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ABSTRACT: Background: The neuroanatomical substrates of Parkinson’s disease (PD) with tremor-dominance
(TD) and those with non-tremor dominance (nTD), postural instability and gait difficulty (PIGD), and akinetic-rigid
(AR) are not fully differentiated. A better understanding of symptom specific pathoanatomical markers of PD
subtypes may result in earlier diagnosis and more tailored treatment. Here, we aim to give an overview of the
neuroimaging literature that compared PD motor subtypes.

Methods: A systematic literature review on neuroimaging studies of PD subtypes was conducted according to
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Search terms
submitted to the PubMed database included: “Parkinson’s disease”, “MRI” and “motor subtypes” (TD, nTD,
PIGD, AR). The results are first discussed from macro to micro level of organization (i.e., (1) structural; (2)
functional; and (3) molecular) and then by applied imaging methodology.

Findings: Several neuroimaging methods including diffusion imaging and positron emission tomography (PET)
distinguish specific PD motor subtypes well, although findings are mixed. Furthermore, our review
demonstrates that nTD-PD patients have more severe neuroalterations compared to TD-PD patients. More
specifically, nTD-PD patients have deficits within striato-thalamo-cortical (STC) circuitry and other
thalamocortical projections related to cognitive and sensorimotor function, while TD-PD patients tend to have
greater cerebello-thalamo-cortical (CTC) circuitry dysfunction.

Conclusions: Based on the literature, STC and CTC circuitry deficits seem to be the key features of PD and the
subtypes. Future research should make greater use of multimodal neuroimaging and techniques that have
higher sensitivity in delineating subcortical structures involved in motor diseases.

Parkinson’s disease (PD) is a progressive and complex neurodegener-
ative disorder. Patients with PD show highly heterogeneous clinical
characteristics developing tremors and/or kinesia paradoxa, an
umbrella term for non-tremor motor symptoms including absence
of movement (akinesia), decreased amplitude of movement (hyp-
okinesia), and slowness in movement execution (bradykinesia)."

PD motor subtypes, including tremor-dominant (TD) and
non-tremor dominant (nTD) (often characterized by pos-
tural instability & gait difficulty (PIGD) and akinetic-rigid
(AR)), suggest different pathophysiologies.”” These motor

subtypes are mainly determined by the Movement Disorder

Society Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS), a comprehensive 50-question assessment of both
motor and non-motor symptoms associated with PD.® Simi-
larly, the original UPDRS is also utilized in PD research and
can be used for the same purpose. The ratio of the mean tremor
scores (eight items from Part III) to the mean of the PIGD scores
(five items from Part III) is used to delineate TD patients
(ratio > 1.5), from PIGD patients (ratio < 1), and from intermedi-
ate or ‘mixed-type’ patients (ratios >1.0 and < 1.5).” Additionally,
subscores of TD and AR can be derived by averaging symptom

specific questions from Part IIL® These classifications help to
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clinically distinguish PD subtypes and allow for steady investiga-
tions of symptom specific alterations.
On a pathological level, PD is characterized by progressive

intertwined  subcortical

9, 10

degeneration  of dopaminergic

nigrostriatal systems, Lewy body aggregations, and depletion
of dopamine in the striatum''™" all of which can be identified
via postmortem histology. Compared to TD, AR patients have
shown more severe cell loss in the substantia nigra (SN) and such
cell loss was shown to negatively correlate with AR symptom
severity.'* nTD patients have shown more severe cell loss in the
ventrolateral part of the substantia nigra pars compacta (SNc) that
projects to the dorsal putamen, causing inhibition of the gluta-
matergic thalamo-cortical (direcf) pathway and reduced cortical
activation, while in contrast, TD patients show more severe neu-
ronal loss in the medial, rather than in the lateral SNc that pro-
jects to the lateral putamen, caudate nucleus, ventromedial
thalamus, and rubral areas (indirect pathway) leading to hyperactiv-
ity of thalamo-motor projections."* In this light, nTD is thought
to be due more to abnormal basal ganglia (BG) output while TD
evolves additional downstream compensatory mechanisms.> Pre-
vious studies using diverse neuroimaging methodologies have
been utilized to understand PD circuitopathies. However, the
full extent of the neuroanatomical and neurofunctional differ-
ences between the PD motor subtypes TD and nTD that can be
seen with neuroimaging are poorly understood.'” *~'7 Further
differentiating motor-subtypes of PD through neuroimaging will
increase the ability to monitor progression and identify at risk
populations, possibly even at an asymptomatic phase of PD,'® 2
and work to improve localization and targeting for non-invasive
and invasive neuromodulation therapies.?"” ?* Here, previous
research that used neuroimaging techniques to characterize struc-
tural and functional variances between TD and nTD subtypes of
PD are consolidated. First, an overview of imaging studies related
to the neuroanatomical, functional, and neurochemical basis of
TD and nTD PD is given. These are followed by descriptions of
limitations that occur within each imaging methodology when
applied to PD. Lastly, potential hypotheses are addressed that
may be tested by neuroimaging PD motor subtypes, their clinical
implications, and how this may increase insight into neurobio-
logical underpinnings.

Methods
Literature Selection

This review was conducted according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines. We evaluated human neuroimaging studies on PD sub-
types TD, nTD, PIGD, and AR published in international English
written peer reviewed journals up to May 2020. A PubMed search
based on various dictions of Parkinson’s disease (PD) (MeSH),
neuroimaging technique (MRI) (MeSH), and PD subtypes
(TD (MeSH), nTD, PIGD, AR) were applied (see Supplementary
Material File S1). This resulted in 546 publications that were
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independently reviewed by two assessors. Full text of the articles
were reviewed and additional articles were found via reference

sections. Seventy-five articles were included in the final analysis.

Inclusion Criteria

1. Study analyzed human data and was published in English.

2. Study reported the proportion of PD patients with TD-PD
and nTD-PD.

3. Comparative neuroimaging analysis had been carried out
directly concerning TD-PD versus nTD-PD.

Data Extraction

Relevant data obtained and collected using a data extraction
spreadsheet and grouped per neuroimaging modality included:

* Primary author and year of publication

* Imaging method

* MRI strength and vendor

* Number of participants in PD subtypes

» Key findings

Results

Structural Imaging
Structural Imaging Techniques

MR -based techniques allow for visualization of the microstruc-
tural anatomy of brain tissue. One processing method on high-
resolution 3DT1 sequences is called voxel based morphometry
(VBM) that can compare local concentrations of gray matter
between groups of subjects.> Other techniques include
diffusion-weighted imaging (DWI), a method to measure the
diffusion of water molecules within the brain, and diffusion
tensor imaging (DTI), a paradigm that analyses the three-
dimensional shape of such diftfusion and allows for visualization
of fiber tracts. Additional quantitative structural MR -based tech-
niques include neuromelanin sensitive MRI (NM-MRUI) used to
detect a product of dopamine metabolism called neuromelanin,
age-related white matter changes (ARWMC) which are
hyperintense lesions observed on T2-weighted MR images, and
leukoaraiosis or white matter hyperintensities (WMH), an abnor-

mal change in white matter near lateral ventricles.**

Cortical and Subcortical
Volumes

Gray Matter

Measurements of gray matter (GM) can potentially reveal more
about neural functions that underpin particular symptomologies
(Table 1). In reference 25, researchers found that TD had less
GM atrophy in frontal, parietal, occipital, and temporal lobes, as
well as in the caudate nucleus and the cerebellar culmen, and
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later found TD had larger GM volumes (GMV) in the amygdala
and globus pallidus (GP) compared to PIGD but with no cere-

bellar differences.?

In 2017, one group found lower GMV in
the frontal cortex of TD compared to PIGD, but this difference
did not hold true when nuisance covariates of disease severity,
disease duration, and medication were controlled for.?” Another
study showed TD to have significantly larger GMV along the
lateral border of the right thalamus compared to nTD.*® The
GM degeneration in frontal regions could be the underlying
cause or consequence of the greater cognitive decline that is
commonly seen within PIGD® while cognitive decline itself
may also feed into gait difficulties, as fall risk was previously
found to be related to the motor-cognitive interdependence of
executive function.®® The amygdala GMV changes could also
underlie numerous affective (non-motor) symptoms in nTD,
including depression, apathy, and anxiety.®' Similarly, as loss of
smell is a prodromal sign of PD,' TD having larger olfactory
bulb volumes compared to nTD*? could point towards differing
symptoms between subtypes.

Interestingly, TD had lower GMV in the posterior part of the
right quadrangular lobe and in the declive of the cerebellum®
while a separate study showed TD had decreased GM in the
cerebellular left lobule VIIIa compared to AR.*® Cerebellar atro-
phy could explain deficits within cerebello-thalamo-cortical
(CTC) circuitry known to be deficient in TD patients™* as the
cerebellum has shown to perceive tremor as a voluntary motor
behavior and modulate tremor amplitude.>® The smaller pallidal,
putamen, and caudate volumes in nTD are in line with the
model of degenerating neurons in the cortico-basal ganglia-tha-
lamo-cortical loop that seem to be related to hypokinesia.*® Fur-
thermore, increased thalamic and GP volumes found in TD
suggest this regional enlargement indicates that TD are initially
protected from a damaged basal ganglia-thalamocortical circuitry
and could potentially explain why the TD subtype does not
experience PIGD symptoms associated with BG degeneration.?
These results are further supported by a recent lesion study
showing PIGD patients have higher novel deep gray nuclear
lesion load in the caudate compared to non-PIGD and healthy
controls (HC).>** GM analysis appears to support current PD cir-
cuitry models that underlie motor subtype differentiation of neu-
ronal loss in key relay nuclei and stands as a valuable tool in the
diagnostics and evaluation of PD subtypes.

Cortical Thickness

An important neuroanatomical aspect of PD is the thickness of
gray matter in the cortex, as cortical thinning has shown to be
primarily responsible for the reduction of cortical GMV.?” One
study found reduced cortical thickness in PIGD patients com-
pared to AR patients in areas including the bilateral frontal lobes,
superior parietal cortices, and posterior cortical regions.®® The
study reported PIGD to have reduced cortical thickness com-
pared to TD in areas including the dorsolateral frontal lobes,
anterior temporal lobes, and cuneus/precuneus, although no dis-
tinctions were seen when TD were compared to AR individuals
or between PIGD and AR as the most pronounced cortical

differences were between TD and PIGD patients localized to the
left frontal region.

In contrast, a study using a smaller sample found that cortical
thickness was similar between AR, TD, and healthy controls in
specific brain regions part of the default mode network (DMN)
such as the posterior cingulate cortex (PCC), the precuneus, the
bilateral IPC, the medial prefrontal cortex (PFC), the anterior
cingulate cortex (ACC), and the medial/lateral temporal lobe,
while another study of PD patients with mild cognitive impair-
ment (MCI) also showed similar cortical thinning amongst MCI-
TD compared to MCI-PIGD.* Another study showed that TD
mean subcortical volumes were larger than PIGD in the puta-
men, caudate nucleus, GP, amygdala, and nucleus accumbens
(NAc), and although these differences did not reach statistical sig-
nificance, shape analysis resulting from local outward surface
deviations revealed a significant difference in the right NAc shape
between the two PD subtypes, mainly driven by the TD sub-
type, and the magnitude of the shape deviation was significantly
correlated with MDS-UPDRS TD and PIGD ratios suggesting
that this NAc metric may hold as a neuroimaging biomarker for
PD subtype.*!

While cortical thinning has shown to be a significant
characteristic of advancing PD severity, progression, and

2

dementia-risk stratification,”” cortical volume disparities
between PD motor subtypes are less clear. While many stud-
ies investigating cortical volumes show no difference

40, 41, 43745 ese results could be due

between PD subtypes,
to dissimilarities in disease duration, amyloid deposition, and
acetylcholine denervation, all of which differentially affect

46, 47
. Furthermore, several of the

neuronal degeneration.
studies that did not find differences between PD subtypes
used 1.5 T MRIL*" ** *3 Subcortical volumes that require
higher resolution MRI to image may prove to be more effi-
cacious in volumetrically distinguishing TD from PIGD
patients. Nevertheless, alterations in cortical thickness in PD
may still be due to divergent etiologies as results show more

cortical changes in PIGD when differences were found.?®

White Matter

White matter (WM) provides connections between cortical
and subcortical GM regions. WM alterations are thought to
interfere significantly with postural control due to greater
degeneration of complex bilaterally distributed visual,
somatosensory, and vestibular systems shown via higher WM
signal hyperintensity burden in PIGD compared to TD.*®
Age-related white matter changes (ARWMC) have been
shown to be lower in TD patients compared to PIGD, and a
follow up 2 and 4 years later showed that total ARWMC
scores remained lower in TD compared to PIGD patients.*’
Similarly, studies show that PIGD have reduced white matter
integrity compared to non-PIGD, and that non-PIGD
patients have lower white matter hyperintensity scores
(WMHs) when compared to PIGD.?>*">* Conversely, a differ-
ent study showed that the mean number of voxels with
WMHs did not differ between TD and PIGD, even when
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. o 33, 39, 40, 45, 55
small sample sizes as summarized in Tables 1 and 2.7> 7 * #> >

As MR technology (e.g., ultra-high field) and imaging techniques
advance (e.g., quantitative susceptibility mapping (QSM) that
quantifies the magnetic susceptibility value of brain tissue and pro-
vides contrast between iron-rich gray matter nuclei and surround-
ing tissues), MRI could be used to examine more subtle and
subcortical structural changes that occur in PD that cannot be

detected with low-field strengths and current approaches. >

Diffusion Imaging

It has been suggested that microstructural integrity degradations
of the BG visible via MR diffusion data play a fundamental role
in the underlying neural correlates of TD-PD symptomologies.”
Correspondingly, connectivity indices derived from diffusion
images have shown lower structural connectivity in nTD in key
neuronal motor areas such as the globus pallidus—substantia nigra
tract, globus pallidus—thalamus tract, putamen—precentral cortex
tract, thalamus—precentral cortex tract, and the caudate nucleus—

supplementary motor area tract compared to TD.%

Fractional Anisotropy

Fractional anisotropy (FA), or the extent that the diffusion of
water molecules is restricted or unrestricted in specific directions,
is used to denote the integrity of white matter within the brain by
providing information about myelination, fiber organization, and
the number of axons in a single measure.®> While an increase in
FA could indicate increased myelin, increased axonal density/cal-
iber, or decreased fiber mixture® in general decreased FA along
with increases in mean diffusivity (MD) in the SN have pointed
towards an ability to distinguish PD patients from healthy
controls.**

TD patients have shown to have increased FA compared to
PIGD patients in multiple projection, association, and commis-
sural tracts, while motor severity was correlated with FA within
the corpus callosum of TD patients and even stronger in multiple
association tracts within PIGD patients.”” ** In ,** PIGD dis-
played lower FA in the left substantia nigra compared to
TD. These studies are in line with others that show TD patients
have increased FA compared to PIGD in the external capsule
(ECCQ), anterior PFC, and lateral to the horn of the anterior ven-
tricle®® and that PIGD patients have significantly decreased FA in
the bilateral superior longitudinal fasciculi (SLF), bilateral anterior
corona radiate, and in the left genu (front) of the corpus callosum
when compared to non-PIGD.®® These diffusion studies exem-
plify that the decreased FA found in PIGD are in line with
models demonstrating PIGD to have more motor impairments
and worse prognosis due to microstructural white matter abnor-

malities in the cortico-basal ganglia-thalamocortical tract.

Mean Diffusivity

Alongside FA, mean diffusivity (MD) is a diffusion measurement
that denotes the average diffusion within a voxel and is used to
measure the mobility of water molecules. TD patients have
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shown increased MD in the thalamus and middle and superior

67, 68
as well as

cerebellar peduncle when compared to PIGD
increased MD in the tracts connecting the right inferior parietal
lobule (IPL) with the right premotor cortex and primary motor

67, 69

cortex and in major white matter tracts including the fornix,

%8 While one article

longitudinal fasciculi, and corpus callosum.
showed that TD did not differ in histogram-derived MD metrics
compared to AR* and another showed no significant group dif-
ference in MD between PIGD and TD,”” one showed TD
patients had a 7% decrease in MD within the putamen compared
to PIGD patients.70

These results suggest that while diffusion data shows TD to
have deficits in connecting fibers in motor cortical areas, PIGD
patients show impaired WM tracts involved in both cognitive
and motor control which could partially account for the more
severe postural and gait impairments® ®* as well as PIGD related
incidences of freezing of gait (FOG)’! and non-motor PD symp-
toms like depression.”” Because diffusion parameters can correlate
with worse motor and cognitive function in PD® and TD
patients seem to have increases in MD compared to the PIGD in
certain areas, such WM alterations may underlie the greater

. : . 71, 72
impact on motor and non-motor function seen in PIGD." "

Diffusion Imaging Limitations

Since diffusion parameters are sensitive to various microscopic
alterations in the brain such as crossing-fiber mixture, demyelin-
ation, and axonal density/caliber, the degree to which the vari-
ability in diffusion measurements indicate alternations in PD
must be interpreted with caution. Additional limitations across
diffusion studies include differences in MRI field strength,
sequences used, age of the cohorts, time of disease onset, and

8. 0569 70 1 ongitudinal studies are additionally

sample sizes.
needed to understand the progression of diffusion alterations in
PD on white matter microstructure.”” 7" 7> 7* QOverall, high-
quality diffusion stands as a useful method in differentiating struc-
tural aberrations between PD subtypes and serves as an important
complement in histological studies that investigate fiber organiza-

tion and the microstructure of circuitopathies.

Functional Imaging
Functional Imaging Techniques

A pivotal brain-imaging technique is functional magnetic reso-
nance imaging (fMRI) which indirectly measures brain activity
via changes associated with cerebral blood flow called a blood-
oxygen level dependent (BOLD) response (Table 3). Outcome
of fMRI

(FC) where temporal synchronizations of activity between ROIs

measurements include functional connectivity
reflect communication and correlation during a task, and resting
state fIMRI (rs-fMRI) used to calculate interactions between
regions while the brain is in a resting state. Furthermore, arterial
spin labelling (ASL) is a technique that measures cerebral blood
perfusion and allows for the measurement of cerebral blood flow

(CBF). Lastly, magnetic resonance spectroscopy (MRS), a non-
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NEUROIMAGING OF PD SUBTYPES

invasive technique that quantifies in vivo patterns of neuro-
metabolic alterations, analyzes specific molecules and evaluates

metabolites and products of metabolism.”

fMRI
Functional Activity and Connectivity

Many studies have shown task-based functional alterations between
TD patients and nTD within the cerebellum, the putamen, the
temporal cortex, and the parietal cortex.>* ¥ ** 7% 7682 Other
areas have also shown to have functional difterences between motor
subtypes including TD having enhanced GPi-motor cortex
(MC) and putamen—-MC coupling compared to nTD, mainly in
the most-affected hemispheres (MAH),>* PIGD having lower FC
(i.e., more disrupted hubs) in the cerebellum, mainly in the left
hemisphere and tonsils compared to TD,*' and nTD showing
reduced BOLD activity in the PFC and GP compared to TD.*

Compared to TD, nTD have also shown reduced activation
in bilateral dorsolateral PFC, contralateral pre-supplementary
motor area, ipsilateral IPL, ipsilateral precuneus, contralateral
caudate, contralateral GPi and GPe, and the ipsilateral thalamus
during a gripping task, while no areas in nTD showed increased
activity compared to TD, showing that even in the earliest stages
of PD nTD show greater deficits in frontal cortical areas com-
pared to TD.* Furthermore, when compared to TD, AR have
shown to have increased activation during sequential finger tap-
ping tasks in cortical and subcortical ROI related to PD such as
the lentiform nucleus of the basal ganglia, as AR showed
increased activity in contralateral CTC circuits while TD showed
significant differences in the contralateral striato-thalamo-cortical
circuit (STC) and CTC pathways including the cerebellar vermis,
contralateral cerebellar hemisphere, and ipsilateral thalamus.”®
Likewise, a recent study with patient’s deep brain stimulation
(DBS) cycling ON and OFF showed AR have increased activa-
tion in the supplementary motor area (SMA) and primary motor
cortex (M1) compared to TD.®

Resting-State fMRI

Using rs-fMRI, PIGD have shown less subthalamic nucleus
(STN) FC within the left anterior and posterior lobes of the cer-
ebellum, less FC between the bilateral STN and left cerebellar
anterior lobe and right middle cingulate gyrus, but greater FC
between the STN and the left middle occipital lobe, left superior
parietal lobe, and right middle frontal lobe compared to TD.**
Conversely,” found no significant differences in STN FC
between TD and nTD.

In reference 17, the ability to functionally distinguish TD and
nTD was influenced by the cerebellum, while in 15 TD showed
increased global functional connectivity density (FCD) in the
cerebellum anterior lobe relative to AR. In 86, TD showed to
have greater connectivity between the bilateral ventral interme-
diate nucleus (Vim) and the bilateral cerebellum compared to
PIGD while reference 87 showed TD to have increased FC

between the left putamen and right cerebellum lobule VI and
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cerebellum crus I compared to PIGD. TD has also shown to
have higher FC between the BG and calcarine region (occipital
lobe) compared to PIGD.®® In a later study, PD patients with
FOG showed decreased FC between the left caudate and the
right superior temporal lobe (STL) and left cerebellum, between
the right caudate and bilateral dorsal putamen, left GP, and bilat-
eral STL, and increased FC between the right precuneus and the
left dorsal putamen compared to those without FOG.”*

Using amplitude of low frequency fluctuations (ALFF) which
detect the regional intensity of spontaneous fluctuations in
BOLD signals,”® found TD to have increased ALFF in the puta-
men and the posterior lobes of cerebellum compared to PIGD,
and decreased ALFF in the temporal gyri and left superior parie-
tal lobule. In another study using low frequency rs-fMRI, TD
had decreased correlation of the left and right DN with the bilat-
eral posterior lobe of cerebellum compared to AR.*"

TD have also shown more regional homogeneity (ReHo) alter-
ations, a resting-state analysis that examines synchronizations of
temporal changes in BOLD signal, in the cerebellum, right para-
hippocampal gyrus, and CTC loops while PIGD showed
increased ReHo values in areas involved in the STC loop includ-
ing in the frontal, parietal, occipital, temporal, and limbic lobes,
basal ganglia, and thalamus.”® ®° Lastly, compared to AR, TD
have shown lower voxel-mirrored homotopic connectivity
(VMHC) values, which denote synchrony in patterns of spontane-
ous rs-IMRI activity, in the posterior lobe of the cerebellum.”

These results show that fMRI and rs-fMRI are valuable imag-
ing techniques to better understand functional differences in PD
subtypes and further underline the importance of cerebellular
and basal nuclei activity as well as the STC and CTC tracts in
functional PD imaging, with® recently denoting the cerebellar-
receiving nucleus of the thalamus, the Vim, as a “key nodal
point” in both PD subtypes. It seems that the dysfunction of the
STC seen in bradykinesia and rigidity and the primary dysfunc-
tion of the CTC in TD are the key functional deficits between
PD subtypes.”” These results are in line with structural findings
and support network models of PD subtypes.

Cerebral Blood Flow

Cerebral blood flow (CBF) is the movement of blood in arteries
and veins within the brain and is an important marker of PD as
it maintains proper brain function by supplying the brain with
oxygen and energy substrates that remove waste products of
metabolism.”* A recent study using ASL showed TD to have
more hypoperfusion in the temporo—parieto—frontal network
while PIGD showed hypoperfusion in a predominantly posterior
pattern as well as hyperperfusion in the BG, although these dif-
ferences were removed when levodopa medication, and disease
severity and duration were controlled for.?’ Comparatively, in a
recent structural study PIGD were associated with an increased
prevalence of thalamic and WM cerebral microbleeds (ie, small
chronic brain hemorrhages caused by abnormalities of small brain
vessels) when compared to TD and AR.*? These results suggest
that CBF and other cerebral blood parameters could be valuable
imaging techniques to differentiate between PD subtypes.




BOONSTRA J.T. ET AL.

(senupuoD)

*@L 03 padJedwod @9Id UT punos
9JBM D4 4O S9SEIJOUT ON * LS IYSTJ pue DWd 349 pue a3epned 3149T
9Y3 uasm3aq pue wnpTTTed JYSTJ pue a3epned 34T 9yl UIIMISQ
D4 JamoT pue (usweind TesJop pue TBJIUSA TeJDIETI] pue 33epned

1497 9yl udaM3aq 89) Wn3eTJlS SY3 UT D4 paseaJd3dp pey aold
*@9Id 03 paJedwod I SNJUd WNTTIGaJ3D pue IA 9TNGOT WNTTGIJD

3y8TtJ pue usweind 33T 9yl UIBMISQ D4 PISEIJOUT pPaMOYS dL
*@L 03 paJeduod
eaJe Aue UT A3TATIOE paSEaJdUT MOYS 30U PTp @Lu "@Lu 03
padJedwod snweTeyl Teda3eTTsdT pue ‘(34D ‘TdD) TeJa3eTeJdiuod
‘93epned TeJdleTedizuod ‘sndA8 TenSutT TeJd3eTeJIUO0D
‘snaundadd TedaleTTsdT ‘1dI TeJ931eTISdT ‘YWS-9ud

TeJ93eTeU3UOD D4d7a TeJ93IeTTq 3y UT UOTIeATIO. UaysTy pey al
*NO @l 03 paJedwod snuA8

Tedodway Jotdadns 3YSTJ Y3 UT UOTIBATIOE PaSeaJdduT pey NO d9Id
*@9Id 031 paJedwod STTSUOL pue aJaydsTway

3497 9Y3 UT ATUTEW ‘WNTTIGIJID dYJ UT SANTEA SD4 Jay3Ty pey alL
*¥V 03 paJedwod 7dD TeJSIRTT] dYF Y3TM

NG 3YSTJ pue 333T 3y} JO SUOTIETJJ0D SATITSOd paseaddsp pey L
* Yy 03 paJdeduod
SuoT8ad dTWeTeyl pue JeTNTTGaJdd UT AITATIOE USYSTY pey
L " ¥V 03 paJedwod og Y3 40 SNSTINU WJOSTIUST Y3 UT AFTATIOE
paseaJdap pey L ¥y 03 padedwod JS TeJud3eTTsdr ay3 Jo4

323dX3 S3TNDJTD JLD pue DS TTe UT UOTIBATIOR paseaddap pey al
*STOJ3UOD pue gL

03 paJeduiod DJd 343T pue DdI 343T Y3 UT UOTIBATIOR JBMOT pey ¥y
WNTT9GaJad pue ‘snuAd
Tedwedoddtyeded 1y8td ‘snuA8 Ten8utT 3YSTJ Yl UT SanTeA
OH3Y J3y3Ty pue snuA3 Te3TdId50 JoTJ3dNS 34T pue snaund

314OT TS 33T “snaunddud 343T dY3 UT OHIY JIMOT PIITGTYXS AL
*d9Id 03 padJedwod snuA3

Tedwedoddty-eded 3YSTJd 9yl UT SINTEA OHIY SSEIJDUT pamoys dL
*yv 03 padJedwod 3qOT JOTJIJUE
WNTTGaJad 9yl UT @D4 TeqOTS paseaJdut pue ‘sndA8 Tejuody
JoTJadns 3y8TJ pue snuA3 TejuoJ} STPPTIW IYSTJ “SnUAS Tejuous

JOTJDJUT 343T 9Y3 UT @D4 TeqoT8 paseaddap AT3IuedyTudts pamoys al
*@91d 03 paJedwod (3qot

Te31d1220) UOTSadJ SUTJEDTED pue Hg 3yl Udamilaq D4 JaySTy pey dL
*HVIW ®Y3 Ut ATutew

‘gLu 01 padedwod SutTdnod H-usweind pue JW-TdD padueyua pey dl
*dlL o3

padJedwod (TW) X340 Jojow AJewTtdd UT UOTIBATIOE DJOW PAIMOYS YY
*@9Id Y3TM padedwod STNGoT
Te3atJed JoTdadns 1437 9yl pue snJuA8 Tedodwal TedaleTTq ayl
UT SSNTEA 447V JOMOT pue usweind TeJU33LTTQ SYJ pue WNTTIGaJdd

3Y3TJ 8Y3 40 IIIA 9TNQOT Y3 UT S8NTeA 447V Jaysty pey dlL

8T

8¢

(214

1X4

(44

8T

i

144

LT

8¢

9¢

S€

9¢

[44

€€

€C

otT

(4"

14 6T

LT

€T

€C

S¢

6T

€C

6T

9T

9T

(%

14

T

ot

ST

ST

9T

T4

T¢C

T¢C

T

<t

sdTTTyd L €

SUSWITS | €

D1 ¢
Ile

SUSWITS | €

Ile

SUBWITS | €

SUSWITS | €

SUSWITS | €

SUBWITS | €

SUBWITS | €

IleE

SUBWITS | €

IleLS'T

SUSWITS | €

1,(9T0T “*TE 33 3J00AJBN)

,5(070T <" TE 33 UaYS)

wr (ETOT " T 39 TYs0poud)
2s(LTOT " TE 33 TYoW)
15(£TOT " TE 39 ew)

0g(ETOT ‘" TE 32 NT7)

6. (TTOT ‘" Te 32 STMIT)
cc(9TOT "TE 3D
exeAeueunuae))

¢, (9TOT *Te 3 Buerr)

65 (6TOT “"TE 33 NH)

< (£TOT “*T€ 33 NH)
25 (8T0OT " T€ 33 NOH)
»e(TTOT " Te 33 YDTWTdH)

¢2(0T0T ‘" Te 39 oTZJEWIQ)

o, (STOT “*TE 32 UBYD)

A3ITATIOBUUOD pue AJTATIOE TRUOTIdUNg

sbuipuiy

OH

P3aXIN qv asid aLu

ar

yibusns ppeld

Apms

sedfigns Jojow aQd usamiag (1dINly) IHIN [BUOOUNS U)IM S8DUBISId € 319V.L

183

MOVEMENT DISORDERS CLINICAL PRACTICE 2021; 8(2): 175-192. doi: 10.1002/mdc3.13107




NEUROIMAGING OF PD SUBTYPES

REVIEW

*AHAI}OBUUOD 21d0J0WOY PAIOLIW-|OXOA ‘DNHA ‘JUBUIWOP-IoWaJ} ‘L ‘e|sa] ‘1 ‘Snajonu dlweleyigns
‘NLS ‘eqo] |eJjodwse) Jouadns “I1S {|eo110d-0WelBY}-0Jel)s ‘OIS 81100 Joyow Aleyusws|ddns ‘YIS ‘snuAB |enuedisod ybu ‘IS ‘Aylsuebowoy |euoifal ‘OHay ‘Jowal)y Bunsal Yyym Jowsl) [enuasse
‘134 8302 Jojowald ‘DINd ‘Aynoyjip yeb pue Ayjigeisul [einysod ‘goid X830d 8)enbuld Jolsisod ‘D0d ‘uoledipsaw edopoAs Uo ‘NO ‘JUBUIWOP-IOWS}-Uou ‘gLu ‘eyeweln|b-|Aledse-|Ayeoe-N
yum sreuedse-jf1eoe-N ‘vyN fedAigns ereujwieiepul/eleipaulisiul/edAl-paxiw ‘pPaxiiy Xxe10d Jojow QN ‘eleydsiwey pelose 1sow ‘HYN X109 Jojow Arewud ‘[N 8|ngoj| [eyelied Jousjul “1d] xe)
-109 |eyalied Joudjul ‘Od| ‘s|ouod Ayyeay ‘OH ‘snpijjed sngo|Bb jeutsiul ‘IO ‘snpijjed snqo|b [euiaixe ‘odo ‘eulwein|Bb yym syewein|b ‘njo 014309|3 [eisusn ‘I Yibualls AHAIIOSUUOD |eUOROUNS ‘SO
{Aisusp A)AnosUUOD |euondUNS ‘D4 ‘ANIAIOBUUOD [BuOnDUN ‘D4 fSN8joNU 81eluUSp ‘Nd X81100 [eyuolje.d |BIe)e|0SIop ‘D4d1d HIN24I0 [BD11109-0WE|eY)-0|[9galad Q10 euneaidooydsoyd yim sunesio
‘19 ‘8qo)| Jousysod Jejjogaiad “1d0 ‘suljoydsoydsoyd yum suijoyooydsoydoladA|b ‘oyD Moy poojq |elqelad ‘490 ‘ellbueb |eseq ‘Og pibi-onsune ‘gy ‘uoneniyon|y Aousnbauy-mo| Jo spnyjdwe ‘447v

*SOT3ed Ju)/NTD SuTpJedad U33S SJSM S9DOUSJUSFSTP ON *DH
pue |3J wod} @l SUTYsTNSUTISTp UT AdEUndde %PPT e paMoys SOTied
JD/0Y) pue J)/VYN dTWeTey3 40 UOTIeuTquod 8yl “DH pue [JJ 0

paJedwod TweTeyl ay3 ut Jd/oyd pue JJ/¥yN +O SUOTIONPIJU paMoys aL oT (L34) ¢t 14" 19 1 € 4(LTOC ‘" Te 33 orTe3equeq)
SOTJ]3W TRUOTIDdUNS Jdyl0
Dg 9yl UT uoTsnjdaduadAy se TTaM se uddlied yotdualsod
AT3ueutwopadd e Ut uotsnjdadodAy pamoys @oId TTYM ‘aoId
03 paJedwod s)}JoM3du TejuoJ4-033TJded-ododwal UT uoTsnydadodAy
9Jow pey gL *09Id 03 paJedwod 4g) UTeJq STOYM UT J344Tp JOU PTp AL 9 144 TC sdTTTud L € ,,(£TOT ‘" Te 33 TJeydeg-1v)
MO} pOOTq TeJqaJa)
*snJA8 a3eTn8utd STppTW JYSTJ pue 3qOT JOTJDIUE
JeTT9G9Jd 349T pue NLS TeJd3eTTq 9yl ussmMilaq D4 J93eausd
pey @l *9qoT Teiuod4 STPpTW IYSTJ pue ‘aqoT TeidtdJed yotduadns
39T 9qoT Te3TdT20 STPPTW 343T 9Y3 YITM D4 NLS Jd93eaud pey aoId 44 6T 4 SUSWATS | € +g(910T " Te 33 SueM)
*d9Id 03 paJedwod seade JeTT9gaJdd pue ‘snJA3
Tedwedoddtyeded 3y3Td “snuA8 Ten3uTT JY3TJ 3Y3 UT SINTEA
OH3Y Jay8ty pue ‘snuA8 Te3tdrdd0 JoTJdNS 149T pue snaund
31497 TS 3491 “snaundaud 31497 dY3 UT SINTEA OHIY JBMOT pey aL LT €T 4 SUSWATS | € 5,(9T0T "Te 33 Buerr)
Yy 03 paJedwod
WNTT3Gaddd dY3 40 9GOT J0TU33S0d dY3 UT DWHA PISeaudap pey alL 9¢ 6C TC SUSWITS | € 06(STOT ‘" TE 33 NH)
*@Lu pue gL usamMlaq D4 eade
puey TW-NLS 333T 40 D4 NLS UT 92USJS434Tp TBITISTIE]S 3I9JTP ON 144 ST 9T SUSWRTS | € ,(TTOT ‘' Te 3° [axddpneg)
TYW4 33e3s-Sutisay
*WNTT3GaJad 3yl Aq pasusanpyut
ATTABBY SeM (S9TOUSTOY4d TeqOoT3 pue Ted0T “9T) AdUSTOYJd SUSWITS
Tepou yJom3au SuTsn gLu wod4 aL YsTn3uTlstp 03 AJTTTIqe ayL 14 o1 ST 1s°T 2 (vTOT € Te 35 Sueyz)
*a9Id 03 paJedwod wNTT9gadJad Tedd3eTTq syl pue
WTA TeJ33eTTq 3yl Usamlaqg AITATIIBUUOD Jd1eaJ3 aAeY 03 pamoys dl 153 9¢ 137 ?LE 0g(610T “*Te 32 8uaz)
sBuipuiy OH paxIN v asid aiu ai ybuans pleld Apms

panuiluo)d € 319v.L

184 MOVEMENT DISORDERS CLINICAL PRACTICE 2021; 8(2): 175-192. doi: 10.1002/mdc3.13107



BOONSTRA J.T. ET AL.

"saulyoew s,Auedwod snoLieA Wolj awod A|qewnsald pue asedelep (IINdd) dAIenRIU| S1ayIeN UoIssalBoid s,uosuiyied

Sy} woyy usye} alom sabew| X ueulwop-iowaly ‘gl ‘Aynoyyip web pue Ayjigelsul jeinysod ‘G9Id ‘(1€ 39 1UIUOIUY) ,S8D/10D JOJOW UOJDI0SSD pup Aipwilid 8y} Ul S8SDBI08P DJjOqLIBW YIIM
PBIDIDOSSD SNWD[DY} BY} PUD SNBJONU WIOJ1Ud| 8y} JO wsijoqplaw-1adAy aAnpjal Aq paziiejonioyd, uieyed paje|al- aseasip s,uosupjied ‘dddd ueulwop-iowsal}-uou ‘glu Ay noujip yeb pue Ayjigelsul
|edamsod uou ‘gnidu ‘edAigns ereulwisiepul/aielpawiaiul/edA)-pexiw ‘paxiiy ‘©|ngo| [eyelied Jouejul “1d| ‘euedouniou (J[Ausydopol-p)-de -Axoyrewoqied-gg -jAdoidolon)-o-N [2I-1] {(LI0d4) suednjo|
‘LIO-dd g7l 'S103U00 AyyedY OH euueds eubis JH ‘SINTD 0109 [elsusn IH ‘Jenodsuel) suiwedop ‘1vq ‘esle uuewpoig ‘vg ‘pIBu-oneune gy ‘euedoipiou (JAusydopol-p)-gde-Axoyrowoqgied
-gz-1Adoidotony-g-N pojeution|d ‘L10-dd-dg, ‘©s00N|B-g-0lony[d]-g-Axosp-g ‘Dad-dg, ‘ouluele|fusyd-|-oionpy[4]-9-AxoipAyip-F'c proe oujwe olushouleioiduou  psjege|olpel-dg,  ‘VdOd-d[dg]

*(ov vg ‘1dI) @TnqgoT Te3isTJed
JOTJS4UT pue 923epned UT Saseaddap dTTogelsw

dJow pey @oId ‘sjuatied L o3 padedwod 5Q4-dg; LT ST ST SUSWSTS cor(9TOT € °Te 33 Sueyz)
*yy 03 paJdedwod T9TdNU ayded
9Y3 UT SanTeA SUTpUTq JOMOT SABY O3 papuadJl
dlL *¥v 03 paJedwod usweind pue a3epned 3yl
uT 3e3dn Ja3jJdodsuedl UTUOJOJDS JOMOT pey dL asva-o;; T T T SUBWITS quAmHQN ‘-Te 39 aueo)
*alL o3
paJedwod seaJe Te3eTJlS 9yl UT WSTTOgqelaw
950ONnT8 JUaMOT pamoys Yy "dl pue ¥y
U99M33q J934Tp 30U PTp WSTTOqelaw-5a4 TeqOTD 004 -dg; [43 43 suawats . (vTez €°Te 3° sJadd3)
*@lu
pue gL Ud9M33q U4 TP JOU PTP UOTSSIUAXD dydd 004 -dg; ot 8 8 31D, (866T ‘" TE 32 TUTUO3UY)
*d9Id-uou 03 padedwod WNTT9GaJad
Jojow 3YSTJ pue suod/uteJdqgpTu TesJop 201 (6T0OT
9Y3} UT WSTTOGe}dW PASEIUDUT PAMOYS A9Id 904-dg; 14 ot SW3Io €*Te 38 JITTTaMUYY)
>18uautwedop-uoN
9SeasIp
40 98e3s ATJed swes 3yl 1e glu 03 padJedwod
WN3eTJ3s 9yl UT eldn 1yd Ut J3J44Tp 30U PTIp AL 1ID-dd-dg; 8T (44 Tz ED) <¢(¥TOT “*Te 33 8uos)
*dnoug g1 ay3 ueyy dnoug
@9Id 9y} Ut JomoT AT3uedytudts aJam usweind
pue a1epned ay3 o soTied SuTputq dy1dads L1I3-dd ¢~ I 6C SL 144 X 00r(610T ‘" TE 33 9917)
*sjuatied
dL 03 paJedwod usweind JOTJ3IUE pue 33EpNED
9y3 ut e3dn dTSudutwedop padnpad pey ¥y Vdoa-4[4g;] [43 [43 SUBUWITS »6(PTOT " Te 39 Suad33)
>13uautwedoqg
sBuiputy Jadeunolpey OH paxIN Hv dsidu asid aLu aL Auedwod Apms

sadAygns Joyow ad usamyaq Buibew (13d) AydeiBowoy uoissiwe uoiysod Yym saduaiayld ¥ 31aV.L

185

MOVEMENT DISORDERS CLINICAL PRACTICE 2021; 8(2): 175-192. doi: 10.1002/mdc3.13107




NEUROIMAGING OF PD SUBTYPES

REVIEW

(senunuo))

*uswejnd TeJU93LTTSAT U0 -BUIUOD JO SNITONU

931epned TeJda3eTTSdT U0 -ed3uU0d 9yl UT SOTIeJ SUTPUT] JTAYY UT JI4FIP

J0U PTP PIXTW PUB YV *PIXTW pue ¥y 03 paJdedwod snaTdNu 93epned Teda3eTediuod
pue TeJda3eTTsdT ay3 ut axeidn Jay3ty pey gl ‘usweind TedyaleTIsdr Jo -edjuod

9Y3} UT SOT3ed SUTPUTQ JTAYJ UT USF4TP J0U PTP PIXTW PUB ¥V *PIXTW pue ¥y s01(£00T
03 padJedwod usweind TedaleTedluod pue TedaleTTsdr ayl ut axeidn yaydty pey al 113-d4[I¢,.] 6T 9 k44 SUSWITS ‘- Te 39 T9891dS)
9 e3dn usweind TeUS3eTTSAT UT POXTW pUe Yy USSMIS] JO ‘pPaXT pue
(L US3M]3Q UIDS 3JBM SDDUDJDFJTP ON * YV 03 paJdedwod usweind TedaleTTsdt syl
utT 3e3dn JaySTy pey gL ‘pIXTW 03 paJedwiod SEM Yy USYM UDIS SJIM 3DUSJUDF4TP
OU TTYM ‘pOXT pue Yy 03 paJdedwod 93epned TedaleTTsdr ay3 ut ayeidn
J3y3TyY pey @l *pSXTW 03 padJedwod sem ¥y usym Jou paxTi 03 padedwod jou
3ng “Yy 03 paJuedwod usweind TeUd3TEUIUOD By UT a¥eldn Jay3Ty pey qlL *paXTW
pue ¥y UdSM1Dq USDS DJUDM SIDUDUIS4TP OU STTYM “paxXTW pue ¥y 03 padedwod ,or(1T0T
p932944€ SPTS dY3 03 TeJDILTEJIUOD d3epned ay3 ut axeidn uaysty pey al 112-dd[ I, ] L 0ot 0T ED) ‘1€ 39 TOeTTTIYDS)
*SOT3ed usawelnd Jo 93epned pue SIOTPUT AulswwAse Ut Jo “sayeldn Teutwelnd
TeJo3eTTsdT pue 33epned TeJDIBTT] UT USDS dJSM S3DUSJDJ4TP OU ING “YY
03 paJedwod apTS pa3da44e ATTEITUTTD 3SOW 9yl 03 TeddleTediuod usweind syl
ut ae3dn 113-dd4 J3Y3Ty pey alL *yv o3 padedwod dxeidn a8edane uay3ty pey aL 113-d4[I¢,.] 8¢ 144 1D g, (0OTOT ‘" TE 32 TSSO0Y)
*POXTW pue Yy 03 paJedwod soTied dXeldn SUTTISeq UT US4 TP 30U PTp AL L1ID-d4[ ¢ ] 8T LT L 1D, (LTer €°Te 3 Tueuwey)
*@Lu 03 paJedwod s3ToYap dT3JsuTwedop TeleTdls dJ4aAds SSIT pey alL 113-d4[TIe,;] sstT 70T 90t LE 19 (STOT ‘" Te 39 TMeywed)
*93epned 9y UT S9OUIJDF4TP
ou 3nq uaweind pa3d344eUN puE Pa3d344e 3yl UT AITTTGeTTEAR LV J9YSTY pey alL 113-d4[ I, ] 144 LT 1D, (vTOT € °Te 32 eT2d0W)
*J04 pITTOJIUOD
sem A}TJIASS 3SEISTP J934E 30U INQ 0DId 03 padedwod soTied axeidn
93epned >13deudAsaud uay3ty pey osTe gL *AITJUSASS 9SEISTP J04 SUTTTOUIUOD
UdYM UI3A3 @9Id 03 padedwod sotied axeidn usweind d>13deulsadd uaydty pey al HHu-n_u;HmmL 8Y [an S/ 6€ ED) msﬁaﬁom ‘*Te 32 o)
*@Lu 03 paJedwod rr(vTeT
9)e3dn snaTonu a3epned 149T pue a3e3dn snaTdnu a3epned uesw Jay3Ty pey al 113-dd[1.,;] ece L /ST ED) ‘*1e 33 usutseey)
*yv 03 padJedwod SSNTeA XapuT 33epned
usweind Jo “Xx3aput AJjawwAse ‘sanTeA axeidn ueaw usweind UT J344IP JOU PIP AL
YV 03 paJedwod a3e3dn snaToNu 33epned pue WN3eTJls Teda3eTIsdT JsmoT pey alL L1I0-d4[I¢,¢] o1 o1 19 . (L00T ‘" Te 3o seresI)
*@Lu 03 paJedwod
SuTpuTq 1VQ TTEJSA0 JaySTY dARY 03 papuaJl dL “dLu 01 padedwod suaydsTuay
pa32944L-15e3T 9yl UT SuTpuTq Lva TepITTed JaySty pue ausydsTway
P333944€-350W 9Y3 UT SUTPUTq LvQ TePTTTEd USMOT pey aL *dJ3ydsTway paldajje
-3SOW dY3 UT QLU 03 paJedwod SUTTdNOd JW-udwelnd pue JW-TdD padueyus pey gL 113-d4[ T, ] 9¢ €C TC SuawaTs , (TTOT ‘"Te 33 YITWT3H)
*poTJad SWES 9y UT SDUDJUDFSITP
MOYS 30U PTp L STTYM “SWT) J3AO usweind Teda3leTedluod pue -1sdt
9Y3 pue 93epned TeJda3leTed3luod ay3 utT jeizdn dt3usautwedop padnpad paMoys ¥y hHu-n_“;HMNL €T YT ED) wmANSN €-Te 39 suad33)
*uswe3nd ay3 pue a3epned 3yl ut aeixdn d>t8usutwedop UT J344Ip
30U pTp AITUSASS SSEISTP pue ‘UOTIEJNp ISEISTp a5k U0 payd3ew ¥y pue 4L L1I1D-d4[ T, ] €2 €2 15 ,(TTer ‘" Te 3o sua3ds3)
@l o3 paJdedwod SQSN
SN3TONU 93epned SPTS Pa3I9J4e SSOT Y UT SINTEA sayeidn uamoT pey qLu 110-d4[I¢,;] et 8T g€ ED) ‘-1e 13 orTeSequeg)
cs(LTOT
*s3uaTied |3 UT TEWJOU 3Nq L UT TewdJoude sem 1vd 110-dd[1.,;] et (Law) et vt L) ‘*Te 33 orTedequeq)
>13usautwedoqg
sbuipuly Jsdeijolpey OH P3XIN dV dOld aLu aL  Auedwod Apms

sadAigns Jojow gd usemiaq Buibew (103dS) Aydeibowoy pazueindwod uolssiwe uoyoyd-o|buls Yyum sedousiapid § 319v.L

MOVEMENT DISORDERS CLINICAL PRACTICE 2021; 8(2): 175-192. doi: 10.1002/mdc3.13107

186



BOONSTRA J.T. ET AL. REVIEW

oo . .
%5 Other Functional Metrics
+~ @©
") 5 < E
pze agg
E & C @ g = One study that used proton MR  spectroscopy (‘H-MRS)
< .
s %"g Z§ E‘ z § = reported TD patients had reduced N-acetyl-aspartate (NAA)/
— oy . . . .
o % & E ~ S 258 creatine (Cr) and glycerophosphocholine (Cho)/Cr ratios in the
© ~ U5 X0 .. . . . .
sSuwefy £ § 2 ‘é ipsi- and contralateral thalami compared to patients with essential
2o e L @ .
O g m” £ gL and resting tremor (rfET) and to healthy controls.”® Although
0YSa = o] T E S
B cZ 5 e £ e £c tET is not a PD subtype, NAA/Cr and Cho/Cr ratios were
] —~ ¢ T (V] = O . ..
s "2 ®8 2 e E*—‘ 100% accurate at differentiating TD from rET and controls”
Sv L2 T &L . . . .
% § £ = ° a' :@_ﬁ‘% showing that TD PD can be differentiated from those with pos-
gg 5 §g ® ] qg’_ tural and kinetic tremors using MRS which could help with
~ ==
o % e é g s 2 E 5 diagnostics during the early stages of these diseases. Therefore,
2] ol & S = xgZ . . .
o o2 0 by © g 0 MRS might have the potential to accurately classify PD
£ 59 4 - X -
2 Soung 2 c= g subtypes.
i Wa O w.g S X5
o~ o 0 Q 98 =
S E ©® o Y wn ct ¥
€ 3 C < c S O —
P = T © o 0 ®
o ©®'cT o < =] - " -
SBsae.t| £33 Limitations of fMRI
E 0 c @y ZEga
© T L O e . .o . .
dYeEL &8 % G o Dissimilar and low resolution MR, variations in cohort disease
c Om @ O © . . . . .
vEomg el & 8= % stage, and small sample sizes limit the generalization of functional
) o c < n S ¥ . . . . .
=E5 o ¥ %g o= 2 imaging findings across PD subtypes. Furthermore, artifacts in
< g < E . . L
§ 2.3 :3_‘3 g? E R the BOLD signal from head motion originating from tremor
“ ¥ 0. o . . .
3 420% = & 2—8_ s symptoms are significant limiting factors across PD fMRI studies.
§ 5 ?_:.D g é g,_g. é Eg Nevertheless, functional MRI, and especially rs-fMRI, hold
€T 4 22T .. . o
BsEES LR 233 legitimate potential for better characterizations of PD subtypes
cddHd oA Reje]
a®°®a®a| 3a0° dh lational applications for clinical and psychoth
e e e g 2z and have translational applications for clinical and psychothera-
— ;,)Lg 5 peutic PD domains.
(= =
= ] O L
o} i 8N >0
s} ~ H|lETQ
© = () H|O0O®Q9Og
= H = Ll c c o C
o i 2 4|80 oo
= £ o o =
ke) =% S L (SN" o) .
2| |F 8 F|Se2t Mol lar |
gl |F 2 F[5:2F olecular Imaging
o O o O=wu
— H | O To m
= au
o—=— Q H H
n [ o =
ol |a o 8Lzl Molecular Imaging Techniques
6 & ED . . . . .
3 ges 2 Little is known about the differences in metabolism and
X =82k di d lecul . thin identical brai .
s Rl e o T srupted molecular processing within identical brain regions
5 e . -
o o|&5 29 between PD subtypes.** ** Functional nuclear medicine tomo-
S|l = .. . . . .
< - _’g ’;;‘g’ g graphic imaging techniques are used to investigate such alter-
8 g2o : ations on a molecular level such as positron emission
= 5 |egEs graphy (PET) th i itting radioi
S9=% tomography (PET) that uses positron emitting radioisotopes
® 0 . .
a “ 2=23 (Table 4), and single photon emission computed tomography
- o' s < - . . . .
I= : 0O = (SPECT) that can differentiate between isotopes with different
c N I3
— OX T
% Q55 energy levels (Table 5).
2259
a 2 o n~n|wd23
= 00 - m|=xcT e
oS
Q0 2
c E %) -
> c 1S O]
gl |8 5538 PET Imaging
@ = @ coQn
Q < o 0 &2
[v] =l 28 oL . . .
§ T G Sa5 8 Dopaminergic PET Imaging
+ o wl3s5N .=
o O L EE
o ,g =2 3 The clinical expression of PD can be partially explained by dopa-
b o L . . . . . .
s o8 ax g mine transporter (DAT) loss localized in presynaptic nigrostriatal
bai | & 0 . .
- v o Q| o Lz_ o nerve terminals. Most PET studies used '®F-FP-CIT (N-3—
] 9 - S ~m2e% R
2 En R Q4 g; £ é fluoropropyl-2-b-carboxymethoxy-3-b-(4-iodophenyl) nortropane)
*g E g '_'; 4; g z = 5 as a radioligand for dopamine receptors and re-uptake sites due to its
m — L . . -
O E e - o ’S ESie fast kinetics, relatively long half-life, and low radiation exposure as
0 = o O¢ £ - . . . .
w3 %8 o £le ;-)_ 5¢5 compared to other radioligands. The main ROI is the striatum with
i e el 5 b ElTLo =S . ..
m| 2| sfo = o|8="F%KFE subregions defined as the caudate and putamen (both split into ante-
2B12S0 = Slefugs
— (2]

rior and posterior parts). Compared with a HC group, PD patients

MOVEMENT DISORDERS CLINICAL PRACTICE 2021; 8(2): 175-192. doi: 10.1002/mdc3.13107 187



REVIEW

NEUROIMAGING OF PD SUBTYPES

overall show a reduced striatal "*F-FP-CIT binding in the caudate
and putamen.”™ %

Although reference 97 showed no significant differences in
dopaminergic uptake between TD and AR, two later studies of
theirs showed TD had increased dopaminergic uptake in the

94, 98
> 7% and

caudate and anterior putamen compared to AR patients
a separate study showed TD to have less severe striatal dopami-
nergic defects compared to AR.” Further comparisons between
TD and PIGD show increased dopamine uptake in TD in the
caudate, putamen, and IPL (Brodmann area [BA] 40),'°° and
although one study showed no differences in FP-CIT uptake in
the striatum between the TD and nTD® another reported TD
to have enhanced GPi-MC and putamen—-MC coupling com-

pared to nTD in the MAH.**

Non-Dopaminergic PET Imaging

Early work using '®F-fluorodeoxyglucose (FDG) PET imaging
showed that PD patients had increased metabolic activity in the

101
In another

motor association cortices, pons, and thalamus.
study of PD patients who underwent subthalamic nucleus deep
brain stimulation and subsequent PET scans using FDG, PIGD
showed increased metabolism in the dorsal midbrain/pons and
right motor cerebellum compared to non-PIGD.'*? Separate
studies show increased glucose uptake in the ventral striatum in
TD compared to AR,”* PIGD having metabolic decreases in the
caudate and inferior parietal lobule (Brodmann area (BA) 40)

103

compared to TD, ™~ and TD having lower raphe serotonin trans-

% Another study investigated the vesicular

porter availability.
monoamine transporter type 2 (VMAT2) binding with [''C]
dihydrotetrabenazine as a tracer and showed a significant covari-
ate effect of VMAT2 when comparing TD with AR.>® Further-
"Clabeled  3-amino-4-[2-[(di(methyl)amino)

methyl]phenyl]sulfanylbenzonitrile (*'C-DASB) to investigate

more, using

serotonin transporter uptake, one study showed lower uptake in
the caudate and putamen in the TD compared to the AR, and
TD trended to have lower raphe nucleus 'C-DASB values

194 In addition to these findings, the study also

compared to AR.
reported reductions of 'C-DASB uptake in the thalamus and in
BA 4 and 10 in TD compared to AR with a voxel-based

analysis.

PET Limitations

Motor impairments in PD cannot be fully explained by PET
findings, as complex comorbid deficits and the degeneration of

48, 53 .
Some studies

other neuronal systems occur simultaneously.
focus on local glucose metabolism while others look at whole
brain analysis, making multimodal imaging techniques necessary
to consolidate PD specific degenerations found via PET imag-
ing. As summarized in Table 4, there seems to be an increase in
dopamine uptake in the TD group compared to the nTD

group.

188 MOVEMENT DISORDERS CLINICAL PRACTICE 2021; 8(2): 175-192. doi: 10.1002/mdc3.13107

SPECT Imaging
Dopaminergic SPECT Imaging

SPECT studies in PD make use of '*I-FP-CIT for tracing dopa-
mine uptake in the striatum. Based on available literature it can
be noted that TD compared to nTD show higher uptake in the
putamen contralateral to the MAH.®* 77> 19571% T compared
to nTD show higher uptake on the ipsilateral side,> *” '*7 and
TD show higher uptakes when the means of the right and left
uptake ratios of the putamen were compared between groups as
well.” 1% Differences in the striatum support previous neuro-
pathological models for PD motor subtypes in vivo, where AR
have reduced dopaminergic projections to the dorsal putamen
and TD have reduced projections in the lateral putamen and
caudate nucleus.”” Contrary to these findings, several SPECT
studies found no difference between motor subtypes in the ante-
rior or posterior putamen.''’™"'? Interestingly, there seems to be
a differential pattern of progression in the FP-CIT binding in the
ipsi- and contralateral putamen, since nTD had decreased bind-
ing over time, while TD showed no differences.”® One study
reported PIGD to have lower striatal presynaptic ratios as PIGD
were seen to be more affected by the disease than TD.'%

While the putamen region is the most examined region in PD
SPECT studies, few studies report on other dopaminergic
regions. When TD was compared against AR, higher uptake was

found in the ipsilateral and contralateral caudate nucleus,””

107. 198 4nd in mean caudate uptake,''! while two studies found
no difference in contralateral or ipsilateral caudate binding
ratios.'” ''* Contrary to the findings of higher ipsilateral FP-
CIT uptake in the caudate nucleus, one study found lower ipsi-
lateral striatum and caudate nucleus uptake in TD compared to
AR and another showed PD subtypes with the same severity

. . . . 109
of disease show no difference in caudate uptake ratios.

Non-Dopaminergic SPECT Imaging

One study that used ["**I]p-CIT binding to measure serotonin
reported a 19% higher binding ratio in the thalamus in nTD
compared to TD but no differences in binding ratios within the
striatum, putamen, or caudate nucleus.''> When raphe nuclei
serotonin transporter availability was investigated using '*°I-
iodoamphetamine, TD showed significantly lower uptake com-
pared to AR.” Lastly, when the mean brain CBF, deemed
regional CBF (rCBF) was examined with SPECT, one study
found TD had no significant decreases in rCBF compared to
PIGD in any region.'"*

SPECT Limitations

The asymmetric findings, as summarized in Table 5, are of
important note as bilateral and interhemispheric differences in
PD are a fundamental aspect of the disease. As these findings are
mixed, whereas TD show less FP-CIT uptake in some neuronal
areas and more in others compared to nTD, SPECT should be
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used in combination with other techniques to distinguish PD
subtype etiology.

Discussion

As variable presentations of motor symptoms suggest divergent
pathophysiological, anatomical, and neurochemical mechanisms

. .62, 93, 114
during the course of PD progression”

neuroimaging is a
valuable tool towards identifying neuronal alterations and
predicting symptom manifestation. To our knowledge, the cur-
rent paper is the first to review studies of diverse neuroimaging
alterations between TD-PD patients and those with n'TD motor
subtypes. Neuroimaging has shown variability between TD and
nTD PD patients and persistently supports the notion that the
subtype of TD is the more “benign” subtype as TD shows less
negative alternations compared to nTD.

Importantly, while n'TD have shown symptoms that are more
aggressive compared to TD, revealed by earlier and more rapid

16, 20 .. . .
’ circuitry theories of how PD tremor is

physical decline,
generated have only been minimally investigated within different
nTD PD subtypes. The literature reviewed here shows that nTD
patients have deficits within striato-thalamo-cortical (STC) cir-
cuitry and other thalamocortical projections related to cognitive
and sensorimotor function, while TD patients show greater
cerebello-thalamo-cortical (CTC) circuitry dysfunction. Com-
paratively, structural connectivity analysis show nTD have alter-
ations of cortico—basal ganglia pathways while TD do not.** This
is in line with the “dimmer-switch model” of PD resting tremor,
that suggests pathological activity in the STC from dopaminergic
denervation of the GP triggers tremor-related responses in the
CTC via the motor cortex where both circuits converge; the BG
acts as a light switch triggering tremors on and off, while the
CTC modulates the tremors intensity similar to a light dimmer.>*
The results further support studies showing depletion of
nigrostriatal dopamine and subsequent BG dysfunction alone is

5, 115, 116
© 77 7 as other

insufficient to characterize TD pathology fully
neuronal systems such as the cerebellum play ample roles in the
production of tremors.** 7 Activity in the BG and cerebellum
has shown to be highly associated and structurally connected via

the thalamus and pontine nucleus.''’

When targeted surgically
with DBS, the Vim has shown to produce relief of tremor®! and
activity in the Vim that receives projections from the cerebellum,
as well as from the GPi, has shown to synchronize with, mediate,
and be directly related to tremor activity.''®*'*! These finding
are consistent with reports that the GP and putamen in TD
patients have increased connectivity with the Vim—motor
cortex—cerebellum circuit via the motor cortex”” and further
support results showing that a combination of STC and CTC
circuitry might be behind the generation of tremors in PD."”
Complementary neuroimaging techniques are required to iso-
late neural mechanisms underlying PD motor symptomologies
that can be used as non-invasive biomarkers in assessing PD trajec-
tories and responses to treatment. Altogether, there remains an
urgent need for more complete consolidation of macro/

microstructural, functional, perfusion, chemical, and metabolic
data from dissimilar PD cohorts to aid in refining antemortem
diagnoses and improve epidemiological and clinical-therapeutic
trial designs.
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File S1. PubMed String Search. PubMed string search based
on various dictions of Parkinson’s disease (PD), neuroimaging
techniques (MRI), and PD subtypes (TD, nTD, PIGD, AR)
built using Medical Subject Headings (MeSH), additional poten-
tial terms, and PubMed search tools.
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