. (By com-
parison, if we tuned the copy-error model to match the
perfect accuracy rate of 70% of tacit model here, it would
require an implausibly low error rate of 1% for the observer,
for each of the 30 facets in turn—and would completely sacri-
fice evolvability.) This has suggestive consequences for
cultural evolution dynamics, especially with regard to
diversity and evolvability. We examine them in the next section.

3.2. Population level dynamics

No teaching method is perfect, and every culture needs to
deal with the fact that some fraction of the students will fail
to learn. While the tacit teaching model can achieve high
accuracy, not everyone is successful. If transmission is solely
a matter of learners who each become teachers to an indepen-
dent group of their own in turn, the practice will soon decay.

One solution to this problem is institutional: learners par-
ticipate in an educational situation, such as a classroom or
dojo or gym, or in more informal and complex mentorship
and feedback relationships that might emerge in a business
organization. In a toy model based on the simple classroom
case, learners in each generation agree on a consensus prac-
tice that is taught to the next. If there are 10 students, for
example, in our 30-facet model above, roughly seven of
them will learn the same practice. If consensus is simply a
matter of voting on which pattern (or, rather, kernel) will be
taught to the next generation, then error-free transmission
can be sustained over many generations. This is robust for
two reasons: because, on average, we expect the standard
practice to dominate, but also because the deviations are
often idiosyncratic. Even if the standard practice does not
obtain a majority, it will usually retain a plurality.

Not always, however. This is in part because idiosyncratic
fluctuations are not random: ‘bad habits’ tend to drive stu-
dents to the same, suboptimal—or at least, different—parts
of the solution space. This means that it is not that difficult
or rare for a non-standard practice to obtain a plurality.
When this does happen, two things follow. First, the initial,
standard, culture’s practice is lost. Second, it is replaced by
something that is often worse compared with the original.

Suboptimal solutions, in turn, are more difficult to learn
because there are more nearby solutions that are equally
good. A learner who deviates in one or two facets may find
that, rather than upset a fine balance, she has satisfied just
as many constraints as she did before. Now there is no
good signal to lead her back to the original pattern, and,
unless the teacher makes more interventions, transmission
will be unsuccessful.

Taken together, these effects predict that the cultural evol-
ution of tacit knowledge is bursty. Long periods of stability, in
which cultural practices change very little, are interspersed
with chaotic periods. These chaotic periods begin with a
long leap in the solution space, and the original tradition is
completely lost. Communities of practice in these chaotic
periods are then much worse at preserving their (new) tra-
ditions, and make long leaps in turn. This continues until a
new, sufficiently stable, practice is discovered. A longer
period of high-accuracy transmission commences, and the
cycle repeats.

This is shown, first, in figure 3, with a sample simulation of
seven learners conducting a majority vote. A vertical line
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Figure 3. The distribution of jumps in a sample transmission sequence of 1000 generations, showing how jumps from one practice to another tend to be con-
centrated in time. The x-axis labels the generation number; a vertical line indicates a jump from one practice to another. Lines are clustered in groups indicate
chaotic periods. Results of a simulation with 30 facets and four teaching nodes.

indicates a generation where the practice has switched. While
the first two jumps are isolated events, the third jump leads
to a chaotic cascade of jumps in the next 50 generations; similar
turbulent periods appear every few hundred generations. The
distribution of gaps between jumps is ‘heavy-tailed’, meaning
that the majority of jumps are followed, one or two steps
later, by another jump; once in a long while, however, these
rapid jumps are interrupted by many hundreds of generations
of stability. Standard statistical methods [63] show that the tail
of this distribution is a power law, which means that there is no
characteristic limit for how long this stability can last.

A final way to visualize this bursty behaviour is to track
the evolution of the practice itself. Practices are high-
dimensional objects; a 30-facet practice lies on one of the
vertices of a 30-dimensional hypercube. This is, of course,
impossible to visualize. However, we can use the fact that
stable practices are sparsely distributed to our advantage.
Since only a small fraction of the solution space corresponds
to stable practices, we can use a dimensionality-reduction
algorithm to map the shifts from generation to generation
onto the two-dimensional page.

This is shown in figure 4. Each blue circle represents a point
on the hypercube of tacit practices. The two-dimensional
layout, provided by the multi-dimensional scaling (MDS)
visualization algorithm, approximates Hamming distance: cir-
cles that are nearby each other on this plot have more facets set
to the same value. Circle size is proportional to stability; larger
circles indicate solutions that both satisfy more of the under-
lying constraints and are stable under perturbation; roughly
a half-dozen such practices can be found.

The yellow line shows a sample evolutionary trajectory
through this space. The simulated population begins in the
relatively stable and teachable practice A, which it maintains
for a long time. After a hundred generations or so, it makes a
long jump to practice B. Practice B is less teachable (it is rarely
transmitted accurately from teachers to learners), and the cul-
ture enters a period of instability, making additional long
jumps to practices near practice C, and spending tens of gen-
erations in the a hard-to-maintain cluster of practices near
practice D. Eventually the system returns to, and settles
down in, the highly stable practice C. Other practices (E, E
G, etc.) remain undiscovered by this culture even after
many thousands of generations.

For simplicity of presentation, our discussion has focused
on networks with 30 facets and with couplings between any
two facets drawn from a uniform distribution between one
and negative one (a ‘random network’ model). Simulations
of both larger and smaller networks, and networks with
different topologies, produce essentially identical qualitative
features, at both the population and the individual level
(see electronic supplementary material).

We find that larger networks can support more cultural
practices, and tacit teaching requires more interventions as

Figure 4. Exploration in cultural space, visualized in a sample simulation
with the same parameters as figure 3. While any particular practice is a
30-dimensional binary vector, an approximate visualization is possible with
the MDS algorithm. Circles correspond to different practices, with size pro-
portional to stability. The yellow line follows the trajectory of a simulated
culture, which begins in the practice labelled A, and wanders, in a character-
istically bursty fashion, to land, finally, in practice C.

the complexity of the practice grows; for networks between
10 and 100 nodes, we find that tacit teaching with majority
accuracy (i.e. at least half the time, a randomly chosen student
matches the practice exactly) requires interventions on
around 10% to 15% of the facets. This linear scaling is
preserved for a variety of different distributions of edge
weights.

Modelling the system of facet constraints as a randomly
connected network has limitations. In many situations, we
expect facets to organize themselves into roughly distinct
‘modules’” with tight interconnections within each module,
and fewer, more disorganized connections, between modules.
These modular organizations are expected under a range of
circumstances. For example, when the facets concern material
properties of the task, where spatial and temporal separations
can generate nested topologies, as might happen for practices
with clear stages of play (e.g. tennis). Or, when behavioural
facets include the relative positions of different parts of the
body, we expect there to be tighter constraints between
groups of muscles that connect to the same joints, as might
happen in dance. We also expect the emergence of modular-
ity under generic tinkering and bricolage processes, as
originally described by [48]; more recent work suggests
that, if the underlying constraints are built up by combining
and repurposing earlier practices, the resulting network will
have high levels of modularity [64]. Under the assumption
that each module has only two configurations, our results
now apply at the module level. To teach a practice with 30
modules, for example, we expect tacit teaching to require
interventions in (roughly) four of them.
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Modules may be more complex, meaning that they may
be able to support more than two internal configurations.
A simple information-theoretic argument suggests that this
will scale logarithmically in the number of additional inter-
ventions. If each module has N solutions, for example, then
the demands on tacit teaching increase, albeit slowly, by a
factor of log,N.

4. Discussion

Cultural evolution, as a field, often opts to ‘black box’ how
information is socially transmitted and learned [65]. Models
such as [66-68] give us great insights into cultural dynamics
at the population level. However, they have done so in part at
the cost of ignoring the complexity of the cognitive agents
who actually acquire and transmit culture.

Our model provides an explicit and quantitative account
of the relationship between teacher and student in the
commonly encountered case of tacit knowledge. It shows
how high-accuracy ‘tacit teaching’ is possible, even in the
case where both teacher and student lack conscious knowl-
edge of up to 90% of the dimension. A small amount of
guidance, well-presented, allows the majority of students to
‘lock in” an efficient, culturally widespread practice. This is
possible only when the features of underlying practice are
subject to specific constraints, echoing observation of skill
acquisition dynamic in ecological contexts [69,70].

Our results make empirical predictions for cognition at
the individual level. One key feature of tacit teaching is the
presence of an unusual and non-exponential distribution of
learning errors: when tacit teaching is in place, we expect
even diligent learners to, occasionally, learn something that
diverges significantly from the correct performance. Con-
versely, we expect to find a deficit of near misses: students
who are close to getting it, but miss only in one or two
aspects. More generally, as seen in figure 2, we expect a
characteristic pattern of error-making that looks very differ-
ent from a model where the teacher teaches everything, and
the student learns each piece independently. When most stu-
dents do extremely well, but a small fraction, with otherwise
equivalent abilities, do extremely poorly, it may be a sign that
tacit teaching is at play.

These results have, in turn, implications for cultural evol-
ution. They predict bursty, and sometimes very long-leap,

innovations, with a heavy-tailed power law distribution that
makes it possible for a practice to change without going
through a series of gradual mutations. These long leaps can
enable, potentially, rapid adaptation to new condition (e.g.
changes in the underlying constraint network). They come at
a cost, however: once a leap has been made, it is very difficult
to recover the prior practice, except by accident.

A cultural tradition is more than just a list of behavioural
features. It is enabled by how those features fit together into a
larger logic dictated by mental, material and environmental
constraints. (Knowledge with a tacit dimension is, further,
itself embedded in a socio-economic context which can
modulate how it is expressed [71], and factors like emotional
intelligence have been shown to positively impact the sharing
of tacit knowledge [72].)

We have presented a minimal model that allows us to
capture this higher-order logic, and to thereby go beyond
accounts of cultural evolution that focus on the acquisition
of individual traits considered in isolation. Attending to the
cognitive aspects of transmission reveals how these inter-
actions do more than channel culture: they make it possible
to accurately transmit it, with a teacher’s intervention serving
as a seed for the learner’s full practice. It also shows how this
mechanism can drive the dynamics and long-leap changes
that characterize the macroevolution of culture.

Data accessibility. Code associated with this work, including optimized C
Code that implements the Metropolis—-Hastings algorithm on spin
glass networks, and accompanying Ruby code that uses it to simulate
the tacit teaching process, can be found at https://github.com/
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