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ABSTRACT
Objectives: To introduce multilevel repeated measures
(RM) models and compare them with multilevel
difference-in-differences (DID) models in assessing the
linear relationship between the length of the policy
intervention period and healthcare outcomes (dose–
response effect) for data from a stepped-wedge design
with a hierarchical structure.
Design: The implementation of national essential
medicine policy (NEMP) in China was a stepped-
wedge-like design of five time points with a
hierarchical structure. Using one key healthcare
outcome from the national NEMP surveillance data as
an example, we illustrate how a series of multilevel DID
models and one multilevel RM model can be fitted to
answer some research questions on policy effects.
Setting: Routinely and annually collected national data
on China from 2008 to 2012.
Participants: 34 506 primary healthcare facilities in
2675 counties of 31 provinces.
Outcome measures: Agreement and differences in
estimates of dose–response effect and variation in
such effect between the two methods on the
logarithm-transformed total number of outpatient visits
per facility per year (LG-OPV).
Results: The estimated dose–response effect was
approximately 0.015 according to four multilevel DID
models and precisely 0.012 from one multilevel RM
model. Both types of model estimated an increase in
LG-OPV by 2.55 times from 2009 to 2012, but 2–4.3
times larger SEs of those estimates were found by the
multilevel DID models. Similar estimates of mean
effects of covariates and random effects of the average
LG-OPV among all levels in the example dataset were
obtained by both types of model. Significant variances
in the dose–response among provinces, counties and
facilities were estimated, and the ‘lowest’ or ‘highest’
units by their dose–response effects were pinpointed
only by the multilevel RM model.
Conclusions: For examining dose–response effect
based on data from multiple time points with
hierarchical structure and the stepped wedge-like
designs, multilevel RM models are more efficient,

convenient and informative than the multilevel DID
models.

INTRODUCTION
The most widely used method for assessing
the effects of policy intervention in the fields
of econometrics and sociology research with
quantitative methods is the standard
difference-in-differences (DID) analysis. Such
analysis attempts to mimic an experimental
research design using observational study
data.1 Based on data from two time points to
test the difference in the differences over
time between the treatment and control
groups, the DID analysis measures excess
changes due to exposure to treatment in
comparison to change due to time effect
alone in an untreated group. Application of
the method can be found in assessing the
impact of a policy on NHS dental check-ups
in Scotland using data from the British
Household Panel Survey,2 in examining the

Strengths and limitations of this study

▪ This study contributes new knowledge and
experience in the choice of advanced multilevel
difference-in-differences and multilevel repeated
measures models to assess dose–response
policy effects and variation of such effects
among implementing units based on hierarchic-
ally structured panel data under a stepped
wedge-like design.

▪ All model estimates are based on extensive
national data for reliable and robust conclusions.

▪ The example data are not from a real stepped
wedge design; potential differences in model
estimates between a real stepped wedge and
stepped wedge-like designs were not measured.
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effects of the New Cooperative Medical Schemes (NCMS)
on reducing the household’s economic burden of chronic
disease in rural China,3 in examining the effects of the
NCMS on child mortality, maternal mortality and school
enrolment of 6–16 year- olds in China,4 and in assessing
the effects of policy change in the reimbursement rate on
usage of outpatient, inpatient and pharmacy services in
Veterans Affairs patients.5 In all these applications, the
conventional DID analysis was effective in measuring the
overall effects of the intervention, regardless of the change
of such effects over time, typically from two cross-sectional
surveys or a panel study with data from two time points.
It is common for impacts of some policies to occur

long after the intervention, so a longer period of
follow-up with multiple time data points would be neces-
sary to observe the effects that manifest gradually.
Interrupted time series and segment regression analysis
have been used to examine such changes of policy
effects based on monthly data over several years.6

Conventional DID analysis assumes independence in
data or no clustering effects. However, assessing policy
effects often uses data from large-scale surveys with
respondents clustered, such as individuals nested within
a household, and households nested within regions,7 or
healthcare workers nested within healthcare facilities.8

Such a hierarchical structure can violate the assumption
of independence in data required by the conventional
DID analysis because respondents from the same cluster
tend to react in the same way to an intervention.
Recently the DID analysis has been advanced to deal
with data with a hierarchical structure. For example,
Grytten et al9 used multilevel DID models to examine
the effects of a per capita-based remuneration system of
dentists on the quality of dental care, and Arrieta10 used
the same model to assess the impact of Massachusetts
healthcare reform on unpaid medical bills.
As current methods are effective in measuring

the mean effects of a policy intervention during a
certain period or the effects in changes over the period
at the population level, none of them explore the vari-
ation in any impact that might be attributable to the
contextual effects of socio-demographics, subculture
environment and local policies. Identifying variation of
effects beyond the main effects in the population could
be very informative to policymaking in targeting local
implementation. In recent years, the National Health
and Family Planning Commission of China has estab-
lished some surveillance information systems, such as
the Health Statistical Information Center, the National
Maternal and Child Health Routine Reporting System,
and the National Maternal Mortality Surveillance
System. Data from the national surveillance systems are
extensive and available specifically for assessing policy
implementation and evaluation of policy effects.
In the real world, particularly in developing countries,

implementation of a national policy often starts with a
small proportion of targeted individuals or facilities to
pilot the first time block, then the policy is rolled out

sequentially to involve more and more targets for the
second, third and later time blocks until 100% of the
targets are engaged in implementation.11 12 Such inclusion
of targets by time blocks is rarely by random allocation but
according to convenience or purpose. Consequently, the
data structure looks like a stepped-wedge design,13 in
which targets are grouped into time blocks reflecting the
amount of exposure to the policy intervention. Such a
case can be seen in establishing and implementing the
National Essential Medicine Policy (NEMP) in China,14 15

as well as the NCMS,16 the separate two-child policy17 and
the 9-year compulsory education in China.18

The NEMP is an essential part of the national health-
care reform, aimed at improving availability, affordability,
quality and safety of essential medicine. It requested
government-run primary healthcare facilities (PHF),
including urban-based community health centres, rural-
based township and town centre hospitals to use low-cost
medicine with zero profit.19 Hence the same medicines
described in PHFs were available at a lower cost than
they were before by removing the income revenue from
selling drugs in PHFs, and they were cheaper to get
from PHFs than from general hospitals. A direct conse-
quence was for PHFs to improve drug affordability, avail-
ability and rational use, as well as to attract more
patients to their services. The NEMP was started in 2009,
with no facilities implemented in 2008, and 27%, 26%,
25% and 22% of facilities were exposed to the policy
each year from 2009 to 2012 respectively until all facil-
ities implemented the policy. Thus facilities were
exposed to the NEMP during different time periods and
repeatedly reported data from 1 to 4 years by 2012. Such
data were also presented in a hierarchical structure: facil-
ities were nested within county and counties were nested
within the province.
Based on such data, a previous study only examined

the overall effects of the China NEMP in reducing costs
of medicine and increasing service use by using the DID
analysis with a PSM method.20 The DID regression was
often preceded by a PSM in an observational study.
Accounting for the potential bias due to the non-random
assignment of the policy, PSM is one strategy that corrects
for selection bias in making estimates. The analysis
ignored the hierarchical structure in the dataset and did
not investigate the dose–response effect of the NEMP.
In this study we aimed to introduce advanced models

that took into account both the hierarchical structure
and the exposure time to a policy intervention in the
dataset to answer the following three questions on policy
effects that were not answered by the conventional DID
method : (1) whether the expected overall effects
changed as the implementation time increased, that is, a
dose–response effect; (2) how much variation in the
dose–response effect was attributable to context effects
of provinces, counties and facilities respectively; and (3)
how could we identify the best and worst performers in
the policy implementation for effective management.
We explored both multilevel DID and multilevel
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repeated measures (RM) models to answer these ques-
tions. The concepts, specifications and interpretation of
the two methods are illustrated and discussed.

METHODS
Example data and variables
From the national surveillance system on the NEMP in
China, we extracted the total number of outpatient visits
(OPVs) to facilities per year in 5 years (2008–2012) from
34 506 primary healthcare facilities (PHFs) of 2675 coun-
ties in 31 provinces in China to assess the policy effects
on the service uses. The dataset forms a typical four-level
hierarchical structure. A detailed description of the
NEMP contents can be found elsewhere.20 Data collec-
tion was administered by the Center for Information and
Statistics and the National Health and Family Planning
Commission of China. The PHF consisted of township
hospitals (THs), central town hospitals, and community
health centres according to their locality and resources.
Context information on counties and provinces was
obtained from the China Statistical Yearbook.21

The following variables were extracted for the purpose
of illustration of the models.
▸ The dependent variable was the absolute number of

OPVs to PHFs in total per year as a measure of
service utilisation. It has been logarithmically trans-
formed due to its skewed distribution of the raw scale
and termed as LG-OPV.

▸ Time variables were two, one to mark the number of
exposure years to policy implementation of a PHF
(Exposure_t) and coded in the range 0–4, and one
categorical variable of five levels (year) to indicate the
data collection time in any year from 2008 to 2012.

▸ Potential covariates to the utilisation of the service
were the ratio of health professionals to overall staff
(RATIO_HP), the ratio of beds per staff (RATIO_B)
(grouped as <5, 5–9, 10–20, >20), log(ratio of total
assets per staff) (LG_RTA), the type of facility (ToF)
to capture community health service centres (CHCs),
town central hospitals (TCHs) and THs. At the pro-
vincial level, one variable (region) indicated eastern,
central and western China.
The means and SDs of the raw dependent variable by

level of covariates are presented in table 1. We can
observe the highest OPVs in urban-based facilities
(CHCs) and those in eastern China compared with their
counterparts. The means for each raw dependent vari-
able at any variable level demonstrate an increased
number of OPVs from 2008 to 2012 to reflect the effect
of year. The means on the diagonal between the policy
exposure years and the calendar year of policy imple-
mentation show a linear increase to suggest some degree
of dose–response effect ; that is, the more time taken to
implement the NEMP by facilities, the more OPVs to
the facilities. The model analysis attempts to establish
statistical evidence for these phenomena, and further to
find contextual variation in the changing patterns
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beyond the main effects of the policy. The description
of the main independent variables is presented in
online supplementary appendix table S1.

Study design
In 2008 no PHF had implemented the NEMP interven-
tion. In 2009 about 27% of PHFs had implemented the
policy, which was scaled up gradually to cover about 53%
of PHFs in 2010, 78% in 2011 and 100% in 2012. This
means that the 9266 facilities started in 2009 had
4 years’ exposure to the policy intervention by the end
of 2012; 8935 facilities started in 2010 had 3 years’ expos-
ure; 8590 facilities started in 2011 had 2 years’ exposure;
and 7715 facilities started in 2012 had 1 year’s exposure.
In the context of a cluster randomised trial, the

stepped-wedge design involves the collection of observa-
tions during a baseline period in which no clusters are
exposed to the intervention. Following this, at regular
intervals, or steps, a cluster (or group of clusters) is
randomised to receive the intervention. This process
continues until all clusters have crossed over to receive
the intervention. Observations are taken at every cluster
and at each period. Stepped-wedge studies typically have
one period in which observations are made while all
clusters are unexposed to the intervention, and one
period in which all clusters are exposed to the interven-
tion. A number of observations in each cluster and
period made up the data structure.13 Because in reality
the PHFs assigned to implement the NEMP policy each
year were not random but selected by administrative
convenience, the data structure presented in table 2
shows a stepped wedge-like design with four steps.

MODELS
Conventional DID and multilevel DID models
The basic conventional DID model for the overall effect
of a policy intervention is written as M1:

yi ¼ b0 þ b1ðtimeÞi þ b2ðinterventionÞi
þ b3ðtime� interventionÞi þ ei

ðM1Þ

ei � Nð0;s2Þ

In the model, i (=1, 2, …, n) indicates facilities in our
case. The parameter β3 estimates the mean effect of the
policy, which is the difference in the differences
between the treatment and control groups over two time
points, before and after the intervention, hence the dif-
ference in differences. To add other covariates such as
region and facility type for subgroup effects in the
model is straightforward.22 Clearly, a significant strength
of this method is that time effects, and unobserved time-
invariant confounders are removed from the estimation.
However, the accuracy of the DID method depends on
one critical assumption: time effects have to be the same
for both the intervention and control groups, so the
composition of the intervention and the control group

must be the same over time. For non-random observa-
tional data, significant imbalances in characteristics
between control and intervention PHFs exist before
policy implementation; simple multivariate regression
may not be powerful enough to adjust for the imbal-
ances between comparison groups. PSM between the
control and intervention groups on some key covariates
before fitting the DID models has been a widely used
approach to deal with the imbalance issue.23 The most
commonly used matching method is nearest neighbour-
hood matching.24 In this method, the cases and control
units are randomly sorted, and then the cases sequen-
tially matched to the nearest unmatched control even if
the absolute difference values of the propensity score
between the selected case and the control under consid-
eration are not close. To acquire good matches, the
greedy matching techniques were used to create a pro-
pensity score matched pair sample using a user-written
SAS macro,25 which demands that the absolute differ-
ence in the propensity score of the case and the control
is small, begins with a smaller difference (such as
0.00001) to match, and then gradually the difference is
increased to 0.1. Using this method, we first fitted a logis-
tic regression to estimate the propensity scores based on
the variables ratio of health professionals to overall staff,
ratio of beds per staff, LG_RTA, type of facility (CHC,
TCH and TH), and region (eastern, central and western
China). Then the cases were ordered and sequentially
matched to the nearest unmatched control within a
certain range of difference. If more than one unmatched
control was matched to a case, the control was selected at
random. Once a match was made, the match was not
reconsidered. Only matched control and treatment units
were included in the DID modelling analysis.
Given 5 years of panel data we wanted to assess the

possible linear change in the dependent variable accord-
ing to the length of policy implementation in years; a
dose–response relationship can be captured by defining
a continuous variable for the length of policy exposure
years so that the dependent variable is a function of the
policy exposure variable. However, the time variable in
M1 is a binary term indicating a difference in only two
time points. We needed to construct four models based
on the common control and intervention group but dif-
ferent exposure times, that is, 1 year, 2 years and so on to
estimate policy intervention effects corresponding to the
different lengths of policy exposure period. Table 3 shows
the structure of the example data for estimating the dose–
response effects by the DID models. We defined 2008 as
before intervention time 1, and 2009, 2010, 2011 and
2012 as after intervention time 2. Facilities that implemen-
ted the NEMP in 2009 formed the intervention group
and were intervened for 4 years by 2012. Similarly, facil-
ities that implemented the NEMP in 2010 formed the
intervention group and were intervened for 3 years by
2012. Those that implemented the NEMP in 2011 were
intervened for 2 years by 2012. Facilities that implemented
the NEMP in 2012 formed the control group and were
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intervened for only 1 year. Without PSM, the sample sizes
for intervention and control were 9266 and 7715, respect-
ively. Using nearest-neighbourhood matching with the
absolute difference value of the propensity score between
the case and the control group from 0.00001 to 0.1, the
final sample sizes for intervention and control facilities
were 7393 and 7393, respectively, as shown in table 3.
One critical limitation arose from using M1 in analys-

ing the example data that were clustered at several
levels, and each level could have common context
factors shared among the units. For example, facilities in
the same county could have more similar outcomes than
those from other counties, which brings dependence in
the data due to clustering. Consequently, statistical esti-
mates of this model could be biased.26 27

To overcome this critical limitation, either correcting
SEs of regression coefficients using robust statistics or
multilevel DID models could be considered. We chose
multilevel DID models for a three-level structure in the
example data: facilities at level 1, county at level 2 and
province at level 3. Following the definition of the
MLwiN software,28 the letters i, j, k indicate units at
levels 1, 2 and 3, respectively, and a basic three-level DID
model could be written as follows:

yijk¼b0ijkþb1ðtimeÞijk þ b2ðinterventionÞijk
þ b3ðtime� interventionÞijk ðM2Þ

b0ijk¼b0þv0kþu0jkþe0ijk

v0k � N(0,s2
v0Þ;u0k � N(0,s2

u0Þ; e0ijk � N(0,s2
e0Þ

covðv0k;u0jk;e0ijkÞ ¼ 0

var(yijkÞ ¼ s2
v0þs2

u0þs2
e0

This model has four partial regression coefficients, the
same as in the conventional DID model, M1. The
partial regression coefficients under multilevel model
analysis are termed as fixed partly because they estimate

the mean effects of covariates that are the same or
fixed for every individual or facility, in this case in the
model. In M2 the overall mean policy effect between
any two time points is estimated and tested by the
regression coefficient β3, which is the same for all facil-
ities. In contrast to the fixed part in M2, the random
part in the model is composed of parameterss2

v0, s
2
u0

and s2
e0 for variation of the intercept or the overall

mean estimate of the dependent variable among pro-
vinces, counties and facilities. In this case the random
variable v0krepresents the difference between the
mean of the kth province and the overall mean β0, and
the random variable u0jk represents the difference
between the jth county mean within the kth province
and the grand β0. They are also termed random effects
and assumed to come from normal distribution.
Random effects could be attributed to context effects
such as socioeconomics or health systems or healthcare
resources or local policy for the healthcare of the pro-
vinces or counties.
Clearly the model M2 effectively deals with clustering

effects in the data by including random effects in the
outcome at each level of the hierarchy; the context
effects of the outcome can be examined by levels. Other
covariates can be added to M2 straightforwardly.
To assess the dose–response effects of the NEMP

using M2, we also need to construct four models
as mentioned previously for the model M1. The model-
ling process for a simple linear relationship under
this context becomes cumbersome and ineffective.
Consequently for a set of point estimates from differ-
ent models for the dose–response effects of the policy,
there was not an easy approach to quantify whether
such policy effects varied among provinces or counties
or facilities.

Multilevel RM models
Based on the study design which presents cumulative
exposure to the policy and the clustering feature, we
propose the following four-level RM regression models
that take into account the clustering effects in the data
while assessing the dose–response effect of the policy
and estimating the random effects of the dose–
response effect across provinces, counties and

Table 2 Stepped wedge data structure

Time periods

2008 2009 2010 2011 2012

PHF clusters (exposure)

4 9266 (27%) 9266 (27%) 9266 (27%) 9266 (27%) 9266 (27%)

3 8935 (26%) 8935 (26%) 8935 (26%) 8935 (26%) 8935 (26%)

2 8590 (25%) 8590 (25%) 8590 (25%) 8590 (25%) 8590 (25%)

1 7715 (22%) 7715 (22%) 7715 (22%) 7715 (22%) 7715 (22%)

Italic text represents intervention periods; bold text represents control periods. Each entry represents a data collection point. Numbers 1–4
represent the length of exposure time to the NEMP intervention in years.
NEMP, national essential medicine policy; PHF, primary healthcare facility.
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facilities. A facility in the four-level structure becomes
a level 2 unit above repeated measure in time which is
the level 1 unit. This involves a change in the level
indicators in the above models. To answer our research
questions, three consecutive four-level models are
constructed.
Following the definition of the software MLwiN for

multilevel models, the letters i, j, k and l denote the
repeated measure in time (level 1), facility (level 2),
county (level 3) and province (level 4), respectively. The
following model estimates an overall linear effect with
exposure time of policy measured by parameter β1 and
partitions the total variance in the outcome into four
components for the four levels of sources: s2

w0, s
2
v0, s

2
u0

and s2
e0 for the random effects among provinces, coun-

ties, facilities and repeated measure in time, respectively.
The assumptions of independence and uncorrelated
relationship over the random effects at different levels
are the same as for M2:

yijkl¼b0ijklþb1ðexposure tÞijkl ðM3Þ
b0ijkl¼b0þw0lþv0klþu0jklþe0ijkl

w0l� Nð0;s2
w0Þ; v0kl � N(0,s2

v0Þ;u0jkl

� Nð0;s2
u0Þ; e0ijkl� Nð0;s2

e0Þ
covðw0l;v0kl;u0jkl;e0ijklÞ ¼ 0

var(yijklÞ ¼ s2
w0þs2

v0þu2
u0þe20

In this model the parameter β1 is a unit of linear change
in the dependent variable for every year of the interven-
tion period of the policy, the same interpretation of
slope as in any regression model. To separate the dose–
response effects of the policy from the effects due to the
time change in a calendar year in healthcare conditions
and human resources of the facilities we added some
covariates to the fixed part of M3 with everything else in
the model unchanged:

yijkl¼b0ijklþb1ðexposure tÞijkl

þ
X4
h¼1

b2hðyearÞhijklþ
X

b3fðXf Þjkl ðM4Þ

b0ijkl ¼ b0 þ w0l þ v0kl þ u0jkl þ e0ijkl

The X denotes a set of covariates, such as beds per staff
and assets of facilities, or facility type, regions and so on.
The time differences in years, that is, 2009 vs 2008, 2010
vs 2008, are estimated by parameters β2h and the dose–
response effect of policy is estimated by the parameter
β1 The latter is independent of the calendar time
effects.
Further, to find evidence on whether the policy effects

were different by province, by county and by facility, we
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assumed random effects of the parameter β1 in the fol-
lowing models:

yijkl¼b0ijklþb1jklðexposure tÞijklþ
X4
h¼1

b2hðyearÞhijkl

þ
X

b3f ðXf Þkjl ðM5Þ

b0ijkl¼b0þw0lþv0klþu0jklþe0ijkl

b1jkl¼b1þw1lþv1klþu1jkl

ðw0k;w1kÞ � MNð0;VwÞ; ðv0kl;v1klÞ
� MN ð0;VvÞ; ðu0jkl;u1jklÞ � MNð0;VuÞ

ðe0ijklÞ � Nð0;s2
e0Þ

Vw ¼ s2
w0

sw01 s2
w1

� �
;Vv ¼ s2

v0
sv01 s2

v1

� �
;Vu

¼ s2
u0

su01 s2
u1

� �

Four sets of random effects of policy implementation are
presented in M5. The model has two random effects at
each of the province, county and facility levels. The
terms w0l;v0kl;u0jkl are random effects of the overall
mean, and the terms w1l;v1kl;u1jkl are the dose–response
random effects at each of the above levels accordingly.
By estimating and testing variance terms s2

w1, s
2
v1and s2

u1
of the random effects w1l;v1kl;u1jkl, respectively, we can
find out the distribution of the dose–response random
effects at a different level and identify the ‘best’ or
‘worst’ units (province or county or facility) in the
policy implementation for further management. The
latter task can be achieved by estimating and ranking
random effects w1l;v1kl and u1jkl.
While the multilevel DID model (M2) used the data

presented in table 3, the multilevel RM models (M3–
M5) used the full data of all facilities from 2008 to 2012,
as shown in table 2.

Model fitting and comparison
Multilevel models for data under a three-level hierarchy
can be fitted by the usual software such as SAS or Stata.
For our data with a four-level hierarchy, we used MLwiN
2.30 for all modelling analysis and SAS 9.3 for descrip-
tive analysis.
We used the Wald statistic to test the significance of

fixed effects estimated by βs and random effects esti-
mated by variances at different levels. To compare the
quality of fit between nested models, we used the
−2LogLikelihood (−2LL) value. The smaller the −2LL
value, the better the model.

RESULTS
To examine the cumulative effects of NEMP exposure
over time, four three-level DID models defined by M2
were fitted with the same controls to reflect exposure in
years 1, 2, 3 and 4, respectively, and matched using pro-
pensity scores. We expected to observe an overall policy
effect from each of the four models and also possible
dose–response effects of the NEMP based on these
models. Meanwhile, the four-level RM models defined
by M4 and M5 were fitted for the dose–response effect
and variation of such effects among provinces, counties
and facilities. The results of the two methods were com-
pared using the following aspects.

Dose–response effect
From a series of four multilevel DID models adjusted for
the covariates, a significant policy effect of increased
LG-OPV was estimated as 0.036 at 1 year of policy expos-
ure, 0.073 at 2 years’ exposure, 0.068 at 3 years’ and
0.097 at 4 years’ exposure. Assuming a linear increase in
the policy effects and a total cumulative effect at 0.061
(from 0.036 to 0.097) over the 4-year period, a dose–
response quantity would be roughly estimated as 0.015
per year of exposure to the policy. However, when we fit
the multilevel RM model (M4), a significant dose–
response effect was estimated directly at 0.012 for every
year of exposure to the policy and 0.048 of total cumula-
tive effects over the 4-year period (table 4). Although
the linear effects over the policy exposure periods esti-
mated by the two models are close, a much smaller SE
of the effect estimate from the multilevel RM model was
observed than the former models (0.002 vs 0.018) due
to the fact that the multilevel DID models did not
include all facilities in the calculation; namely the data
size was smaller than that for the multilevel RM model.
Consequently, the U value of the dose–response effect
estimate from the multilevel RM model was bigger than
that for the four multilevel DID models. This suggests
that the estimated policy effects from the latter model
have higher statistical efficiency than those from the
former models. Also, one estimate of a dose–response
effect from one model is certainly much more straight-
forward and efficient than from four models with indir-
ect estimation.

Random effects
Two random effects in our case are present: random
effects related to the overall mean of the LG-OPV, which
are also termed random intercepts, and random effects
related to the dose–response effects of the policy effect,
which are also termed random slopes. Random effects
are summarised by estimates of the corresponding vari-
ance in our models. In table 5, both multilevel DID and
multilevel RM models produced significant variances on
the overall mean of LG-OPV across the province and
county, and facility. Such results suggest that multilevel
modelling is necessary in appropriate data with hierarch-
ical structure, and in this case the multilevel DID
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Table 4 Estimates of the dose–response effects of the NEMP on LG-OPV

Intervention year (exposure time to NEMP implementation in years)

Method coefficient 2009 (1) 2010 (2) 2011 (3) 2012 (4)

Multilevel DID (M2) Intercepts β0 (SE) 7.859 (0.170) 7.889 (0.171) 8.039 (0.171) 8.208 (0.173)

U value (p) 46.23 (<0.0001) 46.13 (<0.0001) 47.01 (<0.0001) 47.45 (<0.0001)

Time × intervention (effect of the NEMP) β3 (SE) 0.036 (0.018) 0.073 (0.018) 0.064 (0.018) 0.097 (0.019)

U value (p) 2.00 (0.044) 4.06 (<0.0001) 3.56 (0.0005) 5.11 (<0.0001)

Multilevel RM (M4) Intercepts β0 (SE) 9.610 (0.179)

U value (p) 53.69 (<0.0001)

Exposure times β1 (SE) 0.012 (0.002)

U value (p) 6.00 (<0.0001)

DID, difference-in-differences; NEMP, national essential medicine policy; RM, repeated measures.

Table 5 Estimates of the random effects of the NEMP on LG-OPV

Method

Random

effects

Intervention

year

Province County Facility Time

s2 (SE) ICCprovince 95%CI (p) s2 (SE) ICCcounty 95%CI (p) s2 (SE) 95%CI (p) s2 (SE) 95%CI (p)

Multilevel

DID (M2)

Intercepts 2009 0.305

(0.072)

47.14 0.446 to 0.164

(<0.0001)

0.342

(0.012)

36.62 0.318 to 0.366

(<0.0001)

0.592

(0.005)

0.582 to 0.602

(<0.0001)

2010 0.308

(0.073)

47.83 0.165 to 0.451

(<0.0001)

0.336

(0.012)

35.52 0.312 to 0.360

(<0.0001)

0.610

(0.005)

0.600 to 0.620

(<0.0001)

2011 0.314

(0.074)

49.37 0.169 to 0.459

(<0.0001)

0.322

(0.011)

33.79 0.300 to 0.344

(<0.0001)

0.631

(0.005)

0.621 to 0.641

(<0.0001)

2012 0.324

(0.076)

50.23 0.175 to 0.473

(<0.0001)

0.321

(0.011)

33.30 0.299 to 0.343

(<0.0001)

0.643

(0.006)

0.631 to 0.655

(<0.0001)

Multilevel

RM (M5)

Intercepts 2009–2012 0.397

(0.103)

55.92 0.195 to 0.599

(0.0001)

0.313

(0.011)

35.09 0.291 to 0.335

(<0.0001)

0.579

(0.005)

0.569 to 0.589

(<0.0001)

0.152

(0.001)

0.150 to 0.153

(<0.0001)

NEMP

effect

0.003

(0.001)

21.43 0.001 to 0.005

(0.0003)

0.011

(0.000)

33.33 0.010 to 0.012

(<0.0001)

0.022

(0.000)

0.023 to 0.022

(<0.0001)

DID, difference-in-differences; NEMP, national essential medicine policy; RM, repeated measures.
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models are more appropriate than the conventional
DID models. The sizes of variances estimated at each of
the three data structure levels by both models are
similar; for example, the percentage of the variations
from the multiple RM models among provinces, coun-
ties and facilities is 30.8%, 24.3% and 44.9%, respect-
ively, while that of the multilevel DID 2012 model is
25.2%, 24.9%, and 50%, respectively. The intra-province
and intra-county correlation coefficients from the mul-
tiple RM models are 55.9% and 35.1%, respectively,
while those from the multilevel DID 2012 model is
50.2% and 33.3%, respectively.
The small differences in the estimates are due to

different sample sizes used in those models, and also to
the fact that the multilevel DID models balanced out the
year difference, and the multilevel RM models treat the
year as RM and estimate a variance for the year differ-
ences as shown in table 5. Overall, the two models are
comparable in estimating variances of random intercepts
for provinces, counties and facilities.
However, the multilevel DID models cannot estimate

variance related to the random effects of the NEMP
effect. In table 5, the variance of the dose–response
effects or random slopes of the NEMP effect at the prov-
ince, county and facility levels were estimated respect-
ively and simultaneously by the multilevel RM model
M5. All estimated variances were statistically significant,
which implies that the NEMP effect over the increased
LG-OPV was variable among provinces, counties or facil-
ities in China. Some provinces could have faster
increases than others, and some might not increase at
all. The same interpretation can be applied to counties
and facilities. It is notable from the results of M5 that
out of the total random slope variation, 8.3% was attrib-
utable to the difference among provinces, 30.6% to the
difference among counties and 61.1% to facility differ-
ences. The intra-province and intra-county correlation
coefficients are 21.4% and 33.3%, respectively. At this
stage, identifying the best or worst performers of the

policy implementation at any of the three levels might
be necessary for examining which context variables
could explain the variation in the policy effects at the
corresponding levels.

Identifying units with the best and worst policy effects
From the multilevel RM model M5, we can calculate the
random slopes of the dose–response effects w1l;v1kl;u1jkl

of the province, county and facility, respectively. For
example, figure 1 shows the dose–response effects by
province. It can be seen that the trend in the policy
effect varied between provinces, with some having
increased more, some less and some decreased. When
we calculated the size of estimated random slopes of
provinces, the dose–response effects of provinces b1þw1l

were marked on the map in figure 2. We can easily visu-
alise the province with the best dose–response effect,
that is, fast increasing LG-OVP with increased time to
implement the NEMP, which is province A in eastern
China, and with decreased LG-OVP, that is, the worst
performer, province B in central China. The significant
dose–response effect of province A was estimated directly
as 0.14 increase for every 1 year of exposure to the
policy, but province B showed a 0.097 decrease.

Effect of time in calendar year
Each of the four multilevel DID models M2 included
the parameter β1 for the time effects of calendar years
2009, 2010, 2011 and 2012 in comparison to 2008. The
results in table 6 show significantly increased LG-OPV
from 2008 to 2012, with 2.55 times more OPV in 2012
than in 2009. The multilevel RM model treated calendar
year as a set of covariates as defined in M4. The compar-
able results of multilevel RM models in table 6 also dem-
onstrate a trend of increased LG-OPV from 2008 to
2012, with 2.51 times more OPV in 2012 than in 2009.
Although both models gave a similar change trend due
to the effects of the calendar year on the relative
measure, the test values U of multilevel RM models are

Figure 1 Estimated dose–

response effects on the logarithm

number of outpatient visits per

facility per year (LG-OPV) by

provinces by region.
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consistently higher than those of multilevel DID models,
therefore a more robust and efficient estimate of the
time effects was shown by the former. By comparing par-
ameter estimates among multilevel RM models with and
without the year covariates, we found a decreased dose–
response random coefficient at facility level from 0.064
to 0.014, which suggests a 78% variation in the dose–
response effects at the facility level was explained by the
year effects. We could not perform the same analysis
using multilevel DID models.

Effects of other covariates
The effects of facility level covariates on the LG-OVP
were assessed by the four multilevel DID models and the
multilevel RM model. The results shown in table 7 are
consistent between the two types of models. The higher
RATIO_HP and the transformed LG_RTA were signifi-
cantly associated with more OPV, while the ratio of beds
per staff (RATIO_B) was not related to the outcome.
Compared with community health centres in urban set-
tings, the rural-based township or town centre facilities
had significantly lower OPV. Compared with facilities in
eastern China, those in central and western China had
significantly lower OPV, with facilities in western China
at the lowest level. By comparing parameter estimates
between multilevel RM models with and without these
covariates, we found a minor decrease in the dose–
response random coefficient at facility level from 0.014
to 0.012, which suggests that a 14% variation in the
dose–response effects at the facility level was explained
by those facility level variables.

DISCUSSION
The implementation of the NEMP was part of the dee-
pened healthcare reform in China since 2009. The main
aims of the policy were to alleviate the burden on

citizens of expensive medical bills and increase their
access to healthcare services. A number of studies have
evaluated the effects of the NEMP in PHFs after imple-
mentation of the NEMP, such as the change in drug
prices before and after implementation,29–31 availability
and affordability of essential medicines,19 29 31 rational
use of essential medicines,30 32–35 medicine expend-
iture,20 33 36 outpatient service use20 and so on. As a
common practice, all the previous studies used the con-
ventional DID in their evaluation, and all ignored clus-
tering effects among counties or facilities over time. No
study tried to explore the variability of the policy effects
among facilities that could be explained by context
factors. No study compared the multilevel DID model
and multilevel RM model to evaluate the dose–response
effect of the NEMP over a longer period of implementa-
tion. In this study we illustrated that when analysing data
with a hierarchical structure, the multilevel DID model
is more appropriate than the conventional DID model.
We also showed that when data were collected at mul-
tiple time points with hierarchical structure under a
stepped wedge-like design, the multilevel RM model is
more appropriate, efficient and powerful than the multi-
level DID models in assessing the dose–response effects
of policy and variation of the effects among provinces or
counties or facilities. We demonstrated and discussed
the similarities and differences of the two models using
one example.
For data with a hierarchical structure, as in our

example, models with random effects such as multilevel
models or mixed models have been widely accepted as
appropriate tools for data analysis.37 Conventional DID
analysis ignores the dependence on the outcome
measure due to clustering effects of the data structure
and can seriously bias estimates of the intervention
effects.38 The significant random effects on the mean
LG-OVP among provinces, counties and facilities

Figure 2 The estimated dose–

response effects by provinces.
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Table 6 Estimates for time effects in calendar year on the LG-OPV

Method 2008

2009 2010 2011 2012

Est (SE) U value (p) Est (SE) U value (p) Est (SE) U value (p) Est (SE) U value (p)

Multilevel DID (M2) Control 0.069 (0.013) 5.31 (<0.0001) 0.058 (0.013) 4.46 (<0.0001) 0.078 (0.013) 6.00 (<0.0001) 0.176 (0.014) 9.00 (<0.0001)

Multilevel RM (M4) R=Reference 0.080 (0.003) 26.67 (<0.0001) 0.087 (0.004) 21.75 (<0.0001) 0.100 (0.005) 20.00 (<0.0001) 0.201 (0.007) 28.71 (<0.0001)

Est stands for parameter estimate by regression coefficients in each of the models. The estimates of time effects are contrasted to the year 2008.
DID, difference-in-differences; RM, repeated measures.

Table 7 Estimates of effects of other covariates in association with LG-OPV

Variables

Multilevel RM (M4) Multilevel RM (M4)

2009 2010 2011 2012 2008–2012

Est (SE) U value (p) Est (SE) U value (p) Est (SE) U value (p) Est (SE) U value (p) Est (SE) U value (p)

RATIO_HP 1.288 (0.038) 33.89 (<0.0001) 1.282 (0.039) 32.87 (<0.0001) 1.283 (0.039) 32.90 (<0.0001) 1.286 (0.040) 32.15 (<0.0001) 0.312 (0.013) 24.00 (<0.0001)

LG_RTA 0.128 (0.005) 25.60 (<0.0001) 0.130 (0.005) 26.00 (<0.0001) 0.118 (0.004) 29.50 (<0.0001) 0.102 (0.004) 25.50 (<0.0001) 0.032 (0.001) 32.00 (<0.0001)

RATIO_B (<5) (reference)

5–9 −0.068 (0.104) −0.65 (0.511) −0.047 (0.110) −0.43 (0.670) −0.067 (0.126) −0.53 (0.594) −0.125 (0.121) −1.03 (0.303) 0.027 (0.033) −0.82 (0.414)

10–20 0.027 (0.409) 0.07 (0.950) 0.045 (0.368) 0.12 (0.904) −0.177 (0.372) −0.48 (0.635) −0.019 (0.342) −0.05 (0.956) −0.046 (0.115) −0.40 (0.691)

>20 −2.920 (0.466) −6.27 (<0.0001) −0.958 (0.570) −1.68 (0.093) −0.644 (0.479) −1.34 (0.178) 0.079 (0.582) −0.14 (0.890) −0.133 (0.135) −0.99 (0.327)

Facility type (CHC) (reference)

TH −0.090 (0.030) −3.00 (0.003) −0.099 (0.030) −3.30 (0.001) −0.116 (0.031) −3.74 (0.0001) −0.113 (0.031) −3.65 (0.0003) −0.170 (0.025) −6.80 (<0.0001)

TCH −0.113 (0.031) −3.65 (0.0003) −0.121 (0.031) −3.90 (0.0001) −0.126 (0.031) −4.06 (<0.0001) −0.131 (0.032) −4.09 (<0.0001) −0.174 (0.026) −6.69 (<0.0001)

Region (East) (reference)

Central −0.603 (0.215) −2.80 (0.005) −0.621 (0.216) −2.88 (0.032) −0.635 (0.218) −2.91 (0.004) −0.603 (0.221) −2.73 (0.006) −0.631 (0.287) −2.20 (0.028)

West −1.024 (0.200) −5.12 (<0.0001) −1.064 (0.201) −5.29 (<0.0001) −1.080 (0.202) −5.35 (<0.0001) −1.079 (0.204) −5.29 (<0.0001) −0.809 (0.207) −3.91 (<0.0001)

Est stands for parameter estimate of each covariate by regression coefficients in each of the models.
CHC, community health centre; LG_RTA, log(ratio of total assets per staff); RATIO_B, ratio of beds per staff (grouped as <5, 5–9, 10–20, >20); RATIO_HP, ratio of health professional over all
staff; RM, repeated measures; TCH, town centre hospital; TH, township hospital.
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estimated by both multilevel DID and RM models in our
analysis suggested strong clustering effects in the
example data, which cannot be dealt with by conven-
tional DID analysis. Hence multilevel models as an
advanced DID method or the advanced regression
method proposed in this study are useful tools in evalu-
ating the policy effects of hierarchical data.
The key application of the DID model is to assess the

mean effects of a policy intervention based on data from
two time points. To evaluate the degree of linear change
in policy effects over time or dose–response effects,
panel data from multiple time points are required. For
data from really long time series, fractional time series,
DID models have been used.20 In our case, data were
available from five time points and so a series of four
multilevel DID models had to be constructed with the
common baseline year at 2008 and the second time
point at 2009, 2010, 2011 and 2012, respectively, so that
each DID model reflects a period of intervention of 1, 2,
3 and 4 years, respectively. Within the intervention
period, facilities not yet exposed to the policy were clas-
sified as the control group. In this way, we were able to
show the possible cumulative policy effects with the
length of intervention time and consistent effects of cov-
ariates, as well as clustering effects at all three levels in
the data structure of the four models. However, one can
also choose to compare different time points, in which
different control matches would be made, and different
results could be observed for any effects of interest.
Statistically, we cannot make reference to the possible
dose–response effects based on four independent
models but we can only provide a descriptive summary.
We would also find it difficult to interpret results if other
effects of covariates and random effects were different
among the four models. In contrast, the multilevel RM
model estimated the dose–response effects of the policy,
the effects of covariates and random effects in one
model, which is highly efficient. It is easy to make statis-
tical inference with a clear interpretation.
In assessing the dose–response effects of the NEMP,

time effects in a calendar year must be controlled for.
To achieve this purpose, each multilevel DID model
included a parameter β1 to indicate the time effect in
the particular year of intervention, and four models
showed the year effects of 2009, 2010, 2011 and 2012,
respectively, in comparison to the year 2008. The multi-
level RM model treated time in a calendar year as a cat-
egorical covariate and estimated the year effects in
contrast to 2008. It is obvious that the latter model
handled the time effects with much statistical efficiency
as shown by much smaller SEs of the year effects.
Although the trends of dose–response effects, the

effects of covariates, and the distribution of components
in the variation of the LG-OPV outcome estimated by
the series of multilevel DID models and the multilevel
RM model were similar, we observed differences in the
SEs of estimates for those effects. For example, the SEs
for the dose–response effects and the effect of time in a

year were much smaller for the multilevel RM model
than those for the multilevel DID models. The main
reason is that each multilevel DID model only selected
data between two time points and also lost some cases
from the propensity matching process. In contrast, the
multilevel RM model pooled data from all five time
points into one joint model, which enlarges the sample
size to almost five times the full dataset, hence there is
much greater statistical efficiency in estimating time-
related effects. This implies that when the sample size at
each time point was small, the multilevel RM model was
much more effective in detecting dose–response effects
than the series of multilevel DID models.
Our study showed that the multilevel DID models and

the multilevel RM model could break down variance of
the outcome into components based on the level of data
hierarchical structure, that is, calculate variances of
random intercepts by levels. However, the former
models cannot easily estimate variance in the dose–
response effects for any of the levels in the dataset.
Namely we obtained no answer to our research question
(2) on whether such a policy effect was different among
provinces or counties or facilities, and research question
(3) on which could be the best or worst performers in
the implementation of the policy. Based on the multi-
level RM model we were able to show the variation
estimates of the dose–response effects across the pro-
vinces, counties and facilities, respectively. We calculated
the residuals to identify the highest and lowest dose–
response effect among provinces for illustration
purposes. We could do the same analysis to pinpoint
counties and facilities using the same principle. The
identified provinces or counties or facilities could be
further examined to determine which context factors
might be associated with the results of policy interven-
tion and how to improve their situations.
Both models have shown that a higher ratio of health

professional staff and higher assets index at the facility
level were associated with higher usage of outpatient
services, which agreed with a previous study.20 The
overall difference in the OPV or service use between
rural and urban facilities and between the western and
eastern regions in China in our study supported similar
findings of a previous study.20 However, these facility
conditions only explained a small amount of variation in
the dose–response effect of the policy intervention.
Examination of other context factors such as social
demographics, subculture environment and local pol-
icies are guaranteed.
This study has notable advantages. Earlier studies

focusing on the effects of the NEMP were mainly cross-
sectional; only two studies20 34 by Gong and Li used the
nationwide monitoring data. Gong’s study included only
35 cities covering a 5-year period, from 2007 to 2011,
and Li’s study included the same data but using the con-
ventional DID analysis. Using data from the annual
national report of healthcare facilities, the results are
representative nationwide and statistically robust due to
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the large sample size and the fact that they are generalis-
able as a natural experiment in China. Although vast lit-
erature exists on the application of the conventional
DID method to assess the overall effect of interventions,
to the best of our knowledge this study is the first to
illustrate advanced multilevel DID and multilevel RM
models to analyse the dose–response effect based on
hierarchically structured panel data, and to point to
further analytic aspects of the multilevel RM model to
investigate random effects attributable to potential local
context effects in order to improve implementation of
policy intervention with evidence of identified location
or grassroots facilities.
The study has some limitations in the dataset. First,

the exact starting time of NEMP implementation is dif-
ferent in different facilities, and we did not have data on
the exact starting date but only the starting year.
Interventions in certain facilities may not have had data
for the whole year, which may lead to an underestima-
tion of the dose–response effect of the NEMP on service
use. Second, the study is not a real stepped wedge
design, as the implementation of the NEMP at the facil-
ity level by time block was not randomised but by con-
venience.39–41 However, we treated the time block
representing the length of policy implementation as an
independent variable in the multilevel RM models; lack
of randomisation of such a variable will not affect the
estimate of its effects. Third, the data were collected
from the administrative health system, which might
contain reporting errors and missing information at
some time points. Despite these limitations, the study is
methodology orientated, and comparison between
models using the same dataset is not affected by those
data issues. Instead the example analysis has provided
important information on the dose–response effect of
the NEMP in China and highlighted the importance of
structural determinants of the NEMP effect, accounting
for contextual factors in the future assessment of the
NEMP effects.

CONCLUSION
For hierarchically structured panel data, which are com-
monplace in national policy implementation, multilevel
DID models and multilevel RM models should be
employed to assess the dose–response effect of a policy.
The latter model is statistically more efficient and easier
to interpret than the former method and is a powerful
tool to break down variation in the dose–response
effects according to the level of hierarchical structure,
thus identifying subjects with the best and worst results
of effect for further investigation.
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