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Abstract: Navigating safely in complex marine environments is a challenge for submarines because
proper path planning underwater is difficult. This paper decomposes the submarine path planning
problem into global path planning and local dynamic obstacle avoidance. Firstly, an artificial
potential field ant colony algorithm (APF-ACO) based on an improved artificial potential field
algorithm and improved ant colony algorithm is proposed to solve the problem of submarine
underwater global path planning. Compared with the Optimized ACO algorithm proposed based
on a similar background, the APF-ACO algorithm has a faster convergence speed and better path
planning results. Using an inflection point optimization algorithm greatly reduces the number and
length of inflection points in the path. Using the Clothoid curve fitting algorithm to optimize the
path results, a smoother and more stable path result is obtained. In addition, this paper uses a
three-dimensional dynamic obstacle avoidance algorithm based on the velocity obstacle method.
The experimental results show that the algorithm can help submarines to identify threatening
dynamic obstacles and avoid collisions effectively. Finally, we experimented with the algorithm in
the submarine underwater semi-physical simulation system, and the experimental results verified
the effectiveness of the algorithm.

Keywords: underwater; path planning; artificial potential field; ant colony algorithm; velocity
obstacle method

1. Introduction

Submarines are ships that can operate independently underwater. Since its appearance,
it has been widely used in various military operations and has become an important part
of modern naval operations.

With the continuous changes in the international situation, a series of studies on
underwater navigation of submarines have received extensive attention. Different to
surface ships, submarines face more unknowns and threats underwater, all of which
pose challenges to the safe underwater navigation of submarines. In order to ensure
the safety of navigation, submarines need to find the path that best meets the mission
requirements among the many optional routes. Therefore, a suitable path planning
algorithm is particularly important.

Due to the complexity and nonlinearity of the underwater 3D environment, the
2D land-based algorithms cannot be directly used to solve the underwater path plan-
ning problems.

In response to this issue, many scholars have focused on the development of underwa-
ter path planning algorithms. At present, they can be categorized into graph search-based
approaches, such as Dijsktra algorithm [1–3], A∗ algorithm [4,5]; sample planning-based
approaches, such as PRM algorithm [6,7], RRT∗ algorithm [8,9]; artificial potential field
(APF)-based approaches [10,11]; evolutionary algorithms (EAs)-based approaches, such as
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distribution estimation algorithm (EDA) [12], particle swarm optimization (PSO) [13,14],
genetic algorithm (GA) [15,16], differential evolution algorithm (DE) [17]; heuristic algo-
rithms (HAs)-based approaches, such as ant colony algorithm (ACO) [18,19], simulated
annealing algorithm (SA) [20,21].

Based on these algorithms, a large number of scholars have developed path planning
algorithms adapted to the three-dimensional environment or the marine environment.

Arinaga et al. applied Dijkstra algorithm to a global path search for AUVs in an
underwater environment. The algorithm can avoid a set of obstacles and reach the end but
does not consider the impact on the marine environment [1]. Garau et al. implemented
a path search with A∗ algorithm and considered the influence of marine environmental
factors [22]. Carreras et al. employed the RRT∗ algorithm to perform 2D AUV path
planning, and the 3D results show that the adaptability of this method in the real complex
environment is satisfactory [8]. Jantapremjit et al. not only realize automatic obstacle
avoidance by applying the APF algorithm but also introduced the state-dependent Riccati
equation method to optimize the optimal high-order sliding mode control, which improved
the robustness of the AUV motion [23]. Liu et al. used the PSO algorithm for AUV path
planning. Simulation experiments show that the algorithm is simply easy to implement,
not sensitive to the population size, and has a faster convergence speed [13]. Ma et al.
introduced alarm pheromones in the ACO algorithm (AP-ACO) for path planning of
underwater vehicles. The experimental results show that compared with the ordinary
ACO algorithm, AP-ACO has a faster convergence speed and stability [24]. Rafael et al.
introduced a vortex field in the improved APF algorithm. This method can effectively
reduce the collision risk between the UAV and obstacles and reduce the vibration of the
path. In addition, the introduction of the artificial potential field algorithm effectively
solves the local minimum and oscillation problems of the threshold [25].

It is worth mentioning that, with the gradual complexity of application scenarios, the
combination of multiple algorithms has become a hot research direction in the field of
path planning.

Zhang et al. proposed a branch selection rapid exploration random tree (BS-RRT)
algorithm to solve the global path planning problem in the narrow channel environment of
UAVs. However, these two algorithms are aimed at aerial unmanned equipment, which is
not the same as the background of this study [26]. Yu et al. combined the improved Grey
Wolf Optimization algorithm with the D∗ Light algorithm and proposed a multi-target path
planning algorithm for an unmanned cruise ship in an unknown obstacle environment [27].
The algorithm effectively improves the path planning efficiency of unmanned ships and
can achieve good results in complex simulation experimental environments. However,
the algorithm is limited to two-dimensional path planning, and its adaptability in a three-
dimensional environment has not been further studied. A summary of the algorithm is
shown in Table 1.

At present, due to the special mission background, there are few studies on the path
planning of submarines. More researchers have turned to the path planning algorithms
for underwater vehicles such as AUVs. Although the operating environment of AUVs
is similar to that of submarines, there are significant differences between the two in
terms of size, mission background, and dynamic characteristics. These differences are
summarized in Table 2. Therefore, simply using AUV’s path planning algorithm for
submarine path planning is inappropriate and has hidden dangers. This paper aims
to develop a path planning algorithm with significant advantages for the particularity
of submarines.
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Table 1. Algorithm Comparison Summary.

Algorithms Reference Advantages Disadvantages Vehicle Improvement

Dijsktra [1] global path
planning

Marine elements are
not considered Single AUV first application

RRT∗
[8] Adapt to the real

environment slow Convergence Single AUV first application

[26] Adapt to narrow
aisle environments

Not suitable for
underwater environments drone branch selection rapid

exploration random tree

APF

[23] High robustness Marine elements are
not considered Single AUV higher-order sliding

mode control

[25] Low collision risk,
low path vibration

Not suitable for
underwater environments drone vortex field

PSO [13] Fast convergence Marine elements are
not considered Single AUV population control

ACO [24] Fast convergence
and high stability

Marine elements are
not considered Single AUV alarm pheromone

GWO [27] Dynamic obstacle
avoidance 2D path planning Unmanned ships D∗ Light algorithm

Table 2. The Difference between AUV and Submarine.

Factors AUV Submarine

Marine Environmental Elements ocean current
marine acoustic environment,
pycnocline, mesoscale vortex,

ocean front, ocean current

Dynamic Characteristics No need maximum pitch angle, maximum
diving depth, limit turning radius

Size Usually within 5 m more than 100 m

Background civilian mostly military

Considering the applicability and stability of the algorithm, we based on the relatively
mature ant colony algorithm, combined the artificial potential field algorithm, and pro-
posed a new artificial potential field ant colony algorithm (APF-ACO). The algorithm is
not a simple combination of several algorithms, but a special development for the charac-
teristics of submarine underwater navigation. The algorithm can effectively deal with the
underwater path planning problem of submarines. In this sense, the main contributions of
this paper include:

1. In this paper, the APF-ACO algorithm is proposed to solve the underwater global
path planning problem of submarines. The algorithm is able to converge rapidly in
the underwater environment. Moreover, the path planning results obtained by this
algorithm are more advantageous and more stable.

2. In order to further optimize the path planning results obtained by the APF-ACO
algorithm and make it more in line with the navigation requirements of submarines,
this paper develops an inflection point optimization algorithm and a path smoothing
algorithm. Experimental results show that the algorithm significantly reduces the
path length and the number of inflection points.

3. A dynamic obstacle avoidance algorithm based on the velocity obstacle method is
proposed, which further improves the content of the submarine path planning algo-
rithm. The experimental results show that the dynamic obstacle avoidance algorithm
can accurately identify and avoid threatening dynamic obstacles.
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4. Discuss the real performance of the algorithm in the submarine semi-physical sim-
ulation system. From the results, the real feasibility of the algorithm under the
underwater navigation of the submarine is verified.

2. Improved Artificial Potential Field Ant Colony Algorithm (APF-ACO)

In this section, we discuss the physical background and derivation of the algorithm
in detail.

2.1. Models

The environment model simulates the real application environment with an abstract
physical and mathematical model. The representation of the model directly affects the
efficiency and reliability of the path planning algorithm.

In this paper, the path planning environment is constructed by the method of spatial
equal mesh. As shown in Figure 1, the minimum grid corresponds to the space with the
minimum longitude, latitude, and depth interval. A plane with a depth value of 0 is taken
as an isosurface with a z-axis value of 0. Vertical down along the depth is the positive
direction of the z-axis. The direction of increase along latitude is the positive x-axis. The
increasing direction along the longitude is the positive y direction.
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Figure 1. Environment 3D Coordinate System.

In this way, we constructed a cuboid underwater planning space. Let’s say we di-
vide space into (l + 1) parallel planes along the x-axis. Each plane is then divided into
(m + 1)× (n + 1) grids along the y- and z-axes. In this way, the planning space is divided
into (l + 1)× (m + 1)× (n + 1) subspaces.

In the planning space, each point in the subspace can be spatially located with coordi-
nates (x, y, z), as shown in Figure 2. This completes the environmental modeling of the
planned space.
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2.2. Improved Artificial Potential Field Function
2.2.1. Improved Repulsion Function

The original artificial potential field function is prone to deadlock when there are a
lot of obstacles around the target point, which makes the algorithm unable to effectively
converge. To solve this problem, the repulsive function of the artificial potential field
algorithm is improved in this paper. We introduce the distance between node and target
point to adjust the size of the repulsive force field to prevent the planning from falling into
local deadlock. The improved repulsion function (1) is shown.{

Urep(X) = 1
2 krep

(
1

ρ(X,X0)
− 1

ρ0

)2
·ξ ρ(X, X0) ≤ ρ0

0 else
(1)

where ξ = (X− Xd)
n represents the Euclidean distance between the current node and the

target point to the n power. ρ0 is the influence range value of the obstacle. If the distance
between the carrier and the obstacle is greater than ρ0, the repulsive force is 0. ρ(X, X0)
is the Euclidean distance between the machine and the obstacle at a certain time. n is a
positive adjustment constant. The introduction of ξ can reduce the repulsion effect near the
target point so that the carrier can reach the target point smoothly.

By calculating the negative gradient of Urep(X), the repulsion calculation formula of
the improved algorithm can be obtained as:

Frep(X) = Frep1(X) + Frep2(X) (2)

where  Frep1(X) = krep

(
1

ρ(X,X0)
− 1

ρ0

)
· ξ

ρ2(X,X0)

Frep2(X) = − n
2 ·krep·

(
1

ρ(X,X0)
− 1

ρ0

)2
·(X− Xd)

n−1
(3)

Frep1(X) and Frep2(X) describe respectively the repulsion force of the robot pointing
at the obstacle and the attraction force of the robot pointing at the target point. Thus, the
repulsive function expression of the improved algorithm is constructed.

2.2.2. Improved Repulsion Function

The expression for gravitational potential energy is:

Uatt(X) =
1
2

kp(X− Xd)
2 =

1
2

kp((x− xd)
2 + (y− yd)

2 + (z− zd)
2) (4)

where kp is the target gain coefficient, and the attraction of the gravitational potential field
to the carrier is the negative gradient direction of the gravitational potential energy:

Fatt = −kpn1ε1 (5)
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where n1 is a unit vector with direction between the vector and the target point. ε1 = ‖X− Xd‖
is the Euclidean distance between the carrier and the target point.

In this way, the resultant force of the artificial potential field can be obtained:

Ft = Frep + Fatt (6)

2.3. Artificial Potential Field Ant Colony Optimization (APF-ACO) Algorithm
2.3.1. Heuristic Function

The heuristic function of the traditional ant colony algorithm only considers the
distance between the current position and the next node. When there are a large number
of obstacles near the endpoint, the algorithm tends to fall into a local optimum. Not only
that, but the positive feedback of the ant colony algorithm may also make the final planned
path, and not the global optimal path.

Therefore, this paper introduces the resultant force Ft of the artificial potential field
into the design of the heuristic function, so as to achieve the purpose of obtaining the global
optimal path. The improved heuristic function is shown in (7).

ηij(t) = ηd·ηF =
dSj(

dij + djG
) ·aFt ·ζ· cos θ (7)

where ζ = 1− Nn
Nmax

, Nn is the number of previous iterations, and Nmax is the maximum
number of iterations.

ηd is the distance heuristic function. where dSj is the distance between the starting
point S and the next node j. djG is the distance between the next node j and the target
point G. According to this formula, it can be seen that the size of the heuristic function is
related to the distance between the starting point and the target point. In this way, the more
likely the node j is to be selected. The improved distance heuristic function ensures that
the ants always move away from the starting point and close to the target point to prevent
the algorithm from falling into deadlock.

ηF = aFt · cos θ is the potential field heuristic function, where Ft is the resultant force of
the potential field, θ is the angle between the direction of the connection between the current
node and the next node and the direction of the potential field force, and a is a positive
integer greater than zero. The introduction of artificial potential field parameters can speed
up the convergence speed of the ant colony algorithm, but at the same time, it may cause
the result to fall into a local optimum in the latter part of the iteration. Therefore, a decay
coefficient ζ is introduced to make the potential field force decrease with the continuous
iteration of the algorithm.

2.3.2. Pheromone Diffusion Model

The basic ant colony system local pheromone update rule is

τ′ij = (1− ρ)τ′ij + ρ∆τ′ij (8)

This formula adopts the uniform update rule and does not consider the influence
of pheromone diffusion on pheromone distribution, which deviates from the real ant
colony system. In order to restore the efficiency of the ant colony system and improve
the convergence speed of the original ant colony system algorithm, this paper introduces
the pheromone diffusion model to improve the utilization efficiency of pheromone by the
ant colony.

We assume that the pheromone concentration follows a Gaussian distribution and
that the pheromone at the current point only spreads to the adjacent forward direction grid.
The simplified pheromone diffusion model is a circumscribed sphere, as shown in Figure 3.
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Where lob represents the diffusion radius of the pheromone. We assume that the step
size of each movement of the ant is 1 in the y and z directions, then lob is

√
3. In (7), the

angle θ of the potential field force is calculated for the adjacent grids of the current grid.
The adjacent grid with the smallest θ value is the pheromone diffusion direction. From this,
the direction of the next grid j is determined, and the pheromone concentration diffused to
point j is calculated as:

τ
′′
ij = δ·q(i)· lob − d

lob
(0 < δ ≤ 1) (9)

where δ is the diffusion coefficient of the pheromone, and d is the Euclidean distance
between the current node i and the next candidate node j.

2.3.3. State Transition Rules

According to the above-improved algorithm, the state transition rule of ants from
point i to the next grid point is calculated:

Pk
ij(t) =

τij
α(t)·ηβ

ij(t)

∑s∈allowedk
τij

α(t)·ηβ
ij(t)

(10)

where τij = τ′ij + τ
′′
ij , ηij is obtained by (7).

Through the above steps, the algorithm not only increases the probability of ants
choosing j point but also maintains the diversity of paths. Moreover, the convergence speed
of the algorithm is accelerated while avoiding the path from falling into the local optimum.

After one iteration is completed, the global pheromone update is performed, and the
update rule is as follows.

τ′ij(t, t + 1) = (1− ρ)τ′ij(t) + ∆τ′ij(t, t + 1) (11)

where

∆τ′ij(t, t + 1) =

{
1

Lgb
, (i, j) ∈ globalbest

0 else
(12)

The specific flow chart of the APF-ACO algorithm proposed in this paper is shown in
Figure 4.
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3. Path Optimization Algorithm

The results obtained by the path planning algorithm usually have shortcomings such
as many inflection points and insufficient smoothness. To solve these problems, the path
results need to be optimized. In this paper, the inflection points optimization algorithm
and the path smoothing algorithm are used to obtain the path results that are more suitable
for submarine navigation.

In addition to global static path planning, submarines also need to have dynamic
obstacle avoidance capabilities to deal with sudden threats. This paper proposes a three-
dimensional dynamic obstacle avoidance algorithm based on the velocity obstacle method
to improve the survivability of submarines.

3.1. Path Inflection Point Optimization

First, find the inflection points in the path that the algorithm gets. Suppose there are
m path points in the grid space along the path planning direction. The current path point is
i(1 < i < m), and d(i, i− 1) is the distance between point i and point i− 1. d(i, i + 1) is the
distance between point i and i + 1. d(i− 1, i + 1) is the distance between point i− 1 and
point i + 1. Then the inflection point can be judged according to the triangle rule:{

d(i, i + 1) + d(i, i1) = d(i− 1, i + 1), i /∈ In f
d(i, i + 1) + d(i, i1) > d(i− 1, i + 1), i ∈ In f

(13)

All inflection points of the path can be obtained in this way. Add the start and
endpoints, assuming there are n inflection points in total, and arrange all the inflection
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points in sequence: In f1, In f2, In f3 · · · In fn. Connect with the second inflection point
from the starting point. If the connected line does not pass-through obstacles, continue to
connect with the third inflection point, and so on to connect with the 4th, 5th, nth inflection
points. If the starting point and the kth point (1 < k ≤ n) pass through an obstacle when
connecting, connect the starting point with the (k− 1)th point as the first segment of the
path after optimization. Then connect with the (k− 1)th point as the starting point until
the target point is reached. The flow chart of the inflection point optimization algorithm is
shown in Figure 5. The schematic diagram of the method is shown in Figure 6.
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3.2. Path Smoothness Optimization

Submarines should try to avoid large steering angles when sailing underwater. In
order to meet the actual navigation requirements of submarines, this paper proposes a
path smoothing algorithm adapted to the APF-ACO algorithm. The simple single-stage
polynomial optimization cannot adapt to the complex underwater environment, and the
complex high-order polynomial optimization is not efficient, so this paper chooses to use the
Clothoid curve fitting algorithm to optimize the smoothness of the path. The Clothoid curve
is based on the Fresnel integral, and the change in curvature of the curve is proportional
to the arc length of the curve. The three-dimensional Clothoid curve equations are shown
in (14) and (15). In this paper, two-dimensional Clothoid curve fitting is performed on
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XOY and XOZ in turn, and then the fitting results are combined into three-dimensional
fitting results. {

x = x0 + h
∫ s

0 cos(ψ(τ))dτ

y = y0 + h
∫ s

0 sin(ψ(τ))dτ
(14)

{
x = x0 + h

∫ s
0 cos(ψ(τ))dτ

z = z0 + h
∫ s

0 sin(ψ(τ))dτ
(15)

where (x0, y0, z0) is the starting point coordinate, ψ(τ) represents the tangent angle of the
curve, and the expression is:

ψ(τ) = θ0 + k0τ +
1
2

cτ2 (16)

θ0 is the initial tangent angle, k0 is the initial curvature, and s is the arc length of the curve.
Suppose the path point obtained by the APF-ACO algorithm is P(xi, yi) (i = 1, 2, 3 · · · k).

Using the Clothoid curve to fit is to solve the Clothoid curve segment between the k
path points under the condition of continuous curvature. Taking the first segment of the
path as an example, the coordinates of the endpoints at both ends are (xl , yl), (xl+1, yl+1).
According to (14), the two ends should meet the following conditions:{

xl+1 = xl + h
∫ sl

0 cos(ψl(τ))dτ

yl+1 = yl + h
∫ sl

0 sin(ψl(τ))dτ
(17)

{
xl+1 = xl + h

∫ sl
0 cos(ψl(τ))dτ

zl+1 = zl + h
∫ sl

0 sin(ψl(τ))dτ
(18)

where ψl(τ) = θ0l + k0lτ + 1
2 clτ

2. sl is the arc length of the lth path. To ensure the continuity
of curvature at the inflection point, (xl+1, yl+1) should satisfy:{

k0l+1 = k0l + cls

θ0l+1 = θ0l + k0lsl +
1
2 clsl

2
(19)

This formula determines that the tangent angle θ and the curvature k of the paths of
the lth and l + 1th sections at the inflection point are equal.

After initially completing the path smoothness optimization, it is also necessary to
consider that the optimized path may collide with obstacles again. Therefore, the smooth
path must be re-examined. As shown in Figure 7, the initial smooth path is detected. If the
path collides with an obstacle, the curvature k of the fitted path is reduced for re-planning
until the smooth path does not collide with the obstacle.
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3.3. Local Dynamic Obstacle Avoidance by Speed Obstacle Method

The velocity obstacle method is an algorithm that uses geometric constraints to express
methods to avoid collisions with obstacles. Its schematic diagram is shown in Figure 9.
Where PA is the carrier position, PB is the obstacle position, VA is the carrier velocity, VB
is the obstacle velocity, VAB = VA − VB is the relative velocity of VA and VB. The basic
principle of the algorithm is to construct the velocity obstacle area by obtaining the position
and velocity information of the carrier and the obstacle. Then, it is determined whether the
carrier will collide with the obstacle by calculating whether the relative speed of the carrier
and the obstacle is within the space of the obstacle area.
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We inflate the submarine into a sphere of radius rA and the obstacle into a sphere of
radius rB, then the radius of the obstacle sphere is RO = rA + rB. It is defined that multiple
rays drawn from the geometric center of the carrier are tangent to the expanded spherical
obstacle area, and all the tangents form a triangular pyramid space. The β is the angle
between VAB and the axis PAPB and the α is 1/2 of the size of the cone apex angle. β and α
are shown as (20) and (21).

β = arccos
(

VAB·PAPB
‖VAB‖·d

)
(20)

α = arcsin
(

RO
d

)
(21)

where d is the distance between PA and PB.
When β < α, there is a risk of collision, and collision avoidance measures should be

taken; when β ≥ α, there is no risk of collision. Through this method, the dynamic obstacle
avoidance problem of the carrier can be simplified to the static obstacle avoidance problem.

We assume that the velocity vector of the carrier and the obstacle do not change during
the calculation process, then define a ray from the center of the carrier along the relative
velocity direction:

R(PA, VAB) = {PA + VAB·t|t ≥ 0} (22)

where t represents time and R(PA, VAB) represents the ray composed of the current position
of the carrier and the direction of the relative velocity vector. Then the collision conditions
between the carrier and the obstacle are:

R(PA, VAB) ∩ PO 6= ∅ (23)

The relative velocities with collision risk are grouped together, which constitutes the
“collision domain” of dynamic obstacle avoidance. The mathematical description of the
“collision domain” is:

Zc = {VAB|R(PA, VAB) ∩ PO 6= ∅} (24)

The velocity obstacle method uses a definite value when describing the dynamic
obstacle, but there is a certain inevitable error between the sensor accuracy and the subma-
rine’s own speed, so the submarine may accidentally collide with the obstacle. In order to
solve this hidden danger, this paper decided to introduce the parameter of “safe distance”.
Compared with the size of the submarine itself and the size of the obstacles, the marine
navigation environment is very broad, so the parameter of “safety distance” has practical
application value and feasibility. The “safety distance” radius is given by empirical values
of sensor accuracy error and submarine speed error.

The corrected obstacle area radius is:

RO = rA + rB + rs (25)

In addition, in order to enhance the adaptability of the algorithm, this paper supple-
ments the dynamic obstacle avoidance algorithm. After dynamic obstacle avoidance, if
the current node cannot safely reach the next node of the original path planning result,
the current node is used as the starting point for re-path planning. Repeat this operation
until the submarine reaches the end. The flow chart of the dynamic obstacle avoidance
algorithm is shown in Figure 10.
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4. Test and Analysis

In this paper, a 10 × 10 × 10 (excluding boundary) three-dimensional space environ-
ment is constructed for simulation experiments, in which spheres represent obstacles. In
order to verify the effectiveness of the APF-ACO algorithm proposed in this paper, relevant
experiments are designed in this section.

4.1. Algorithm Performance Comparison Experiment

In order to verify the effectiveness of the APF-ACO algorithm, the experiments de-
signed in this paper are compared with the other three algorithms in various obstacle
environments. Among them, the Optimized ACO algorithm is an underwater ant colony
optimization algorithm proposed by the reference [24].

In this paper, experiments were designed in five obstacle environments, and each
experiment was carried out independently 10 times, and statistical significance tests were
performed to ensure the reliability of the results. The parameter settings of the algorithm
are shown in Table 3.

Table 3. Parameter Settings.

Parameters Value

APF-ACO N = 100, q0 = 0.9, α = β =2.0,
ρ = 0.1, δ = 0.9, kp = 1, krep = 1

Optimized ACO N = 100, σ = ξ = 0.1, q0 = 0.9,
ω4 = 0.5, α = β = 2.0, ρ = 0.1 [26]

The Original ACS N = 100, q0 = 0.9, α = β =2.0,
ρ = 0.1, δ = 0.9

The Original APF kp = 1, krep = 1

The experimental results are shown in Figure 11 and Table 4. It can be seen from
the experimental results that APF-ACO and Optimized ACO have significant advantages
compared with the original ACS and the original APF algorithm. This proves the superiority
of these two algorithms. In addition, compared with the Optimized ACO algorithm, APF-
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ACO has advantages in the performance of the best results and the average results and is
also better in the control of the worst results and standard deviations. In summary, the path
planning results of the APF-ACO algorithm have better performance and are more stable.
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Table 4. Comparison of the Results Obtained by the Four Algorithms.

Environment Statistics The Original
APF

The Original
ACS

Optimized
ACO APF-ACO

Env1

Best 10.5725 10.6732 10.2715 10.2624
Worst 13.2745 12.7655 12.5772 10.8929
Mean 11.7845 11.1365 11.0360 10.5249

Std 1.8943 1.0722 0.8898 0.2786

Env2

Best 12.0793 11.8988 11.8863 11.0777
Worst 14.0323 14.4365 13.8863 12.8929
Mean 12.7568 12.9525 12.5772 12.2929

Std 1.5398 1.7435 0.8312 0.7969

Env3

Best 10.4320 10.8561 10.1290 10.1290
Worst 10.8936 11.0753 10.7148 10.3071
Mean 10.6755 10.8646 10.2818 10.2715

Std 0.4863 0.3845 0.2540 0.0797

Env4

Best 10.7048 10.4853 10.4853 10.3071
Worst 11.8476 11.6849 11.3006 10.7148
Mean 11.3821 11.0427 10.8335 10.5195

Std 0.6387 0.7394 0.4204 0.2044

Env5

Best 10.7482 10.8472 10.7148 10.4853
Worst 11.4353 11.2785 10.8929 10.8929
Mean 10.8953 11.0582 10.7742 10.6977

Std 0.6432 0.2643 0.2044 0.1028

In order to verify the effectiveness of the APF-ACO algorithm proposed in this paper,
we further compare the computational time cost of four different algorithms under the same
conditions, and the calculation results are shown in Table 5. The experimental equipment
parameters in this paper are Core i9 CPU and 16 G running memory.

It can be seen from the experimental results that the calculation time of The Original
APF algorithm is the shortest, followed by the calculation time of The Original ACS. The
computation time of the APF-ACO algorithm is almost the same as that of the Optimized
ACO algorithm, which is about 10% longer than that of The Original ACS. The results show
that the two optimization algorithms sacrifice about 10% of the computing time to obtain
better path planning results, which have practical application value.
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Table 5. The Runtime Comparison of the Four Algorithms.

Environment
Runtime (s)

The Original APF The Original ACS Optimized ACO APF-ACO

Env1 1.42 1.89 2.16 2.23

Env2 1.27 2.04 2.27 2.19

Env3 1.45 1.78 1.87 1.95

Env4 1.66 1.84 2.04 1.97

Env5 1.39 1.69 1.88 1.92

From the above experimental results, it can be seen that the APF-ACO algorithm
proposed in this paper and the Optimized ACO algorithm have significant advantages.
In order to further compare the performance of the two algorithms, this paper designs
experiments to compare the number of path inflection points and the convergence speed of
the operation. In five different experimental environments, the visual planning results of
the two algorithms are shown in Figure 12.
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The establishment of five experimental environments mainly considers the influence
of different obstacle distribution patterns on the calculation results of the path planning
algorithm. The distribution of obstacles in test environments 1 and 2 is more discrete, the
distribution of obstacles in test environment 3 is more concentrated, the distribution density
of obstacles near the endpoint is increased in test environment 4, and the distribution
density of obstacles near the start point is increased in test environment 5. It can be seen
from the path planning results that in the above five test environments, both algorithms
can obtain complete and feasible paths. However, it can also be clearly seen that the path
obtained by the Optimized ACO algorithm is more tortuous when the obstacles are dense.
In order to further compare the pros and cons of the two algorithms, we recorded the
average number of inflection points of the planning results of the two algorithms in each
experimental environment, and the results are shown in Table 6.

Table 6. Comparison of the number of inflection points between APF-ACO and Optimized ACO.

Algorithms Number of Inflection Points

Test Env1 Test Env2 Test Env3 Test Env4 Test Env5

APF-ACO 4.3 4.6 4.4 5.7 5.8
Optimized ACO 6.5 6.2 5.5 6.2 7.2

It can be seen from the results that the path obtained by APF-ACO is straighter and
the number of inflection points is reduced by about 18.8%. This is mainly because the
APF-ACO algorithm introduces the potential field force parameter so that it can consider
the distribution information of obstacles in the operation of each step. This allows the
algorithm to avoid obstacles as early as possible. This feature of APF-ACO also fits the real
needs of submarines sailing underwater.

Convergence speed is an important indicator to measure the performance of an algo-
rithm. This paper next compares the convergence speed of APF-ACO and Optimized ACO.
We conducted 10 independent experiments in experimental environment 3 and averaged
the convergence rate results, and the obtained results are shown in Figure 13.

As can be seen from the figure, the convergence speed of APF-ACO is about 47.7%
faster than that of Optimized ACO. At the beginning of the iteration, APF-ACO can obtain
better initial path results, mainly because the addition of the potential field force parameter
can increase the cost difference between the path points to be selected, thereby greatly
increasing the probability of selecting a better path. In the later stage of iteration, the
convergence result of APF-ACO is significantly better than that of Optimized ACO, mainly
because the introduction of the potential field force parameter can always guide the path to
find the direction close to the endpoint, avoiding the convergence result falling into the
local optimum.
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In summary, it can be seen that the APF-ACO algorithm has certain advantages
in terms of convergence results and convergence speed and can adapt to the complex
underwater path planning application scenarios of submarines.

4.2. Path Smoothness Optimization

The simulation experiment of the path smoothing optimization algorithm is carried out
in the experimental environment 5. The inflection points of the path are optimized before
smooth optimization, and only the necessary inflection points of the path are retained. The
final result is shown in Figure 14:
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Figure 14. Visualization of path optimization results.

The green dotted line in Figure 14 is the inflection point optimization result. It can
be seen intuitively that the inflection point optimization algorithm reduces the number
of inflection points and shortens the path length on the premise of ensuring the safety of
the path. In order to quantitatively analyze the effect of the inflection point optimization
algorithm, we analyzed its performance under five different obstacle environments, and
the results are shown in Figure 15. The red implementation in Figure 15 represents the
number of inflection points of the original path, and the red dotted line represents the
number of optimized inflection points. The inflection point optimization algorithm can
effectively shorten the path length by about 21.7% and reduce the number of inflection
points by about 53.5%. This verifies the effectiveness of the algorithm.

The purple solid line in Figure 15 is the result of smooth optimization at the inflection
point optimization path. It can be seen that the optimized path has no abrupt turning
points, and the path is smoother. Not only that, but the introduction of the obstacle
avoidance correction algorithm also ensures that the smoothed path will not collide with
adjacent obstacles.
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4.3. Local Dynamic Obstacle Avoidance Experiment

In order to verify the dynamic obstacle avoidance effect of the speed obstacle method,
this paper constructs a dynamic obstacle environment for experiments. The experiment
introduces dynamic obstacles on the basis of global path planning to verify the effectiveness
of the dynamic obstacle avoidance algorithm and its compatibility with the APF-ACO
algorithm. The visualization results are shown in Figure 16.
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We construct three dynamic obstacle environments to verify the reliability of the
dynamic obstacle avoidance algorithm. We show two different perspectives of each path
planning result. As shown in Figure 16, the dynamic obstacle moves in the direction of the
arrow. The red track indicates that the dynamic obstacle will collide with the original path,
and the green track indicates that the dynamic obstacle will not collide with the original
path track. It can be seen from the result in the figure that under the effect of the dynamic
obstacle avoidance algorithm, the submarine accurately identified the threatening dynamic
obstacles and re-planned them to avoid collisions. Dynamic obstacles without threats will
not affect the original path trajectory. In experimental environment 2 and experimental
environment 3, the re-planning node cannot safely reach the next node of the original
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planning result under the current step size requirement, so re-planning is carried out. It
can be seen that the re-planned path results can overlap with the original path results as
much as possible under the premise of successfully avoiding dynamic obstacles.

It can be seen from the experimental results that the dynamic obstacle avoidance
algorithm proposed in this paper can achieve the expected effect and has a practical
application value.

4.4. System Semi-Physical Experiment

In order to further verify the application of the algorithm proposed in this paper
in the real environment, we applied APF-ACO to a semi-physical simulation software
specially designed for the study of submarine underwater path planning for experiments.
The system uses the 0.25◦ submarine topography data provided by GEBCO (General
Bathymetric Chart of the Oceans) to generate virtual submarine topography to simulate the
real underwater navigation environment of submarines. In addition, the system adopts the
standard SUBOFF full-body submarine model and fully considers various maneuvering
rules that submarines have underwater, such as maximum pitch angle, maximum diving
depth, limit turning radius, etc.

The path planning range selected for this system test is 14.3563◦ N to 16.6942◦ N, and
113.3719◦ E to 116.1954◦ E. The starting point coordinates are 16.5079◦ N, 113.5875◦ E,
and 100 m deep. The ending coordinates are 14.6072◦ N, 116.0237◦ E, and 100 m deep.
The specific parameters of the APF-ACO algorithm used in this experiment are shown in
Table 7.

Table 7. Parameter Settings of the System test.

Algorithms Value

APF-ACO N = 100, q0 = 0.9, α = β = 2.0,
ρ = 0.1, δ = 0.9, kp = 1, krep = 1

The specific experimental results are shown in Figure 17.
It can be seen from the experimental results that the submarine can successfully avoid

terrain obstacles and reach its destination. The result of the path is relatively straight
as a whole, and it can actively maintain the navigation at the same depth, which is in
line with the underwater maneuvering characteristics of submarines. The results verify
the effectiveness of the APF-ACO algorithm as a submarine underwater path planning
algorithm in the real marine environment.
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5. Conclusions

In this paper, a path planning algorithm suitable for submarine underwater navigation
is proposed. This algorithm is a composite method that includes global path generation and
local path adjustment. In the global path planning, we presented an improved Artificial
Potential Field Ant Colony Optimization (APF-ACO) algorithm to adapt to the underwater
path planning needs of submarines. The experimental results showed that APF-ACO
can stably obtain path planning results in a variety of experimental environments. Com-
pared with the Optimized ACO, APF-ACO can obtain path results with shorter length,
fewer inflection points, and better stability. Not only that, but APF-ACO also has a faster
convergence speed, which meets the tactical needs of submarines.

We also propose an inflection point optimization algorithm and a smooth optimization
algorithm to further improve the path obtained by APF-ACO, making it more in line with
the actual underwater navigation of submarines. The experimental results show that the
inflection point optimization algorithm can effectively reduce the unnecessary inflection
points of the path and greatly reduce the length of the path. The smoothing optimization
algorithm can increase the smoothness of the path without intersecting with obstacles.

In order to make the algorithm more complete, we have added a dynamic obstacle
avoidance algorithm based on the motion obstacle method. The introduction of this
algorithm can help submarines identify threatening moving obstacles and re-plan local
paths. The experimental results show that the dynamic obstacle avoidance algorithm can
successfully help submarines to identify and avoid dangerous dynamic obstacles.

We use a professional semi-physical simulation system for scene verification of the
APF-ACO algorithm. In the system, we use real seabed topography data and real starting
and ending position data to conduct experiments. The experimental results show that the
APF-ACO algorithm can be effectively applied in the navigation tasks of submarines and
has practical application value.

We insist on affirming the application value of path planning in submarine navigation
in the new era. In future research, we will further optimize the submarine’s path planning
algorithm. We consider introducing the influence of marine environmental elements on
submarine navigation into the path planning algorithm to expand the scope of application
of the algorithm. Next, we seek to apply the algorithm to real submarine navigation tasks
and collect data in real experiments to further improve the algorithm.
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