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The panzootic of H5N1 influenza in birds has raised concerns

that the virus will mutate to spread more readily in people,

leading to a human pandemic. Mathematical models have been

used to interpret past pandemics and outbreaks, and to thus

model possible future pandemic scenarios and interventions. We

review historical influenza outbreak and transmission data, and

discuss the way in which modellers have used such sources to

inform model structure and assumptions. We suggest that urban

attack rates in the 1918–1919 pandemic were constrained by prior

immunity, that R0 for influenza is higher than often assumed, and

that control of any future pandemic could be difficult in the

absence of significant prior immunity. In future, modelling

assumptions, parameter estimates and conclusions should be

tested against as many relevant data sets as possible. To this end,

we encourage researchers to access FluWeb, an on-line influenza

database of historical pandemics and outbreaks.
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Introduction

Recent outbreaks of H5N1 influenza among domesticated

poultry in South-East Asia have had unprecedented econo-

mic impacts.1,2 Seasonal migration of infected wild birds

and trade in live poultry3 have spread H5N1 viruses

throughout Asia, Europe and Africa. Direct transmission of

this avian virus to humans through contact with infected

live birds, poultry products or excreta had caused 154 con-

firmed human deaths by November 2006,4 with updates

posted on the World Health Organization (WHO) website

since that time (http://www.who.int/csr/disease/avian_

influenza/updates/en/index.html). Earlier reports of suspec-

ted secondary infection in family members1,5 have been

supported by recent evidence of human-to-human trans-

mission of an H5N1 mutant within a household.6 In the

absence of prior immunity, the emergence of novel virus

that is more readily transmissible could cause a human pan-

demic to rival or surpass the pandemics of 1889–1891,7

1918–1919 (H1N1), 1957 (H2N2) and 1968 (H3N2).1 Pub-

lic health bodies and governments have sought urgent

advice in planning how to respond to this new threat.8

Why bother with mathematical models?
The pandemic of 1918–1919 was characterized by high

attack rates, several waves of infection and high mortality

in young adults. Such observations can be better under-

stood by fitting explanatory models to the data to estimate

R0 and other parameters governing influenza spread.9,10

These parameter estimates can then be used to simulate

model scenarios to examine the possible consequences of

proposed outbreak control strategies.11

In an outbreak in a fully susceptible population, the

average number of secondary cases infected by a primary

case is denoted by the reproduction number, R0, which

depends on the duration of the infectious period (1/c), and

a transmission parameter (b), influenced by viral and host

factors and contact opportunities. In its simplest form:

R0 ¼
b
c

R0 can be estimated from the final attack rate if the popu-

lation was fully susceptible at the outset. However, in many

situations, populations have pre-existing immunity, and a

proportion of exposures leads to subclinical infections,
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reducing the apparent attack rate. The proportion immune

(x) within a particular population determines the effective

reproductive number (R) by the relationship:

R ¼ ð1� xÞR0

R0 provides a worst-case scenario for the attack rate. Fur-

thermore, in combination with the mean generation time

(serial interval between cases) and the proportion suscept-

ible, R0 determines the rate of spread of an outbreak. In

favourable circumstances, R0 can be estimated from out-

break data, with parallel inferences about levels of subclini-

cal infection and prior immunity.

This article reviews aspects of influenza biology and

epidemiological findings from past influenza epidemics. It

provides insight into the nature of influenza infection in

individuals, and the dissemination of virus in households,

schools and populations. We highlight the importance of

susceptibility, pre-existing immunity and subclinical infec-

tion in modifying the apparent attack rate and spread of

influenza, and suggest that mathematical models of influ-

enza transmission would be improved if they could

account more adequately for such factors. Finally, we

review the potential utility of interventions such as social

distancing, antivirals and immunization to prevent or

limit outbreaks.

Biology and epidemiology of influenza
infections

Influenza viruses probably evolved in wild waterfowl, and

then spread to other animals, including humans.12 In order

to successfully cross the species barrier, mutant strains had

to acquire the capability to bind the dominant receptor in

the human respiratory epithelium, which differs from that

in birds.12–14 Mutation of the virus sufficient to allow such

binding could produce an H5N1 strain able to spread more

effectively from person to person, potentially triggering a

new pandemic.15

Inter-pandemic influenza affects 5–30% of the popula-

tion each winter in temperate climes. Attack rates fall with

age, presumably because of incremental immunity follow-

ing repeated exposures, but rise again in the elderly.

Mortality rates are generally low, but higher at extremes of

age. As inter-pandemic viruses circulate in partially

immune populations, haemagluttinin (HA) antigens mutate

quickly to escape antibody directed against earlier viruses, a

phenomenon known as ‘antigenic drift’.12

T-cell immunity is also important; cytotoxic T-cells kill

virus-infected epithelial cells to clear existing infections. If

protective antibody is minimal, as with a new pandemic

strain, many epithelial cells may become infected, and a

hyperactive cytotoxic response against these cells can cause

lung destruction and death. This scenario could explain the

higher mortality for young adults during the 1918–1919

pandemic.12,16

Immunity and susceptibility to infection
Some hosts are more susceptible to influenza because they

have little or no acquired immunity or because of intrinsic

factors affecting innate immunity.12,17 Isolated populations

with no recent influenza exposure are particularly vulner-

able, as with Native Americans and Pacific Islanders during

the 1918–1919 pandemic.18,19 Likewise, on Tristan da

Cunha, where influenza had been absent for many years,

the first arrival of H3N2 virus by ship from Cape Town in

1970 led to 96% of persons falling ill, with repeat attacks

in a significant minority.20

Consistent with the premise of short-lived protection

through past exposures to inter-pandemic influenza, much

lower attack rates were reported in urbanized populations

during the 1918–1919, 1957 and 1968 influenza pandemics.

In Cleveland in 1957, 47% of household members had

serologically confirmed influenza during a 10-week period.

Disease incidence in children aged 10–14 years was three

times that in adults, in keeping with their relative naivety

to influenza.21,22 In contrast, more uniform attack rates

were observed up to 50 years of age in the 1968 H3N2

pandemic, with relative sparing of people born before 1918

suggesting that exposure to related viral antigens more than

50 years earlier had conferred lasting protection.23–26

In the Houston family study of 1976, high titres of sub-

type-specific haemagglutination-inhibiting (HI) antibody

titres protected against H3N2 influenza. Breakthrough

infections did occur in those with high titres, but were usu-

ally milder.27 In the Seattle cohort study from 1975 to

1979, HI antibody thresholds conferring protection differed

for the three strains circulating over the period: A/H3N2,

A/H1N1 and B.28,29 Such variation is likely due to differ-

ences in the immunogenicity of HA antigens.30 Further,

attack rates in Seattle children were double those seen in

adults for a given HI titre,29 suggesting the importance of

unmeasured humoral and cellular immunity.22,31,32 Broadly

reactive ‘recall’ immune responses, seen within days of vac-

cination,33 could explain the rarity of H1N1 infection in

Seattle adults with low HI titres and a cohort history of

exposure to a related strain 26 years earlier.28

Models incorporating immunity
Spicer and Lawrence modelled influenza in Greater London

from 30 years of mortality data. Exposure to successive

drift mutants was assumed to reduce the susceptible pool,

which was replenished by births and the emergence of anti-

genically novel strains.34 In a model for South-East Asia,

Ferguson et al. assumed that 27% of rural households

would be resistant to a novel strain of influenza as a result

of recent contact with related antigens.10 Other models
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allow the risk of transmission,11,35 or progression to disease

given acquisition,36,37 to depend on age, indirectly incor-

porating immune protection. Longini et al. explicitly calcu-

lated the influence of ‘high’ or ‘low’ antibody titres on

influenza risk in children and adults from epidemic data,

but could not refine their estimates.38

The simplest influenza models assume that a single epi-

sode of infection confers lifelong immunity. This cannot be

true, especially for children, who can experience three or four

clinical episodes in successive seasons.28 Ferguson et al. mod-

elled the combined effects of waning immunity and antigenic

drift for inter-pandemic virus by assuming that a single

exposure to influenza protected against related strains for

5 years, after which individuals were again fully susceptible.

Less robust immune responses in the very young and elderly

were modelled by shortening this duration of protection.37

In the absence of priming, immune responses to novel

antigens can be insufficient to confer short-term protection,

even in adults. This could explain the second wave of infec-

tions observed on Tristan da Cunha, in which 33% of

islanders experienced a second (usually milder) attack

within a month of the initial outbreak.20 Repeat infections

after a short interval have been reported in other outbreaks,

as in the naval apprentice school at Greenwich in 1924

(Figure 1)39 and the summer, autumn and winter waves of

the 1918–1919 pandemic in England.19

Multiple-wave data from Tristan da Cunha and from the

1918–1919 pandemic in Royal Air Force camps in the UK

(Figure 2) have been modelled to estimate R0 as well as

parameters for prior immunity, waning of immunity/anti-

genic drift, and subclinical infection, with consistent results

(J. Mathews, personal communication).

Infectivity, transmission and subclinical infection
After experimental inoculation of adults with influenza, virus

titres in nasal lavage fluid rise at 24 hours, peak with fever

onset at 48 hours, and then decline over the next 5 days.40,41

In children with natural infections, viral titres continue to

rise 24–48 hours after symptom onset.42 In one community-

based study, 8Æ3% of children were still shedding influenza

virus into the second week of illness.43 Elderly and immuno-

compromised patients can shed virus for weeks or even

months.44 Conversely, of cases detected by seroconversion

during epidemic influenza seasons, perhaps a third are

asymptomatic29,45 and of uncertain infectious potential.

Viral shedding is an imperfect guide to the risk of trans-

mission. During influenza outbreaks, some infected indi-

viduals never infect anyone else, whereas in exceptional

circumstances as many as 40 secondary cases have been

reported.46 R0 thus represents a value averaged over differ-

ent hosts and environments.47 Experimental studies of

influenza acquisition in humans48 and animals49 cannot

capture subtle effects such as confinement on aeroplanes,46

seasonal climatic variation50 or altered conditions during

wars.51

Epidemiological and household studies can provide in-

sights into host factors influencing infectiousness. Pre-

school and school age children are more likely than other

infected household members to produce secondary cases

among contacts,52 a phenomenon attributed to density

rather than to the duration of shedding in modelling analy-

ses.53 Accordingly, influenza models incorporating age

structure36,54 do not explicitly allow for longer infectious

periods in children. Although asymptomatic individuals are

unlikely to be highly infectious, serological evidence of ‘off

season’ transmission in families has been reported.29 Mod-

els that allow for reduced infectiousness of asymptomatic

cases have halved the infectious period55 or lowered the

probability of transmission.10,56 Whether or not ‘severe’

cases shed more virus and are thus more infectious is ques-

tionable, as the host immune response plays a significant

role in pathogenicity.16,57,58

Presymptomatic transmission
Viral shedding studies suggest that transmission could peak

soon after the onset of illness in the index case. Ferguson

et al.37 and Fraser et al.59 estimated that 30–50% of trans-

mission occurred before symptom onset, assuming that

illness would result in withdrawal to home. Some models

incorporating household structure extend this idea, allow-

1
DAY OF EPIDEMIC

5 10 15 20 25

40 NEW BOYS JOINED
23rd DAY OF EPIDEMIC 2nd BATCH OF 40 NEW BOYS

EACH SQUARE REPRESENTS AN INFLUENZA PATIENT
= OLD BOY 1st ATTACK = OLD BOY 2nd ATTÀCK

= NEW BOY 1st BATCH = NEW BOY 2nd BATCH

30 35 40 45 50 55 60 65 68

Figure 1. The 1924 influenza epidemic at the Royal Naval School, Greenwich. The introduction of new classes of (susceptible) students led to

recrudescence of the outbreak with both ‘new boys’ and ‘old boys’ affected.39
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ing continued exposure of the index case to family mem-

bers while reducing community spread.36,56 This assump-

tion has significant consequences for outbreak control,

which will be more difficult if most transmission occurs

before index cases can be identified.59

Infectious period, serial interval and latent period
Observational studies of primary and secondary infections

in households provide information about serial interval

between cases. A mode of 2 days between the onset of

symptoms in successively infected household members was

reported by medical officers during pandemics in 18907

and 1918–1919.19 The mean serial interval for Kelley’s

Island households in 1920 was 2Æ9 days, with a mode of

2 days (Figure 3).60

Later household studies during the 1957 pandemic in

Cleveland and the 1968 pandemic in Kansas reported med-

ian serial intervals of 361 and 8 days23 respectively. How-

ever, a mode of 2 days was again seen in Kansas,23 and in

subsequent studies of interpandemic influenza,52 showing

that the median is sensitive to censoring of the observation

period. The average serial interval between cases could be

longer for transmissions occurring in the community, if

there is continuing access to susceptibles.

Elveback et al.36 and Longini et al.35,56,62 separate latent

(1Æ9 days) and infectious (4Æ1 days) phases of influenza

infection, with no transmission during the latent period.56

Ferguson et al. allow for a similar mean latent phase of

1Æ48 days in their individual-based models, but shorten the

duration of peak infectiousness to give a serial interval of

2Æ6 days.10,11 More recent work from the Longini group

assumed a slightly longer generation time of 3Æ5 days.63

Assumptions about mixing

Opportunities for disease transmission differ by social situ-

ation, and location, as seen in the Kelley’s island outbreak

of 1920 (Figure 4).60

Hope-Simpson estimated a fourfold increase in influenza

incidence among general practice patients exposed to a

household case.24 Children typically experience higher age-

specific seasonal influenza attack rates than adults, often

acquiring the infection from peers in day care centres, kin-

dergartens and day schools.25 For this reason they more

frequently introduce illness into the family,27,29 although in

some previous pandemics an adult was as likely to be the

household index case as was a child.23,64 Family size and

measures of crowding can further influence influenza

risk.27,60,64 Other residential settings in which large popula-

tions of susceptibles may become rapidly infected include

boarding schools19,65 and aged care homes.66,67

Indirect evidence about the role of social mixing in dis-

ease transmission is provided by the natural history of the

1919 influenza pandemic in Sydney. Following diagnosis of

the first cases in late January, government acted to limit

spread by closing institutions and meeting places and by

requiring masks to be worn in public. Incident cases

declined by mid-February, and restrictions were then
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Figure 2. Incidence of influenza cases in Royal Air Force camps (black columns) and the city of Copenhagen (white columns) during the 1918–1919

pandemic.19 Time-line units are in weeks measured from the maximum of the initial peak. Both curves display multiple waves, consistent with

hypotheses of waning immunity and/or antigenic drift. De-mobilization at the conclusion of World War I could have prevented the third wave, visible

for Copenhagen, from being registered in the Air Force camps.
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removed. A second epidemic wave followed in early March,

after which regulations were reimposed.68 Records from

1919 also reveal higher infection rates in occupations invol-

ving travel and frequent contact with the public.68

Compartmental models often stratify individuals by age

to help capture the heterogeneity of contact opportunities

in populations.69 Ferguson et al. employ this method to

characterize close mixing in schools and aged care institu-

tions.37 Longini et al. developed an individual-based model

of a ‘typical’ American population36 with 1000–2000 people

in households of different sizes and age structures, with

some attending day care centres and schools.62 The prob-

ability of acquiring infections from the community has

been estimated from epidemiological data,70 with parame-

ters refined to incorporate the influence of age54 and prior

immunity.38 Analogous models for influenza spread in

rural South-East Asia10,35 and the developed world11,63 have

characterized community mixing patterns in a range of

social settings.35 Network type models consider explicit

interactions between discrete nodes, with contact probabili-

ties related to social rather than geographical distance.71,72

Other models have simulated spread within and between

subpopulations to estimate the probability of local extinc-

tion of an outbreak, and subsequent reintroduction.73,74

Incorporation of geographical distance and travel informa-

tion has allowed modelling of the effects of travel on regio-

nal,75 national76 and international76 influenza spread.

Modelling interventions

We discuss modelling approaches to three public health

strategies that can limit influenza transmission: social dis-

tancing, use of antivirals and immunization.

Social distancing
Social distancing encompasses measures that limit person-

to-person spread of infection. In the 1918–1919 pandemic,

stringent quarantine of the island populations of American

Samoa and Australia was of benefit,18,19 although unlikely

to be practicable in our age of international air travel.11,77

Restrictions on social movement within communities in

1919 also appeared to limit disease spread.68 A caveat is

that self-imposed behavioural changes can influence the

apparent efficacy of government interventions during any

pandemic.10,63

The effects of school closures on community-wide influ-

enza transmission are not well defined. During the 1920

influenza epidemic on Kelley’s island, Ohio, school contacts

were found to be important in disease spread. Further, a

decline in incidence followed school closure (Figure 5).60

More recently, a 30% reduction in paediatric visits to

healthcare providers coincided with a 2-week teachers’

strike during the epidemic influenza season in Israel.78 His-

torically, the likely benefit of closing schools was thought

to depend on the household living conditions to which

children would be returned.19 Accordingly, models explor-

ing this intervention are sensitive to assumptions about

age-specific transmission rates in the school compared with

rates in the home.11,63

Transmission from infected individuals can be reduced

by institutional or household quarantine. Household-based

models of this strategy show a fall in effective reproduction

rate, contingent upon the timeliness of tracing, the propor-

tion of cases and contacts identified and their compli-

ance.11,79 Infection control measures, including hand

hygiene and personal protective equipment, can also reduce

the individual risk of respiratory infections.80,81 Although

aerosol spread of influenza can occur,46 its importance, rel-

ative to droplet infection, is still controversial, with impli-

cations for the standard of protective mask needed to

reduce exposure risk.82,83 Importantly, experience of the

recent SARS outbreak has shown that well co-ordinated

institutional responses can protect healthcare workers far

more than would be predicted from the additive effects of

individual measures.81
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Figure 3. Distribution of the serial interval during the 1920 influenza

epidemic on Kelleys Island, Ohio, USA. Interval taken to be the time in

days between the first and subsequent cases in a household, assuming

that the first case is the source of infection for other household cases.60
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Antivirals
The neuraminidase inhibitors (NAIs) zanamivir and osel-

tamivir antagonize the action of neuraminidase (NA),

thereby impairing release of virions from host cells.84

Although effective in prophylaxis and in reducing the

severity and duration of symptoms in interpandemic influ-

enza, the use of these drugs has produced little benefit in

H5N1 influenza,85 possibly because of treatment delay,85

which reduces efficacy,86 or higher viral loads.87

Data from clinical trials with interpandemic influenza

show that NAI treatment within 48 hours of symptom

onset in virologically confirmed influenza reduces viral

shedding by 40–70%.85 Effects begin within 24 hours,88

with total suppression of virus achievable by day 2–3 of ill-

ness.89 NAIs have less impact on shedding in children,90

but a 1-day reduction in symptom duration is achievable

regardless of age.91,92 Prophylaxis with NAIs can reduce the

risk of infection in household contacts, measured by sero-

conversion or viral isolation, over and above treatment of

the index case,93 with efficacy of 60–80%.85 Breakthrough

cases on prophylaxis are less symptomatic.93

Published models of scenarios using antivirals to limit

the spread of pandemic influenza have used estimates of

prophylactic efficacy based on such data.10,11,55,56,63 The

maximal achievable reduction in infectiousness as a result

of treatment has been estimated at 28%.10 Models allow

exploration of a range of targeted scenarios for antiviral

use, from treatment of cases and household contacts,11 to

prophylaxis of institutions or geographical regions where

disease has been identified.10,35,63 The importance of early

case detection is paramount,11 with the size of the antiviral

stockpile as another major constraint. In the containment

phase of a pandemic, an aggressive combined approach to

treatment and prophylaxis of incident cases represents opti-

mal use of a limited resource.94
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Figure 4. Map showing the location of

influenza cases on Kelleys Island, Ohio, USA,

during the 1920 epidemic.60 In this small

population, relatively isolated from the

outside world, it was possible to reconstruct

likely networks and hubs of disease

transmission. Paths and arrows indicate a

known contact between a first case in a

family and a previous case. Note the large

number of first cases having their only known

exposure at the island’s school (indicated).
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Figure 5. Daily incidence of influenza cases on Kelleys Island, Ohio, USA, during the 1920 epidemic for (1) cases occurring in families having school

attendees and (2) cases occurring in families having no schoolchildren. The peak incidence for (1) occurs 3 days before the peak for (2) showing

the effect of mixing in school on earlier transmission to households. The island’s school was closed on 31 January.60
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Influenza virus resistance to oseltamivir is of potential

concern,95 but at present can be demonstrated in less than

0.5% of strains worldwide.96 Mutants arising in vitro can

have mutations in both HA and NA genes,97 whereas those

from treated immunocompetent patients show single muta-

tions in the NA region.98 Transmissibility of most resistant

strains is greatly reduced,99 but exceptions occur,49 leaving

no room for complacency.100 Nine of fifty children treated

with oseltamivir carried resistant strains within 4 days, with

persistent shedding of both resistant and wild-type virus to

day 7,97 possibly related to the high viral loads observed in

childhood.101 The rarity of clinical zanamivir resistance102

may relate to the poor in vitro viability of strains with this

mutation.103

Models exploring the population impact of antiviral

resistance confirm that the transmissibility of resistant

strains, relative to wild type, and the rate of emergence of

such strains are most important as determinants of out-

come.37 Intriguingly, a high rate of production of poorly

transmissible mutants could aid, rather than hinder, out-

break control (J. McCaw, personal communication). Mod-

els comparing the likely impact of treatment or prophylaxis

on the emergence of drug resistance are critically depend-

ent on underlying assumptions. If as much as half of all

transmission occurs before case detection, prophylaxis-

based strategies favour selection of mutant strains,37

whereas if transmission continues for several days after case

detection, treatment has a greater impact on resistance pro-

file.55

A potential concern is that antiviral agents could blunt

the immune response to influenza, leaving treated cases

susceptible.85,104 Recurrent influenza infection has been

reported in one small paediatric case series,105 but there is

no consistent evidence from adult studies to give cause for

wider concern.106,107 Re-infection has also been observed in

untreated children, possibly because of immunological

naivety or immaturity.108 Furthermore, adult clinical trials

of antiviral agents consistently show that virologically con-

firmed cases are prevented more effectively than serologi-

cally confirmed cases,89,106,109 indicating sufficient exposure

for seroconversion without illness.

Pandemic vaccines
Inactivated split virion vaccines based on recent H5N1 iso-

lates from humans are currently under phase I trial. As H5

is novel to humans, high concentrations of antigen,110,111

incorporation of adjuvants112 and booster doses110–112 have

been necessary to achieve immunogenicity. Some monova-

lent vaccines against novel HA antigens have maximized

yield by using reactogenic whole virus formulations.113,114

Candidate H5 vaccines have afforded protection in neutral-

ization assays115 and animal models against variant H5

viruses.116,117 Such ‘best guess’ vaccines can be stockpiled

for possible use in priming critical subpopulations such as

front line healthcare workers.115 Nevertheless, if a pandemic

occurs there will likely be substantial delays in production

and supply shortages of strain-specific vaccines due to lim-

ited global manufacturing capacity.118

There is uncertainty about the best correlates of protec-

tion for interpandemic influenza vaccines,119 let alone for a

novel strain. Early observations showed that high titre

(1:30–1:40) HI antibody is predictive of clinical protec-

tion,17,120,121 although this measure is subject to consider-

able inter-laboratory variation.122 For licensure in the EU,

The Committee for Proprietary Medicinal Products

(CPMP) requires documentation of HI antibody responses

in terms of: post vaccine seroprotection rate (HI titre

‡1:40), mean fold increase and response, and seroconver-

sion rate.123 Interpretation is complicated, as fold rises will

be smaller for individuals with pre-existing immunity,

although protection will often be improved.124 Reduced

protection against heterologous influenza strains has been

shown in challenge studies,125,126 which could explain why

some immunogenic vaccines perform poorly in the field.127

Heterosubtypic vaccines providing broad protection against

different sub-types offer theoretical advantages, but their

efficacy is yet to be demonstrated.128

Strategic vaccine use
An efficient use of pandemic influenza vaccines would be

to control transmission through herd immunity. Immun-

ization of pre-school children in day care is known to sig-

nificantly protect their families.129 A more modest

reduction in respiratory infections is seen among parents of

vaccinated school age children,130 and in teachers and class-

mates where institutional coverage is high.131 In Tecumseh,

Michigan, vaccination of schoolchildren prior to the influ-

enza season in 1968–1969 prevented an epidemic similar to

that in the comparison city of Adrian.132 More dramatic-

ally, when mandatory influenza vaccination of Japanese

schoolchildren was stopped in 1994 there was a sharp

increase in pneumonia and influenza mortality in the

elderly.133 Likewise, immunization of carers in aged care

institutions predicts a reduction in all-cause mortality

among elderly residents in the UK66,134 and Japan.67

In the simplest models, immunization moves all vaccin-

ated susceptibles to the removed/recovered class.72 How-

ever, vaccination is more likely to provide incomplete

protection for most of those immunized. This critical

distinction determines not only the threshold size of an

epidemic,135 but the optimal vaccine coverage required for

disease control.136 Vaccine effects can be characterized

further within subgroups of interest identified from clinical

trials.137 In addition, the time to maximal immune

response can be a critical consideration in outbreak

settings.36 As most models assume that vaccination reduces
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both acquisition rate in those exposed, and viral shedding

in established cases, it follows that vaccines will be useful

even when efficacy is partial.35,37,63,138

Several models have explored the theoretical effectiveness

of targeted immunization for pandemic control, showing

optimal benefit from vaccinating children of school63,138

and preschool age.137 Britton and Becker concluded that

influenza could be controlled most efficiently by targeting

immunization to families with three or more members.139

Such model conclusions depend upon underlying assump-

tions about population susceptibility and transmission in

heterogeneous circumstances. For example, using assump-

tions based on age-specific attack profiles from the 1957

and 1968 pandemics, Patel et al. obtained two very differ-

ent estimates for the optimal proportional distribution by

age group of a limited number of vaccine doses.140

Conclusions

Historical and contemporary data show that the transmissi-

bility and pathogenicity of influenza viruses depend on

complex interactions with host populations. The emergence

of H5N1 as a threat to the poultry industry has undoubt-

edly been influenced by a very rapid increase in numbers

of caged birds in developing countries. Likewise, the risk of

a new human pandemic can be linked to both the emer-

gence of avian influenza, and to the large numbers of peo-

ple on the planet, any one of whom could be host to

viruses undergoing a pandemic mutation or recombination

event.

Host immunity, which plays a crucial role, has clear spe-

cificity for influenza sub-type and strain. However, cross-

reactive immune responses are needed to explain some oth-

erwise anomalous observations.21,22 In particular, there is

reason to believe that clinical attack rates for influenza are

not often constrained by low values for R0, but rather by

pre-existing immunity, and by subclinical infections which

can immunize without causing symptoms.

With such complex interactions, making precise predic-

tions about age-specific attack rates, morbidity and mortal-

ity due to a novel pandemic strain is near impossible.

Nevertheless, mathematical models do provide a useful

framework for pandemic scenarios to explore the potential

benefit of public health interventions. As all models have to

oversimplify complex biological systems, they should be

interpreted with great caution. In particular, models are

exquisitely sensitive to underlying assumptions about sus-

ceptibility, subpopulations and modes of transmission – all

of which must be inferred, rather than being quantified by

direct observation.

Model assumptions and predictions should be tested

against as many real-world observations as possible to test

the sensitivity of the model to different contexts. By valid-

ating model outputs against multiple data sources, investi-

gators can tease out which of the parameters determining

disease spread are more likely to vary between contexts,

and which are relatively constant. To encourage such work,

and to make relevant data sets more easily accessible, we

have developed an on-line publicly searchable archive (Flu-

Web: http://influenza.sph.unimelb.edu.au), which includes

rare historical documents from the 1889–1891 and 1918–

1919 pandemics giving individual and group level data on

influenza morbidity and mortality. By maximizing our use

of historical evidence, we hope to more confidently predict

the future.
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