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To identify putative relations between different genetic factors in the human genome in the development of common complex
disease, we mapped the genetic data to an ensemble of spin chains and analysed the data as a quantum system. Each SNP is
considered as a spin with three states corresponding to possible genotypes. The combined genotype represents a multispin state,
described by the product of individual-spin states. Each person is characterized by a single genetic vector (GV) and individuals
with identical GVs comprise the GV group. This consolidation of genotypes into GVs provides integration of multiple genetic
variants for a single statistical test and excludes ambiguity of biological interpretation known for allele and haplotype associations.
We analyzed two independent cohorts, with 2633 rheumatoid arthritis cases and 2108 healthy controls, and data for 6 SNPs from
the HTR2A locus plus shared epitope allele. We found that GVs based on selected markers are highly informative and overlap
for 98.3% of the healthy population between two cohorts. Interestingly, some of the GV groups contain either only controls or
only cases, thus demonstrating extreme susceptibility or protection features. By using this new approach we confirmed previously
detected univariate associations and demonstrated themost efficient selection of SNPs for combined analyses for functional studies.

1. Introduction

The amount of data from genetic studies is growing and its
structure is becoming more complex due to the rapid devel-
opment of new genotyping and sequencing techniques. How-
ever, current understanding of the correlation between found
genotypes and observed phenotypes remains an obstacle for
more efficient use of these data inmedicine andbiology.There
are only a fewmethods for integration of genetic data in a rea-
sonable way for statistical and functional analyses. An impor-
tant feature of genetic data is that it is not a collection of ran-
dom variations, but rather a system with intrinsic correlation
between genetic variants. Investigations of study populations
are often based on the frequencies of alleles rather than geno-
types. However, these variants are distributed on two parallel
carriers of information, paired sets of human chromosomes,
and in most cases both alleles contribute to the phenotype.
Traditionally, statistical analysis in genetics is based on
several simplifiedmodels with limited options for integration

of multiple variants in the same analysis. Although in recent
years an exponential growth of different approaches to search
for epistatic effects, or gene-gene interaction, in studies of
complex traits is observed (see review [1]), a simultaneous
consideration of multiple variants remains difficult due to
“bottom-up” the design of the strategy of the search.

In this study we suggest and evaluate a genetic vector
approach (GVA; briefly described in [2]) that would allow
integration of available genotyping data in an unambiguous
way, selection of themost representative combinations for the
statistical analyses, and, finally, significant reduction of the
number of variants that need to be inspected for functional
studies. Our approach provides possibility to combine the
advantage of joining several genetic markers in one combina-
tion (haplotype) with consideration to genotype (not allele)
for each marker. Instead of ambiguous connection of allele
or haplotype to certain phenotype in each individual, in
GVA each individual has only a single genetic vector that
corresponds to the phenotype.Thus the genotype-phenotype
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relation is unambiguous and it does not need a priori bio-
logical interpretation (dominance/recessiveness). GVA also
permits expression of the traditional measures of the ass-
ociation for separate genotypes and, particularly, enables
detection of gene-gene interaction.

2. Methods

2.1. Genetic Vectors for Association Studies. Due to the com-
plexity of genetic data, multiple options for the analyses
are available. However, the majority of genetic analyses are
based on univariate tests for independent genetic markers
and applications with simultaneous employment of several
genetic markers are relatively rare. Based on linkage disequi-
librium, haplotypes are considered to be a valuable tool [3],
but this approach does not provide unambiguous assessment
to phenotype, since individuals with heterozygotic state could
be, at best, considered as an intermediate group or should be
combined with homozygotic state in the absence of a bio-
logical hypothesis. We constructed an approach for genetic
analyses that integrates a number ofmarkers as awhole entity,
regardless of the specific linkage on a particular chromosome.

The design of the model is based on integration of dif-
ferent genetic variants in a reasonable biological group by
assigning each individual to a sequence of genotypes in rela-
tion to given genetic variants. Since the combinations avail-
able in the population are not random and reflect the pop-
ulation’s genetic structure, the number of these sequences of
genotypes is significantly less than the number of individuals
in a study population of reasonable size. The individuals
identical in the order of genotypes represent a group, which
may have differential representation of phenotypes. In a case-
control design the frequencies of these groups could be stati-
stically compared to identify those that aremost likely to asso-
ciate with a selected phenotype.

Imagine that we are interested in the degree of association
to a certain phenotype of several single-nucleotide polymor-
phisms (SNPs), which may belong to the same, or to different
chromosomes. A polymorphism is defined at the level of the
whole study population, whereas for a particular person each
SNP has a definite genotype value. Let us make the following
convention: we choose and fix the order of the SNPs. Then
each person will be characterized by the set of genotypes that
can be thought of as a genetic vector (GV), characterizing a
particular person.The number of genetic variations included
in this vector is the length of the GV.The study population is
then characterized by the set of GVs.

In an association study, each GV ]
𝑖
“contains” some

number 𝑛
ℎ,𝑖

of controls and 𝑛
𝑠,𝑖
cases. Then the structure of

the study population is described by the Table 1.
Thus, this is a simple way to avoid working with separate

alleles, and even with genotypes; instead, the focus lies on
their relevant combinations in the study population, that is,
on the genetic vectors. One of the advantages worthmention-
ing is that if there exists some, say, genotype-genotype inter-
actions, these will be taken into account automatically, since
at this first stage the approach does not require any assump-
tions about the statistical nature of the GV’s constituents: this

Table 1: Structure of the study population in terms of GVs: each GV
|]
𝑖
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𝑠
cases.
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is simply one of the possible ways to represent the experimen-
tal data set. Since we now know the number of healthy con-
trols and number of cases, as well as the total numbers of
both, we can apply standard statistical machinery, testing
the statistical hypotheses for whole GVs; particularly, in
order to discover the “most promising” GVs, we can (and
will) evaluate the odds ratios, the regions with the greatest
fluctuations on the basis of, say, Fisher’s exact tests, and so on.

The GVA consists of several stages:

(1) selection of genetic markers,
(2) genotyping for two study populations,
(3) assigning of genetic vector value to each individual,
(4) sorting all individuals in the study population into

groups, according to particular GVs and chosen
phenotype parameters,

(5) exclusion of GVs with zero number of individuals in
any subgroup (subset),

(6) computation of odds ratio and relative risk (OR/RR),
pathogenic, and protective genetic vectors,

(7) sorting GVs according to statistical confidence,
(8) exclusion of GVs with low confidence,
(9) analysis of the match between study populations:

focus on replication and absence of opposite effect for
the vector.

Themathematical details of theGVA itself are given below
(Section 2.3–2.5).

2.2. Experimental Data Sets and GV Definitions. To demon-
strate the capacity of the methodology we applied it to the
analyses of data from two study populations: from the Swed-
ish Epidemiological Investigation of Rheumatoid Arthritis
(EIRA, 1820 cases and 947 controls) and from the North
American Rheumatoid Arthritis Consortium (NARAC, 813
ACPA-positive cases and 1161 controls).

The EIRA study population is a population-based case-
control study of incident cases of rheumatoid arthritis (RA) in
which all patients fulfilled the American College of Rheuma-
tology (ACR) 1987 criteria [4]. Controls were randomly
selected from the Swedish national population registry, tak-
ing into consideration the patient’s age, sex, and residential
area.More details about the EIRA study population have been
described elsewhere [5].

The cases in the NARAC study population consisted of
RA patients of self-reported white ancestry, who were ran-
domly drawn from four different groups of patients, while
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Table 2: Encoding of SNP states: 1 = rs6314; 2 = rs977003; 3 = rs1328674; 4 = rs2070037; 5 = rs6313; 6 = rs6311. Each SNP can aquire any of
genotype values listed in its column. Each GV is a product of SNP states in the order given in the table. Columns correspond to reference
sequence number of SNP or to shared epitope (SE) genotype.

SNP |1, 𝛾
1
⟩ |2, 𝛾

2
⟩ |3, 𝛾

3
⟩ |4, 𝛾

4
⟩ |5, 𝛾

5
⟩ |6, 𝛾

6
⟩ |SE, 𝛾

7
⟩

𝛾
𝑖

= 1 CC AA CC CC AA CC No
𝛾
𝑖

= 2 CT AC CT CT AG CT Single
𝛾
𝑖

= 3 TT CC TT TT GG TT Double

controls were recruited from the New York Cancer Project
[6, 7]. Both studies were conducted after obtaining approval
from the Regional Ethics Committees and in accordance with
the Declaration of Helsinki.

Below, we apply GVA for the analysis of EIRA’s and
NARAC’s association to rheumatoid arthritis (RA) using the
data for 6 SNPs from the HTR2A locus, rs6314, rs977003,
rs1328674, rs2070037, rs6313, and rs6311 and for HLA-DRB1
shared epitope alleles. We defined SE alleles as any of HLA-
DRB1∗01 (not ∗0103), ∗04 and ∗10; previous study sug-
gested very low frequency for non-SEHLA-DRB1∗04 variants
in Caucasian populations [8]. Conventional evaluation for
HTR2A genetic markers was performed previously [9].

We defined the GV states as a product of SNP states, as
shown in Table 2. In order to compare the GV structure bet-
ween the EIRA and NARAC study populations and to per-
form statistical evaluation, we, first, assigned individuals to a
particular GV group using individual genotypes and, second,
normalized the number of people, for each GV (according to
(10) below).

2.3. Mathematical Details of the Genetic Vector Approach
(GVA). Let us consider a population, consisting of 𝑁

ℎ
con-

trols (ℎ = healthy) and 𝑁
𝑠
(𝑠 = sick) cases. The number of

genetic markers is a matter of preliminary research and will
be assigned as𝑁SNP. We choose here SNPs for simplicity, but
the approach can be easily extended for multiallelic markers.
There are no restrictions on the position of markers within
chromosomes, and variants from different chromosomes
could be used. In the whole study population, with the dizy-
gotic human genome, each SNP can normally produce 3
different categorical values, or genotypes. However, these
categories are exclusive and only one of the categories can
be found in the DNA of an individual person. This is similar
to one of the components (say, 𝑧) of spin 𝑆 = 1, which can
acquire three values, 𝑆𝑧 = 1, 0, −1, and could be described by
corresponding three states, |1⟩, |0⟩, | − 1⟩. The description
of the study population with a set of SNPs is similar to the
description in physics of an ensemble of spin chains (see, e.g,
[10]). Each of the spin chains contains𝑁SNP spins and can be
in different quantum states. The latter is described by the set
of vectors:
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where Υ represents other variables; the spin corresponds
to the SNP, and its values correspond to the genotypes.
Therefore, a combination of genotypes form a vector for each
person with known genotypes and we refer to these combi-
nations as genetic vectors (GVs).

Different statistical characteristics of the study popula-
tion, such as the average frequency of people with a certain
genotype and correlations between genotypes and pheno-
types, can be obtained by, first, averaging certain spin-
operator combinations on these multispin states and, second,
averaging the result over the population of interest. However,
it is more convenient for us to speculate not in terms of 𝑆𝑧-
operators, but, rather, in terms of the operators, defined as
follows:

𝑋
𝛾

]𝑖 =




], 𝑖, 𝛾⟩ ⟨], 𝑖, 𝛾


;

𝑋
𝛾

]𝑖




]
1
, 𝑖
1
, 𝛾
1
⟩ = 𝛿]]

1

𝛿
𝑖𝑖
1

𝛿
𝛾𝛾
1





], 𝑖, 𝛾⟩ .

(2)

These variables can be interpreted as the operators of
population numbers (PNs) of the 𝛾-state in the cell 𝑖 of the
genetic vector ]. The 𝑋-operators are projection operators:
(𝑋
𝛾

]𝑖)
2
= 𝑋
𝛾

]𝑖, 𝛾 = 1, 2, 3. Notice that the projection operators
are sometimes used for description of spin systems, since
the spin operators can be easily expressed in terms of 𝑋

𝛾

]𝑖-
operators. For example, 𝑧-projecture of spin operator is 𝑆𝑧]𝑖 =
∑
𝛾
𝑚
𝛾
𝑋
𝛾

]𝑖 = 1 ⋅𝑋
1

]𝑖 +0 ⋅𝑋
2

]𝑖 +(−1) ⋅𝑋
3

]𝑖 = 𝑋
1

]𝑖 −𝑋
3

]𝑖; that is, it is
just the difference between the population-number operators
of two states.

In genetics this multiple-spin state, describing the com-
bination of genotypes, GV, and characterizing each person,
could be obtained from the experimental genotyping. Then,
one can compare all expected values of interest in groups
via the expectation values of corresponding operators on the
wave functions (GVs) for two ensembles, for example, con-
trols and cases. We are dealing here with a static problem: all
the states of “spin chains” are given; they do not depend on
time; the total wave function |Ψ

𝛼
⟩ of each of the ensembles

𝛼 = ctrl, case is a product of the wave functions of separate
“chains,” ∏]|]⟩. The expectation value of the population-
number operator for a certain person is

𝑁
𝛼
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{

{

{

1 if (𝑖, 𝛾) ∈ GV |]⟩ ;

0 otherwise.

(3)

Therefore, in general, the individual ] is characterized by
3𝑁SNP numbers (𝑖 = 1, . . . , 𝑁SNP, and 𝛾 = 1, 2, 3, if other
parameters are excluded) or by the matrix 3 × 𝑁SNP of PNs
for each ]. We will refer to it as index matrix (IM):
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. (4)
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Thus, an individual is fully characterized by this matrix as
described above. Each column, describing the filling of the
“spin-one state”, can contain only one nonzero value equal to
one and two others equal to zero. Each column represents a
particular variation and, for a SNP, has three levels defined
by nucleotides at the SNP position. The matrix for selected
genotypes is a matter of experimental design and may reflect
either a set of selected SNPs of interest or a sequence of all
SNPs at a certain locus. For example, if we are interested in
an ensemble of three SNP chains, with SNP

1
= 𝐴, SNP

2
= 𝐵,

and SNP
3
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are corresponding genotypes, then

some people may be in the state characterized by the genetic
vector:
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Corresponding to this GV index matrix is

𝐶]
0

= (

0 1 0

1 0 0

0 0 1

) . (6)

These IMswill be used in our further calculations. For sta-
tistical evaluation of differences between controls and cases
we will develop two matrices 3 × 𝑁SNP of PNs:

𝑁
𝛼
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𝛼 = ℎ (i.e., ctrl) , 𝑠 (i.e., case) .
(7)

These, in fact, are the genotype-frequency maps for controls
and cases for the study population of interest.

In the same fashionwe can obtain the rate for people, who
have a pair of certain genotypes (𝑖, 𝛾) and (𝑖


, 𝛾

); this rate can

be calculated from the expression:

𝑃
𝛼

𝑖,𝛾;𝑖

,𝛾
 =

1

𝑁
𝛼

∑

]
⟨Ψ
𝛼



𝑋
𝛾

]𝑖𝑋
𝛾


]𝑖




Ψ
𝛼
⟩ , 𝛼 = ℎ, 𝑠. (8)

The expression for triplets contains a product of three 𝑋-
operators and so on.

Each GV ]
𝑖
“contains” some number 𝑛

ℎ,𝑖
of controls and

𝑛
𝑠,𝑖

cases, whereas the structure of the study population is
described by Table 1.

Notice that the set of GVs is orthonormalized

⟨]
𝑖
| ]
𝑗
⟩ = 𝛿
𝑖𝑗

=

{

{

{

1, 𝑖 = 𝑗;

0, 𝑖 ̸= 𝑗

(9)

and, therefore, can be considered as a basis set in 𝑁GV-
dimensional space, whereas each part of the study popula-
tion, controls and cases, can be presented as a point in this
space. If some other study population contains GVs that are
not included in the set |]

1
⟩, |]
2
⟩, . . . , |]

𝑁GV
⟩, the set should be

complemented by these GVs in order to obtain a complete
set for the extended population, including all populations in
question.

2.4. Statistical Treatment of GVs. In order to avoid possible
confusion it is important to remember that eachGVdescribes
the set of SNP values. If the population has a group of indi-
viduals with the sameGV, we can use this fact in the statistical
treatment of the population, describing the whole population
in terms of these larger-scale variables, GVs. Then, each
GV within a given study population is characterized by the
number of healthy controls 𝑁

ℎ
and the number of cases 𝑁

𝑠

and we can introduce two frequencies:

𝑝
𝛼

] =

𝑛
𝛼

]

𝑁
𝛼

, 𝛼 = ℎ, 𝑠. (10)

Comparing these, we can determine which of the GVs are
more protective and which are more pathogenic. As a crite-
rion for the separation of GV subgroups with protective and
pathogenic behavior we choose here the odds ratio, defined
by GV frequencies:

OR(GV)] =

𝑝
𝑠

]/ (1 − 𝑝
𝑠

])

𝑝
ℎ

] / (1 − 𝑝
ℎ

] )
. (11)

The difference between the standard definitions of OR
and the one used here is discussed in the book [10, page
154]. Further, we have to choose some threshold ORtr, which
reflects a chosen criterion of statistical confidence, and select
all GVs that satisfy the condition

OR(GV)] > OR𝑠tr,] (12)

for “pathogenic” GVs and for the “protective” ones, for which
OR(GV)] < ORℎtr,]. The standard obvious threshold in (12)
would be ORtr,] = ORℎtr,] = OR𝑠tr,] = 1. However, statistical
fluctuations in the vicinity of the threshold ORtr,] = 1 may
make the choice of the groups, described by certain GVs,
doubtful. In order to garantee that the selected GVs remain
on a safe side, one can choose a harder criteria of the GV
selection. Of course, the threshold for “protective” GVsORℎtr,]
not obligatory should be chosen equal to 1/OR𝑠tr,]. Due to the
different number of people in each GV, the threshold value
ORtr,] can occur as ]-dependent. Let us denote the subset of
GVs defined by the inequality (12) asΩtrust (the details of this
subset will be discussed in Sections 2.5 and 3.2). Then the
combination of variants, responsible for a large OR, can be
visualized by summing the IMs of theGVs that fulfil (12).This
summation produces two matrices,

𝐶
ℎ

Ωcrit
=

1

𝑁
ℎ

∑

]
𝐶
ℎ

V,Ωtrust , 𝐶
𝑠

Ωcrit
=

1

𝑁
𝑠

∑

]
𝐶
𝑠

V,Ωtrust , (13)

which represent frequencies of genotypes in selected control
and case groups. The cells in the matrix Δ𝐶

Ωtrust
= 𝐶
𝑠

Ωtrust
−

𝐶
ℎ

Ωtrust
that contain the largest difference give us a possible

indication of which of the genotypes, entering different GVs,
are responsible for the large ORs displayed by the GVs.

2.5. The Choice of Thresholds. Let us now discuss a criterion
for the choice of thresholdsORtr,]. In the first step, all𝑁𝑡 indi-
viduals in the population are sorted in terms of corresponding
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Table 3: Contingency table for a GV.

Belongs to GV ] Does not belong to GV ]
𝑠 𝑛

𝑠

] 𝑁
𝑠
− 𝑛
𝑠

]

ℎ 𝑛
ℎ

] 𝑁
ℎ
− 𝑛
ℎ

]

genetic vectors (GV) of a length 𝑁GV. Each GV ] contains
𝑛
ℎ

] of healthy controls (HCs) and 𝑛
𝑠

] cases, with a total of
𝑛
𝑡

] = 𝑛
ctrl
] +𝑛

case
] individuals in each GV.Thewhole population

consists of𝑁
ℎ
controls and𝑁

𝑠
case individuals, with the total

number of individuals in the population𝑁
𝑡
= 𝑁
ℎ
+𝑁
𝑠
. Then

for each GV ]we can write down the contingency Table 3 and
the odds ratio

OR] (𝑛
𝑠

]) =

𝑛
𝑠

] (𝑁ℎ − 𝑛
ℎ

])

𝑛
ℎ

] (𝑁
𝑠
− 𝑛
𝑠

])
, (14)

based on this table.The full set of GVs can be sorted into two
subsets, one with OR > 1, which reflects the pathogenic com-
binations, and the rest with OR < 1, corresponding to the
protective combinations of genotypes.

At this stage we have to estimate the degree of confidence
for each OR]. In order to do this, we introduce the random
variable 𝑛]𝑘, which describes a number of case individuals,
selected randomly from 𝑛

𝑡

] persons, with the number 𝑛
𝑡

]
kept fixed. Then the probability to pick up precisely this
number for fixed values 𝑛

𝑡

], 𝑁ℎ, and 𝑁
𝑠
is described by the

hypergeometric distribution (as used in Fisher’s exact test):

(
𝑁
𝑠

𝑛
𝑠

]𝑘
) (

𝑁
ℎ

𝑛
ℎ

]𝑘
)

(

𝑁
𝑡

𝑛
𝑡

]
)

, 𝑛]𝑘 = 0, 1, 2, . . . , 𝑛
𝑡

], (15)

where (
𝑁

𝑛
) are binomial coefficients. Constructing the com-

plex random variable of interest, OR, for the chosen 𝑛]𝑘,

ORrand
]𝑘 =

𝑛]𝑘 (𝑁ℎ − 𝑛
𝑡

] + 𝑛]𝑘)

(𝑛
𝑡

] − 𝑛]𝑘) (𝑁𝑠 − 𝑛]𝑘)
, (16)

we can calculate for each GV the average odds ratio

𝜇
1 (
OR) = 𝑀[ORrand

]𝑘 ] =

𝑛
𝑡

]−1

∑

𝑘=1

𝑛]𝑘 (𝑁ℎ − 𝑛
𝑡

] + 𝑛]𝑘)

(𝑛
𝑡

] − 𝑛]𝑘) (𝑁𝑠 − 𝑛]𝑘)
𝑝 (𝑛]𝑘) ,

(17)

and, say, variance, 𝜇
2
(OR) = var[ORrand

]𝑘 ] = 𝑀[(ORrand
]𝑘 )
2
] −

(𝑀[ORrand
]𝑘 ])
2. This would be sufficient if we had normal dis-

tribution of the variable of interest, ORrand
]𝑘 , but our case is far

from this. One could also try to use the higher moments in
order to build the confidence intervals for ORrand

] for each
GV ]. However, due to asymmetry of the distribution for
the odds ratio ORrand

]𝑘 and the presence of GVs with a small
total number 𝑛𝑡] of individuals in GV, this method is imprac-
tical. Instead, we build the distributions for the complex
random variable ORrand

]𝑘 , 𝑝(ORrand
]𝑘 ), and find the thresholds

(ORtr
lower,OR

tr
upper) for the interval, where OR

rand
]𝑘 experiences

the largest fluctuations (for the normal distribution this
would be the interval [−𝜂𝜎, 𝜂𝜎], where 𝜎 is the standard dev-
iation and [1−erf(𝜂/√2)]/2 is chosen accuracy) directly from
the equation based on this distribution:

𝛼],upper = ∑

ORrand
]𝑘 >OR

tr
upper

𝑝 (ORrand
]𝑘 ) ,

𝛼],lower = ∑

ORrand
]𝑘 <OR

tr
lower

𝑝 (ORrand
]𝑘 ) .

(18)

We choose a 5% level of accuracy, that is, 𝛼],upper/lower = 0.05.
Since the full number of steps in the discrete distribution
𝑝(𝑛]𝑘; 𝑛

𝑡

], 𝑁𝑠, 𝑁ℎ) for the total number of individuals in GV
𝑛
𝑡

] is restricted by 𝑛
𝑡

], the best accuracy 𝛼 that can be achieved
is also restricted by the magnitude of this step; the sum in
(18) will consist of only one term with this minimal possible
step. As normal, a decrease of 𝛼 also decreases the number of
contributing GVs, decreasing the total statistical power.

The other way to estimate the degree of confidence for the
experimentally found OR],exp for each GV is to evaluate the
sum of probabilities for all possible ORrand

]𝑘 exceeding OR],exp:

𝑃],CI = ∑

ORrand
]𝑘 >OR],exp

𝑝 (ORrand
]𝑘 ) . (19)

The criteria are illustrated in Figure 1.
We use both criteria.
The GVs, which contain either only cases (𝑛ℎ] = 0, 𝑛𝑠] ̸= 0,

i.e., “solely sick”) or only controls (𝑛ℎ] ̸= 0, 𝑛𝑠] = 0, i.e., “solely
healthy”), require separate consideration. For simplicity we
call them “zero GVs.”

3. Results and Discussion

3.1. GV Frequency Distributions. We have found that all indi-
viduals in two study populations, based on selected SNPs
from HTR2A and HLA-DRB1 SE alleles for the chosen GV
length (number of markers), can be ascribed to 161 GVs for
EIRA and 163GVs for NARAC; 131 of them are commonGVs
for both studies.The total basis of GVs for these both cohorts,
therefore, consists of 193GVs, while Figure 2 displays the
results for common GVs only.

The rest of the GVs contain a relatively small number of
individuals in each of the cohorts: 40 people of 2767 total
in 30GVs (1.45%) in EIRA and 36 people of 1974 total in
32GVs (1.82%) in NARAC. Since each of these noncommon
GVs contains just one or two people, it is obvious that these
relatively rare GVs would be unlikely to give a significant
contribution to the statistical characteristics of the cohorts.
Thus, the vast majority of GVs in both cohorts are the same
and it is reasonable to compare GV frequencies between the
two study populations.

The data in Figure 2 demonstrate the high level of
coherency of the GV distribution within each study popu-
lation (EIRA and NARAC) and provides a rationale for sta-
tistical comparison between RA cases and controls. It is also
evident that these two populations differ in the frequencies
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Table 4: The number of GVs in different groups:𝑁all
GV is total number of GVs, ℎmeans “healthy controls,” 𝑠 stands for cases (“sick”), and the

index “with Zeros” denotes the GVs that do not contain individuals in one of the groups, ℎ or 𝑠. These types of GVs are called zero GVs; “no
Zeros” indicate that these sets of GVs do not contain zero GVs. Obviously, 𝑁ℎGV,noZeros + 𝑁

ℎ

GV,withZeros = 𝑁
𝑠

GV,noZeros + 𝑁
𝑠

GV,withZeros = 𝑁
all
GV.

𝑁
all
GV 𝑁

ℎ

GV,noZeros 𝑁
𝑠

GV,noZeros 𝑁
ℎ

GV,withZeros 𝑁
𝑠

GV,withZeros 𝑁
Common
GV,noZeros

GVEIRA 161 109 146 52 15 62
GVNARAC 163 135 101 28 62 62

Table 5: Numbers of vectors and individuals after separation of GVs specific only for one population and with zero frequency in any of
subsets: 𝑁Common

GV,noZeros and 𝑁
allCommon
GV are the numbers of common GVs in both sets, 𝑛𝛼noZeros is number of people after, and 𝑛

𝛼

tot is number of
individuals before cleaning, index 𝛼 = ℎ, 𝑠 (𝐸 ≡ EIRA, 𝑁 ≡ NARAC, hmeans “healthy controls”, s stands for cases (“sick”)).

𝑁
Common
GV,noZeros 𝑁

allCommon
GV 𝑛

ℎ

noZeros 𝑛
ℎ

tot 𝑛
𝑠

noZeros 𝑛
𝑠

tot 𝑛
ℎ+𝑠

noZeros 𝑛
ℎ+𝑠

tot

𝐸 62 131 779 (83%) 938 1500 (83%) 1789 2279 (83%) 2727
𝑁 62 131 866 (76%) 1134 711 (88%) 804 1577 (81%) 1938
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Figure 1:The example of theOR-distribution at fixed 𝑛
𝑡

] : the density
of probability for hypergeometric distribution 𝑃

ℎ𝑔
(𝑛
𝑠
) versus odds

ratio OR(𝑛
𝑠
). As seen, the distribution is asymmetric. The plot is

built for the following parameters: 𝑁
𝑠

= 1500; 𝑁
ℎ

= 779; 𝑛𝑡] =

37. The expectation value 𝜇
1
(ORrand

]𝑘 ) = 1.0929 (shown by green
line), the threshold OR, ORtr

upper = 1.9. This is the solution to (18),
meaning that the sum of probabilities from 𝑃(ORtr

upper) till 𝑃(ORmax)

(shown by red vertical lines) is equal to 𝛼 = 0.05. At the end, the
probability of finding OR greater than the experimental value of the
odds ratio, OR],exp = 4.3584, equals 0.04; the value OR],exp is taken
from experiments, described above, and is shown by a black star (∗).

of specific GVs, which is likely to reflect a different genetic
backgrounds or differences in the selection criteria. More
specifically, as can be seen from Figure 2(c), frequencies of
several GVs for the RA cases in the two studies differ signifi-
cantly, with some GVs absent from NARAC, while relatively
common in EIRA.

3.2. Stratification of the Common GVs and an Analysis
of the Consistency. In order to facilitate identification and
comparison between high-risk and protective GVs in the two
study populations, we selected GVs which display OR >

ORthr
upper or OR < ORthr

lower (see (18) in Section 2.5). However,
the GVswith either 𝑛ctrl] = 0 or 𝑛case] = 0 should be considered

separately, since in this case OR cannot be formally defined.
These subgroups of GVs with zero values will be described
in Section 3.4. The distribution of GVs between the groups is
shown in Table 4.

After exclusion of the GVs specific only for one study and
those with zero frequency in any of subsets, we analysed the
set of GVs with corresponding numbers of individuals, as
shown in Table 5.

As seen from Table 5, despite the fact that the number of
GVs decreased more than twice after exclusion of nonover-
lapping GVs and GVs with zero values, the remaining GVs
represent 76–88% of individuals. The data for the set of
common GVs with both 𝑛

ℎ
̸= 0 and 𝑛

𝑠
̸= 0 are displayed

in Figure 3.
In order to estimate quantitatively the degree of consis-

tency of the data, we stratified the set of common GVs into
four categories using OR, defined by (11):

Ω
11

: {OREIRA
> 1 & ORNARAC

> 1} ;

Ω
12

: {OREIRA
> 1 & ORNARAC

< 1} ;

Ω
21

: {OREIRA
< 1 & ORNARAC

> 1} ;

Ω
22

: {OREIRA
< 1 & ORNARAC

< 1} .

(20)

The result of this is summarized in Table 6 and only GVs
with consistency in direction of the effect (risk or protectivity)
were selected for futher analyses; see Tables 7 and 8. At the
next step, using (17) for the average OR for each GV and (18)
at the level 𝛼 = 0.05, we can construct the plot for the Ω

11

group of GVs: ⟨OR⟩, ORtr
],upper and the “experimental” value

of OR. Subsequently, for the Ω
22

group, where all OR < 1,
we used OREIRA

(ℎ/𝑠) = 1/OREIRA
Ω
22

(𝑠/ℎ), ORNARAC
(ℎ/𝑠) =

1/ORNARAC
Ω
22

(𝑠/ℎ). The results are displayed in Figure 4.
In this comparison, theNARACgroup has amuch greater

size of ORs. However, some of the NARACGVs happen to be
inconsistent with the ones from EIRA. Therefore, only those
GVs which exceed the upper 5% threshold in both cohorts
were chosen for further analysis.

We first analyzed the risk groups, Ω
11
, represented in the

left panels of Figure 4 and found that only 6GVs, for which
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Figure 2: Comparison of frequencies of GVs for EIRA (black bars) and NARAC (red bars). All GVs are ordered with respect to general
frequencies of NARAC. Frequencies in (a) are defined as 𝐹coh = (𝑛

(coh)
𝐻

+ 𝑛
(coh)
𝐼

)/𝑁
(coh)
tot , coh = EIRA,NARAC.
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Figure 3: Comparison of the data for EIRA and NARAC subsets of GVs that do not contain either 𝑛
ℎ

= 0 or 𝑛
𝑠
= 0. All GVs are sorted

with respect to frequencies 𝑓
tot
],NARAC = (𝑛

ℎ

],NARAC + 𝑛
𝑠

],NARAC)/∑](𝑛
ℎ

],NARAC + 𝑛
𝑠

],NARAC); (a) displays frequencies of GVs: 𝑓
ℎ

EIRA (blue), 𝑓ℎNARAC
(green), -𝑓𝑠EIRA (red), -𝑓

𝑠

NARAC (lilac); the case-imaging withminus sign is used for a better visibility; EH,ES andNH,NS denote the frequencies
of EIRA (E) and NARAC(N) GVs for healthy (H) controls and cases (S). (b) Odds ratios for GVs, the color notations are the same as for
frequencies, and the notations are 1/EOR ≡ OREIRA

(ℎ/𝑠), 1/NOR ≡ ORNARAC
(ℎ/𝑠), −EOR ≡ −OREIRA

(𝑠/ℎ), −NOR ≡ −ORNARAC
(𝑠/ℎ). There

are several GVs that demonstrate OR > 9.

OR],exp > ORright
threshold in both cohorts, give consistent results.

Let us inspect the probabilities of occasionally finding an OR
greater than OR],exp in the selected GVs. The result is pre-
sented in Figure 5.

Thus, since these subgroups fulfill both criteria, namely,
the GVs display OR beyond the fluctuation width near ⟨OR⟩

for chosen 𝛼 = 0.05 and show a low probability of finding
ORrand

] > OR],exp; the combination of variants corresponding
to this subgroup GVs should be considered as most probable
candidates for an association with RA.

Among the subgroup of “protective” genotype combina-
tions, which are represented in the right panels of Figure 4,
only the first eight GVs give consistent results in both the
EIRA and NARAC subgroups. In contrast, the NARAC GVs
from 9 to 15, which display ORexp < ORleft

threshold, do not fulfil
similar requirements in the EIRA subgroup. The values of
−log
10
𝑃(ORrand

] < OR],exp) for the consistent GVs in this sub-
group are presented in Figure 6.

The probabilities shown in Figure 6 suggest that a protec-
tive role is played by the combinations of variants, presented
by these GVs.

In summary, we found that there is a family of GVs in
both study populations that follows the same direction of
association, although the absolute values of the effects dis-
played in the NARAC study are more extreme than the ones
from the EIRA study for both protective and risk GVs. We
chose to use these GVs, with the aim of finding more specific
effects from individual genetic variations for further optimi-
zation of analyses.

3.3. Candidate Combinations of Genotypes. We used all the
available combinations from our genotyping data to differ-
entiate GVs associated with disease. However, the functional
consequences from these variations are likely to correspond
only to a limited number of selected markers and most of
the markers are not important for the association study.
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Table 6: Consistent and inconsistent groups of GVs: Ω
11
group with 𝑁

GV
11

= 31 represents GVs with increased risk in both cohorts, whereas
Ω
22
group with𝑁

GV
22

= 15 represents GVs with decreased risk of RA.Ω
12
andΩ

21
groups represent inconsistent GVs and were excluded from

further analyses.

𝑁
𝑡

11
𝑁
ℎ

11
𝑁
𝑠

11
𝑁
𝑡

12
𝑁
ℎ

12
𝑁
𝑠

12

𝑁
GV
11

= 31; EIRA 1192 295 897
𝑁

GV
12

= 6; EIRA 147 42 105
NARAC 822 296 526 NARAC 103 63 40

𝑁
𝑡

21
𝑁
ℎ

21
𝑁
𝑠

21
𝑁
𝑡

22
𝑁
ℎ

22
𝑁
𝑠

22

𝑁
GV
21

= 8; EIRA 263 106 157
𝑁

GV
22

= 15: EIRA 670 334 336
NARAC 205 91 114 NARAC 440 413 27

Table 7: Contrast GVs kk = 11 of individuals in strongest-risk group. Last row displays total number of individuals (the sum of corresponding
columns). For briefness the notations are used: |𝑆

1
⟩ = |rs6314⟩, |𝑆

2
⟩ = |rs977003⟩, |𝑆

3
⟩ = |rs1328674⟩, |𝑆

4
⟩ = |rs2070037⟩, |𝑆

5
⟩ = |rs6313⟩,

|𝑆
6
⟩ = |rs6311⟩, and |Υ⟩ = |SE⟩.

Cohorts Genetic vectors
EIRA NARAC |𝑆

1
⟩ |𝑆

2
⟩ |𝑆

3
⟩ |𝑆

4
⟩ |𝑆

5
⟩ |𝑆

6
⟩ |Υ⟩

𝑛
𝑡

],11 𝑛
ℎ

],11 𝑛
𝑠

],11 𝑛
𝑡

],11 𝑛
ℎ

],11 𝑛
𝑠

],11 𝛾
1

𝛾
2

𝛾
3

𝛾
4

𝛾
5

𝛾
6

𝛾
7

17 1 16 18 3 15 CC CA CC TT GG CC D
41 6 35 32 7 25 CC AA CC TT AG CT D
41 6 35 105 2 17 CC AA CC CT AG CT D
47 9 38 56 9 36 CC CA CC TT AG CT D
56 9 47 93 3 19 CC AA CC CT GG CC D
37 4 33 30 4 17 CC CA CC CT AG CT D
239 35 204 157 28 129 ⇐ ∑

Table 8: Contrast GVs kk = 22 of “most healthy” controls. Last row displays the sum for corresponding columns. For briefness the notations
are used: |𝑆

1
⟩ = |rs6314⟩, |𝑆

2
⟩ = |rs977003⟩, |𝑆

3
⟩ = |rs1328674⟩, |𝑆

4
⟩ = |rs2070037⟩, |𝑆

5
⟩ = |rs6313⟩, |𝑆

6
⟩ = |rs6311⟩, and |Υ⟩ = |SE⟩.

EIRA NARAC |𝑆
1
⟩ |𝑆

2
⟩ |𝑆

3
⟩ |𝑆

4
⟩ |𝑆

5
⟩ |𝑆

6
⟩ |Υ⟩

𝑛
𝑡

],22 𝑛
ℎ

],22 𝑛
𝑠

],22 𝑛
𝑡

],22 𝑛
ℎ

],22 𝑛
𝑠

],22 𝛾
1

𝛾
2

𝛾
3

𝛾
4

𝛾
5

𝛾
6

𝛾
7

92 45 47 41 40 1 CC AA CC TT AG CT N
78 40 38 35 34 1 CC AA CC CT AG CT N
63 30 33 52 51 1 CC CA CC CT AG CT N
98 57 41 66 65 1 CC CA CC TT AG CT N
21 16 5 15 14 1 CT CA CC TT AG CT N
47 25 22 45 42 3 CC CA CC TT AA TT N
56 28 28 25 24 1 CC AA CC TT GG CT N
20 11 9 22 21 1 CC AA CC TT AA TT N
475 252 223 301 291 10 ⇐ ∑

Therefore, for further studies it would be desirable to reduce
the length of the GVs and to identify the most influential
variants within GVs. By excluding unnecessary genetic vari-
ants fromGVs, we could reconstruct shorter GVs, to facilitate
inspection of the genotype content of the GVs in two contrast
groups, chosen via two consequent statistical criteria.

In order to compare the results from the contrasting GVs
of control and cases with different total numbers of individu-
als, we sum all IMs (see (4)) in each of categories 11 and 22
with the weights 𝑛

𝛼

],𝑘𝑘/𝑁
sel
𝛼
, where 𝑛

𝛼

],𝑘𝑘 is number of indivi-
dual cases (𝛼 = 𝑠, or “sick”) or controls (𝛼 = ℎ, or “healthy”)
in GV ], belonging to the class 𝑘𝑘 = 11, 22; here 𝑁

sel
𝛼

are

the numbers of individuals in the selected group 𝑘𝑘,𝑁
sel
𝛼,𝑘𝑘

=

∑]∈Ω𝛼
𝑘𝑘

𝑛
𝛼

],𝑘𝑘; notice that here the normalization is different
from the one used in (7):

𝑁
𝛼

𝑖𝛾,𝑘𝑘
=

1

𝑁
sel
𝛼,𝑘𝑘

∑

]∈Ω𝛼
𝑘𝑘

𝑛
𝛼

],𝑘𝑘 ⟨Ψ
𝛼



𝑋
𝛾

]𝑖




Ψ
𝛼
⟩ ,

𝛼 = ℎ, 𝑠; 𝑘𝑘 = 11, 22.

(21)

As expected, our data demonstrate strong association of
RA with SE alleles (see Table 9). At the same time, the SNP
rs1328674 does not show an association with RA, in contrast
to a previous report [9], while we detected an association
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Figure 4: Odds ratios for EIRA and NARAC for common GVs “without zeros” (𝑛
𝑠

̸= 0 and 𝑛
ℎ

̸= 0). The red stars represent the expectation
value ⟨OR⟩ of random OR (notice that ⟨OR⟩ is slightly different from unity due to asymmetry and discreteness of the distribution for OR);
error bars show the interval that is hit by OR with randomly chosen 𝑛

𝑠

] from the interval (0, 1, 2, . . . , 𝑛𝑡] − 1) with 95% probability; black stars
display observed OR for given GV. Thus, if OR],exp is above the upper error bar, the null hypothesis that the observed value of OR can arise
occasionally is not supported with 5% threshold value (for the random variable 𝑛

𝑠
= 0, 1, 2, . . . , 𝑛

𝑡
− 1).
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GVs in the subgroup Ω

22
: {OREIRA

< 1 & ORNARAC
< 1}.
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Table 9: Averaged index matrices of contrast EIRA GVs: 11 = cases are followed by “#,” 22 = controls are followed by “∗,” and their difference
is by “∗∗.” Strongest changes are marked by bold fonts. For briefness the notations are used: |𝑆

1
⟩ = |rs6314⟩, |𝑆

2
⟩ = |rs977003⟩, |𝑆

3
⟩ =

|rs1328674⟩, |𝑆
4
⟩ = |rs2070037⟩, |𝑆

5
⟩ = |rs6313⟩, |𝑆

6
⟩ = |rs6311⟩, and |Υ⟩ = |SE⟩.

EIRA |𝑆
1
⟩ |𝑆

2
⟩ |𝑆

3
⟩ |𝑆

4
⟩ |𝑆

5
⟩ |𝑆

6
⟩ |Υ⟩

𝛾
1

𝛾
2

𝛾
3

𝛾
4

𝛾
5

𝛾
6

𝛾
7

CC AA CC CC AA CC No
𝛾
𝑖,𝑠

= 1 1# 0.5735# 1# 0# 0# 0.3088# 0#

𝛾
𝑖,ℎ

= 1 0.9365∗ 0.4921∗ 1∗ 0∗ 0.1428∗ 0.1111∗ 1∗

𝛾
𝑖,𝑑

= 1 0.0635∗∗ 0.0815∗∗ 0∗∗ 0∗∗ −0.1429∗∗ 0.1977∗∗ −1∗∗

CT AC CT CT AG CT Yes
𝛾
𝑖,𝑠

= 2 0# 0.4265# 0# 0.5637# 0.6912# 0.6912# 0#

𝛾
𝑖,ℎ

= 2 0.0635∗ 0.5079∗ 0∗ 0.2778∗ 0.7460∗ 0.7460∗ 0∗

𝛾
𝑖,𝑑

= 2 −0.0635∗∗ −0.0815∗∗ 0∗∗ 0.2859∗∗ −0.0549∗∗ −0.0549∗∗ 0∗∗

TT CC TT TT GG DD Double
𝛾
𝑖,𝑠

= 3 0# 0# 0# 0.4363# 0.3088# 0# 1#

𝛾
𝑖,ℎ

= 3 0∗ 0∗ 0∗ 0.7222∗ 0.1111∗ 0.1429∗ 0∗

𝛾
𝑖,𝑑

= 3 0∗∗ 0∗∗ 0∗∗ −0.2859∗∗ 0.1977∗∗ −0.1429∗∗ 1∗∗

Table 10: Averaged index martices of contrast NARAC GVs: 11 = “sick” are followed by “#,” 22 = “healthy” are followed by “∗,” and their
difference is followed by “∗∗.” Strongest changes are marked by bold fonts. For briefness the notations are used: |𝑆

1
⟩ = |rs6314⟩, |𝑆

2
⟩ =

|rs977003⟩, |𝑆
3
⟩ = |rs1328674⟩, |𝑆

4
⟩ = |rs2070037⟩, |𝑆

5
⟩ = |rs6313⟩, |𝑆

6
⟩ = |rs6311⟩, and |Υ⟩ = |SE⟩.

NARAC |𝑆
1
⟩ |𝑆

2
⟩ |𝑆

3
⟩ |𝑆

4
⟩ |𝑆

5
⟩ |𝑆

6
⟩ |SE⟩

𝛾
1

𝛾
2

𝛾
3

𝛾
4

𝛾
5

𝛾
6

𝛾
7

CC AA CC CC AA CC No
𝛾
𝑖,𝑠

= 1 1# 0.4729# 1# 0# 0# 0.2636# 0#

𝛾
𝑖,ℎ

= 1 0.9519∗ 0.4089∗ 1∗ 0∗ 0.2165∗ 0.0825∗ 1∗

𝛾
𝑖,𝑑

= 1 0.0481∗∗ 0.0639∗∗ 0∗∗ 0∗∗ −0.2165∗∗ 0.1811∗∗ −1∗∗

CT AC CT CT AG CT Yes
𝛾
𝑖,𝑠

= 2 0# 0.5271# 0# 0.4109# 0.7364# 0.7364# 0#

𝛾
𝑖,ℎ

= 2 0.0481∗ 0.5911∗ 0∗ 0.2921∗ 0.7010∗ 0.7010∗ 0∗

𝛾
𝑖,𝑑

= 2 −0.0481∗∗ −0.0639∗∗ 0∗∗ 0.1188∗∗ 0.0354∗∗ 0.0354∗∗ 0∗∗

TT CC TT TT GG TT Double
𝛾
𝑖,𝑠

= 3 0# 0# 0# 0.5891# 0.2636# 0# 1#

𝛾
𝑖,ℎ

= 3 0∗ 0∗ 0∗ 0.7079∗ 0.0825∗ 0.2165∗ 0∗

𝛾
𝑖,𝑑

= 3 0∗∗ 0∗∗ 0∗∗ −0.1188∗∗ 0.1811∗∗ −0.2165∗∗ 1∗∗

of the SNPs rs6314, rs977003, rs2070037, rs6313, and rs6311
in the EIRA study. Since not all of these results agree with
previously published evaluation at this locus, we compare it
with independent data from NARAC; see Table 10.

As can be seen, the data for NARAC fully confirm the
conclusions derived from the EIRA data. The numbers for
NARAC in Table 10 differ from those for EIRA (see Table 9)
only slightly; therefore, the tendencies revealed in both
cohorts from the same sets of GVs can be considered to be
cross-validated.

Thus, selection of shorter GVs for statistical evaluation
demonstrated how the overall analysis could be optimized:
|𝑟𝑠2070037⟩, |𝑟𝑠6313⟩, |𝑟𝑠6311⟩, and |SE⟩ remain indica-
tive for the difference between groups, whereas |𝑟𝑠6314⟩,
|𝑟𝑠977003⟩, and |𝑟𝑠1328674⟩ have no influence on association
in the GVs of both EIRA and NARAC. These cropped GVs
can be especially useful for optimizing the analysis of long

GVs, since it can improve the statistical confidence of the
results.

We identified significant heterogeneity of association of
combinations of HTR2A variants, which depends on the
absence or presence of a shared epitope allele in the GV. Sev-
eral interesting observations have been found from applica-
tion of the method to two RA study populations, EIRA and
NARAC.

We found that the number of GVs that describe the study
population for the chosen length of GV is relatively small:
there are only 161 GVs required for description of the EIRA,
with 2767 individuals, and 163 GVs for NARAC, consisting of
1974 people. A very high overlap between Swedish and North
American study populations was detected in our analysis: 131
of GVs are common to both study populations.

Interestingly, some of the GVs contain only healthy
controls and do not contain the case counterpart (subset of



International Journal of Genomics 11

solely healthy persons), and vice versa; some of the GVs
contain only cases and do not contain controls (solely ill).
The statistical weight of these GVs, however, appeared to be
small. Nevertheless, we have found similar behaviour in two
independent cohorts and this observation deserves further
investigation. Even after removing these “zero” GVs from
consideration, the remaining set of common EIRA and
NARACGVs contains about 80% of the total number of indi-
viduals in each cohort.

Our literature search did not give much information
about similar methods being used in genetic studies. The
closest approach, haplotype analysis, is based on the classical
genetic idea of transmission of the marker from parents to
offspring and therefore the data in this analysis are arranged
around the combination of genetic markers within a single
chromosome. In an association study this approach may well
serve in allelicmode, but it totally ignores the possible involv-
ement of a second allele. In functional studies, selection of
individuals by haplotypes is straightforward for homozygotic
states but introduces multiple combinations in the case of
heterozygosity and generates an extreme number of geno-
type groups in comparison with GVA. Experimental detec-
tion of haplotypes is a difficult procedure and the common
statistical approach for assigning of haplotypes is never 100%
unambiguous.

3.4. Genetic Vectors with Zero Values in One of the Subgroups,
Experimental Data. In this section we illustrate previously
defined “zero GV” detected in the EIRA and NARAC studies
of RA. The number of individuals involved in each step of
selection is decreased as shown in Table 11.

Thus, of 131 GVs common for EIRA and NARAC, 19 GVs
happen to be zero GVs, that is, either 𝑛𝑠],𝛼 = 0 and 𝑛

ℎ

],𝛼 ̸= 0 or,
vice versa, 𝑛𝑠],𝛼 ̸= 0 and 𝑛

ℎ

],𝛼 = 0. They contain only about
2% of individuals from the study populations (62/2727 in
EIRA and 43/1938 inNARAC). It is interesting to compare the
contents of GVs from the “solely sick” (SSGV) and the “solely
healthy” (SHGV) subgroups. Since the number of individuals
belonging to the classes of interest is small, it would be nice
to have a look at the pooled data. The inspection, however,
shows that the part of theGVs that belong to the zeroGV sub-
group in, say, EIRA, often does not belong to this subgroup
in NARAC, and vice versa.These GVs lose their status of zero
GVs in the pooled data.

The insufficient number of individuals in SSGV and
SHGV subgroups does not make it possible to draw statisti-
cally confident conclusions if we work with each study popu-
lation separately. We can, however, investigate whether there
exists some cross-validated tendency, that is, the one obser-
ved in both EIRA and NARAC.

This can be visualized via GV frequency weighted index
matrices for zero GVs. Since we are interested only in the
groups of zeroGVs,wewill performaveraging over these sub-
groups only. In other words, (13) should be modified as fol-
lows:

𝐶
sh

=

1

𝑁sh
∑

]⊂Ωsh
0

𝑛
sh
] 𝐶

sh
V ,

Table 11: Numbers of GVs and individuals in full cohorts, in
common subsets of GVs, and in subsets of “solely healthy” (SH,
𝑛
𝑠

] = 0, 𝑛
ℎ

] = 𝑛
𝑡

]) and “solely sick” (SS, 𝑛
𝑠

] = 𝑛
𝑡

], 𝑛
ℎ

] = 0)
individuals. The notations in the table are 𝜉

𝑡
= NGV

t /𝑁
𝑡
, that is,

(number of GVs)/(number of individuals); 𝜉PS = NGV
SS /𝑁SS, that

is, (number of SS GVs)/(number of SS individuals); 𝜉SH = NGV
SH /

𝑁SH, that is, (number of SH GVs)/(number of SH individuals);
𝑁

tot
𝑠

/𝑁
tot
ℎ

is (total number of cases)/(total number of controls);
𝜉
𝑐

𝑡
= NGV

t,common/𝑁
𝑐

𝑡
, 𝑁𝑐
𝑠
/𝑁
𝑐

ℎ
is (common number of cases)/(common

number of controls); 𝜉crSS = NGV
SS,cr/𝑁

cr
SS, that is, (number of common

SS GVs)/(number of common SS individuals); 𝜉crSH = NGV
SH,cr/𝑁

cr
SH,

that is, (number of common SHGVs)/(number of common SH indi-
viduals).

EIRA NARAC

Full cohorts

𝜉
𝑡

161/2767 163/1974
𝑁

tot
𝑠

/𝑁
tot
ℎ

1820/947 813/1161
𝜉SS 52/152 28/61
𝜉SH 15/21 62/263

GVs
GVs common for
EIRA and
NARAC

𝜉
𝑐

𝑡
131/2727 131/1938

𝑁
𝑐

𝑠
/𝑁
𝑐

ℎ
1789/938 804/1134

𝜉
cr
SS 12/55 12/31

𝜉
cr
SH 7/13 7/12

𝐶
ss

=

1

𝑁ss
∑

]⊂Ωss
0

𝑛
ss
] 𝐶

ss
V ,

(22)

where 𝑛
sh
] and 𝑛

ss
] are numbers of individuals in the GV ]

belonging to the group SH or SS correspondingly; indices sh
and ss mean “solely sick” and “solely healthy”; the numbers

𝑁sh = ∑

]⊂Ωsh
0

𝑛
sh
] , 𝑁ss = ∑

]⊂Ωss
0

𝑛
ss
] (23)

are total numbers of individuals in the SSGV and SHGV
subgroups and 𝐶

sh
V and 𝐶

ss
V are index matrices of the GV ]

from SH and SS subgroups. Then we can compare EIRA and
NARAC results for case-control differences of indexmatrices,
𝐶
ss

− 𝐶
sh for zero GVs. The result is shown in Figure 7.

Full coherence in EIRA and NARAC data display is only
SE (no SE is protective, while double SE strongly associates
with RA, which is expected) and the SNP rs1328674. The
positive value of the difference for frequencies of the genotype
(rs1328674,CT) means the tendency to disease, whereas the
negative one for the genotype (rs1328674,CC) indicates the
tendency to protect. All other genotypes do not display
consistency between the results for EIRA and NARAC.Thus,
although the fact of zero GVs existence is interesting, we have
to admit that, due to the absence of (i) the consistency for
two study populations and (ii) the possibility of drawing sta-
tistically confident conclusions, analysis of zero GVs should
be taken with caution when the numbers of observations are
too low. In practice, it will need replication study in very big
cohorts.
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Figure 7: EIRA-versus-NARAC comparison charts for selected zero
GVs: the differences in genotype frequencies 𝑓

𝑠

𝑖𝛾
− 𝑓
ℎ

𝑖𝛾
for GVs of

“solely sick” and “solely healthy” individuals. Positive values indicate
a propensity for disease, whereas the negative values suggest that
a protective role is played by the corresponding genotype. In each
genotype couple, the darker color on the left corresponds to EIRA,
while the lighter color on the right presents the result for theNARAC
difference of frequencies. S: single SE; D: double SE allele.

4. Conclusions

4.1. On GVA. Our approach, GVA, is the method for genetic
analysis based on testing of association to a complex trait
simultaneously for combinations of variants (multiple mark-
ers) inherent to individuals without any assumptions about
their statistical relations. It is based on ascribing to each
person a multiple-spin quantum state, GV, with subsequent
description of the study population as an ensemble of spin
chains with a given (determined by experimental data) set
of allowed states. The full data set is sorted into subsets,
each of which is described by a single GV and the numbers
of cases and controls representing this GV. We successfully
tested this approach for the set of experimental data for RA
and validated the previously known association with shared
epitope alleles.

GVA has several advantages:
First, since GVA works with the genotype combinations

as a single entity, without decoupling of random variables, the
issue of possible statistical independence (as well as interac-
tion, influence of the linkage disequilibrium, etc.) of separate
genotypes does not affect analyses.

Second, being formulated for genotypes, it is free of the
uncertainties connected with the use of an allelic model or
haplotypes: it is, therefore, not necessary to guess a mode of
dominance. At the same time, the frequencies of separate
genotypes, or their pairs, triples, and so forth, can be easily
expressed in terms of GV variables, which means that other
analyses could be easily performed by simplification of the
GV algorithm.

Third, from the perspective of functional genetics and
personalized medicine, this approach provides the oppor-
tunity to directly assign individuals belonging to the risk
group of interest to a genetically determined subset defined
by GV. Since GVA includes in the analysis only the genotype

(phenotype) combinations which are met in the population
study, the number of combinations that need to be analyzed
is significantly decreased compared to the number of random
combinations of genetic markers; therefore, the volume of
necessary calculations is greatly reduced. The problem of
multiple combinations of haplotypes is also resolved in GVA.

The probability distribution for OR of each GV, which we
derived from the hypergeometric distribution for the random
variable “number of cases in GV,” happens to be asymmetric
and is not Gaussian. For this reason, the standard method
for evaluating the confidence accuracy could not be used.
Thus, we instead evaluated the thresholds of the OR interval
where OR fluctuations exceed 5% for each OR separately.The
statistics of each GV depends on three parameters: the total
number of cases, the total number of controls in the study
population, and the total number of individuals (cases plus
controls), described by the GV in question. Only those of
the GVs for which OR falls outside of the interval of large
OR fluctuations have been selected for further analysis. The
dependence of the OR statistics for a particular GV on the
number of individuals “belonging” to this GV creates the
obvious disadvantage of GVA: with an increase of the GV
length (the number of SNPs included in the GV) the total
number of GVs describing the study population approaches
the number of individuals, since each person has unique
DNA and, therefore, statistical analysis becomes invalid.

Regarding optimization ofGVAand reducing the number
of markers in GV (cropping the vector size), we suggested
using index matrices, uniquely characterizing each GV. By
using this approach a comparative analysis of the “genotype
content” can be done for the sets of GVs of interest, identify-
ing the sets of genotypes that influence the difference between
the control and case groups.

It is worth noting that GVA does not require any assump-
tions about statistical coupling between variables. The study
of interaction and synergetic effects between particular SNPs
can also be performed in terms of GVA. Indeed, the answer
to the question whether pairs, or triples, of some of SNPs pro-
duce amuch stronger association to the phenotype of interest
than is expected from independent factors can be obtained
from the analysis of the correlation functions between SNPs.
Examples of this type of analysis have been discussed in [2].

4.2. On RA in EIRA and NARAC. Our analysis reveals that
the majority of GV groups, 76.7% (or 81.4% of individuals in
all GVs, Table 6), are consistent for the effect between EIRA
and NARAC. The degree of inconsistence could be possibly
explained by low number of observation and randomness,
but also by influence of different environmental factors or by
different genetic architecture of the locus (between included
SNPs and at flanking regions).

We confirm the well-known fact that shared epitope (SE)
is strongly associated with RA. What seems to be significant
here is that the whole set of genotypes displays quite large
differences in frequencies in the presence and absence of SE.
The SNPs rs2070037, rs6313, and rs6311 seem to play a more
important role in RA formation than they were considered to
do in a previous study [9].
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