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Abstract: Racemization has a large impact upon the biological
properties of molecules but the chemical scope of compounds
with known rate constants for racemization in aqueous
conditions was hitherto limited. To address this remarkable
blind spot, we have measured the kinetics for racemization of
28 compounds using circular dichroism and 1H NMR spec-
troscopy. We show that rate constants for racemization
(measured by ourselves and others) correlate well with
deprotonation energies from quantum mechanical (QM) and
group contribution calculations. Such calculations thus provide
predictions of the second-order rate constants for general-base-
catalyzed racemization that are usefully accurate. When
applied to recent publications describing the stereoselective
synthesis of compounds of purported biological value, the
calculations reveal that racemization would be sufficiently fast
to render these expensive syntheses pointless.

Thalidomide racemizes in a matter of hours and yet it
remains a poster child for enantioselective synthesis which
would not have saved its victims.[1] The status quo in
enantioselective synthesis thus ignores the cruel blind spot
that we address in this paper: racemization.

Although necessary in dynamic kinetic resolution proto-
cols,[2, 3] racemization and epimerization can caus
e safe compounds to become toxic or lose efficacy,[4–11] lead
to misidentification of chiral compounds extracted from
natural sources,[12] etc. Ignoring racemization thus leads to
wasted material and human resources.

Racemization is a particular problem because its detec-
tion requires chiral analytical methods.[13, 14] Hence, few
reports disclose rate constants for racemization under aque-
ous conditions.[1, 15–20] Chiral centers with certain combinations

of substituents have been posited to be prone to general-base-
catalyzed racemization although with little supporting
data.[21–23]

We therefore classified stereogenic carbon atoms accord-
ing to their attached substituents. Each substituent is identi-
fied as one of sixty types,[24] which encompass more than
99.95 % of all such substituents in the GOSTAR database.[25]

The ten most frequently occurring substituents are listed in
Figure 1; the H required for general-base-catalyzed racemi-
zation is prominent.[24] Groups labelled * were selected for
experimental study.

Based on prevalence, earlier work,[21–23] and chemical
intuition, several compounds were selected for detailed
kinetic studies.[26–28] The rate constants for general-base-
catalyzed racemization were derived for a range of 11
arylglycine derivatives (1, 2 and 3), 12 hydantoins (4, 5 and
6) and 5 thiohydantoins (7 and 8). Briefly, at several buffer
concentrations, circular dichroism spectroscopy (CD) fol-
lowed the decrease in ellipticity and/or 1H NMR spectroscopy
the incorporation of D from deuterated buffers. The pseudo-
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Figure 1. The ten substituents appearing most frequently adjacent to
carbon stereogenic centers in the GOSTAR database. Alk =alkyl,
C = carbon-linked alkyl or aromatic group and X =any group.
* = selected for experimental study.
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first-order rate constants for these processes were corrected
for hydrolysis side reactions if required.[24] Plotting the first-
order rate constants for racemization or H/D exchange
against the concentration of the basic component of the
buffer yielded the second-order rate constants for general-
base-catalyzed racemization. These were corrected for reac-
tion temperature and substrate protonation state.[24]

For predictive modeling, a mechanistic understanding is
beneficial. Racemization of the stereogenic centers studied
here could occur by either an SE1 or an SE2 mechanism. For
hydantoins (e.g. 4–6) both the SE1 and SE2 mechanisms have
been proposed previously,[18,29] but we have shown that these
reactions occur via the SE1 mechanism.[30] Further, Hammett
plots for 1a-h show a positive slope and better correlation
with s@ than s suggesting that a negative charge is formed on
the stereogenic center in the rate-determining step of the
racemization reaction, in line with an SE1 mechanism.[24]

The experimental data were correlated with deprotona-
tion energies (DDG(R1,R2,R3), Scheme 1) from B3LYP/6–
31 + G** calculations incorporating aqueous solvation using
the PCM protocol.[24] Second-order rate constants for general-
base-catalyzed racemization, kgb, correlate well with DDG-
(R1,R2,R3) for 1–3 and 4–8.[24]

The set of compounds was supplemented with literature
data for 9-16,[24] leading to the relationship with DDG-
(R1,R2,R3) shown at the top of Figure 2. The line of best fit
has equation log(kgb) =@0.20 X DDG(R1,R2,R3) @14.28, with
an R2 value of 0.68 and root mean square error of 0.61, that is,
reproducing rate constants to within a factor of approximately
4. Clopidogrel is excluded from this analysis due to large
experimental uncertainties.[24]

The computational procedure was extended to include
a group-contribution approach that is amenable to rapid
analysis of chiral compounds and is described with examples
in section S5. A simple representative (R) of each substituent
type was selected and DDG(R1,R2,R3) computed with R1 = R

and R2 = R3 = H. These DDG(R,H,H) values indicate how
much R stabilizes an adjacent anion. The sum DDG-
(R1,H,H) + DDG(R2,H,H) + DDG(R3,H,H), for the three
non-H substituents around a chiral carbon atom is referred
to here as SDDG. When two or three of the groups provide
stabilization through charge delocalization, a cross-conjuga-
tion correction is applied to reflect the reduced ability of the
second group to stabilize the anion caused by the presence of
the first.[24]

Scheme 1.

Figure 2. Second-order rate constants for racemization under aqueous
general-base-catalyzed conditions plotted against: computed DDG-
(R1,R2,R3) values (top) and SDDG values (bottom). Clopidogrel (16) is
excluded from the line.

Angewandte
ChemieCommunications

983Angew. Chem. Int. Ed. 2018, 57, 982 –985 T 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

http://www.angewandte.org


The 35 compounds studied fall into fourteen chiral carbon
atom types (A–N, Table 1) that have one hydrogen at-
tached.[1, 15–19,31] The second-order rate constants for general-
base-catalyzed racemization are plotted against SDDG at the
bottom of Figure 2. When a chiral center type is represented
by more than one compound, the mean value of log(kgb) for
all representatives was used and the full range of values is
shown as a vertical line. This prevents any center type from
dominating the linear fit.

For the phenylglycine esters (A), substituent effects can
cause up to a log unit variation from the line of best fit. This is
likely to be representative of general substituent effects.[24]

Grouping five-membered aromatic rings together (C) masks
variation of 1.6 log units, likely reflecting the more direct
influence of heteroatoms in aromatic rings. A relatively
diverse set of alkyl substituents in the 5-position on a hydan-
toin ring (group D) or thiohydantoin (F) causes little variation
in rate constants for racemization. In general, variation
caused by substitution or structural variation within classes
is less than two orders of magnitude and typically less than
one order of magnitude.

At the bottom of Figure 2, two subgroups are apparent:
those involving a cyclic anion with the potential to be
aromatic and those that do not.
For the non-aromatic set (shown in
red) a line of best fit with equation
log(kgb) =@0.11 X SDDG @9.81
was found (R2 = 0.78 and
RMSE = 0.40 log units) and for
the aromatic anion set (shown in
blue) the line of best fit has equa-
tion log(kgb) =@0.26 X SDDG
@16.95 (R2 = 0.92 and RMSE =

0.39 log units). The RMSE for all compounds computed
individually is 0.64 for non-aromatic anions (excluding
clopidogrel) and 0.37 for aromatic anions, that is, predictions
are typically within 5-fold. Although not a perfect guide, the
group contribution approach provides an easily applied,
useful and rapid filtering that can even be used for very
large databases.

For the particular example of chiral pharmaceuticals, our
analysis can be applied to predict half-lives of racemization in
physiological conditions. The rate constants for racemization
of thalidomide at different phosphate buffer concentrations
compared to that in blood suggest that, in terms of availability
of catalytically active general bases, blood is approximately
equivalent to a 0.15m phosphate buffer at pH 7.2. Therefore,
with kgb predicted by the QM or group contribution method,
the required half-lives can be predicted.[1]

A comprehensive workflow has now arisen: rapid analysis
with a group contribution based method can trigger quantum
mechanical calculations, which in turn can trigger an exper-
imental protocol (Figure 3). Compounds at high risk of
racemization can be avoided and racemization risk can be
suppressed by design.

To illustrate the degree to which racemization in aqueous
conditions is an overlooked issue, we have surveyed recent
editions of leading chemistry journals, using our knowledge of
the group contributions, to identify several articles envisaging
biological applications. This was not an exhaustive search.
Compounds described were subject to group contribution
calculations. It is disappointing to reveal (Table 2) that
liability to racemize under physiological conditions is more
commonplace than would be possible if it were properly
understood and controlled, as many chemists seem to believe.

In summary, we describe an approach to quantitatively
predict the racemization risk that is generally applicable and
allows synthetic chemists to avoid racemization-prone targets
or understand erosion of the enantiomeric excess (ee). The
approach allows quantitative assessment of the risk of chiral
compounds of turning into racemic mixtures when used as
pharmaceuticals or for other purposes.[36]
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Table 1: Stereogenic center types.

Center
type

Non-H substituents Representative
compounds
[number]

A phenyl, reversed secondary amide, ester 1a–h [8]
B phenyl, reversed secondary amide, primary

amide
2 [1]

C 5-membered aromatic, reversed
secondary amide, ester

3 [2]

D/D’’ alkyl, reversed secondary amide, acidic
secondary amide

D =4a–g,
5a–c + f [11]
D’’ = 14 [1]

E phenyl, reversed secondary amide, acidic
secondary amide

6 [1]

F alkyl, aminothiooxo imide, acidic secondary
amide

7a–d [4]

G alkyl, reversed secondary thioamide, acidic
secondary amide

8 [1]

H ketone, dialkyl tertiary amine, alkyl 9 [1]
I ketone, primary amine, alkyl 10 [1]
J carboxylic acid, 5-membered

aromatic, alkyl
11 [1]

K thioether, alkyl, acidic secondary amide 12 [1]
L imide, alkyl, acidic secondary amide 13 [1]
M phenyl, phenyl, 5-membered aromatic 15 [1]
N ester, dialkyl tertiary amine, phenyl 16 [1]

Figure 3. Workflow for identifying compounds at risk of racemization, in parentheses is the typical
time taken to process one compound at each step.
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Table 2: Examples of potentially pointless stereoselective syntheses
from recent literature.

Reference Representative
compound

SDDG
[kcal mol@1]

Predicted
percentage[a]

[32] @48.8 28 %

[33] @50.7 40 %

[34] @54.1 70 %

[35] @46.9 19 %

[a] Racemized within 24 hours.
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