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Preliminary Study on the Effect of 4DCT-
Ventilation-Weighted Dose on the Radiation
Induced Pneumonia Probability (RIPP)

Han Bai1,2 , Wenhui Li1, Yaoxiong Xia1, Lan Li1, Jingyan Gao1, and Xuhong Liu1

Abstract

Purpose: The purpose of the present study was to evaluate the feasibility of using 4-dimensional computed tomography
(4DCT)-ventilation-weighted dose analysis to predict radiation-induced pneumonia probability (RIPP).

Methods and Materials: The study population for this retrospective analysis included 16 patients with stage III lung cancer. Each
patient’s 4DCT images, including end-inhale and end-exhale sequences, were used for the deformable image registration, and the
Hounsfield units (HU) density-change was used to calculate the ventilation. A previously established equation was used to convert
the original dose (OD) D0, i in the lungs in the original plan (OP) to the weighted-dose (WD) Dw, i in the weighted plan (WP).
The patients were divided into 2 groups, one with radiation-induced pneumonia (RIP), and one without. The Spearman corre-
lation analysis was used to analyze the correlation of RIP with DV20 (DVx ¼ Vw, x in the WP – V0, x in the OP), DMLD (DMLD ¼
mean lung dose (MLD) in the WP – MLD in the OP), and DV5.

Results: The results showed that 5 of the 16 patients were suffering from acute RIP, 4 of which had higher DV20 and DMLD values
than the rest of the patients. The results of the Spearman correlation analysis for those 4 patients were as follows: RIP vs.
DV20, r ¼ 0.5123; RIP vs. DMLD, r ¼ 0.5119; RIP vs. DV5, r ¼ 0.1904.

Conclusions: The 4DCT-ventilation-based weighted-dose analysis showed some correlation between RIPP and both DV20 and
DMLD, when comparing the weighted-dose and the conventional dose-volume histogram (DVH) analyses.
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Introduction

Radiotherapy plays an important role in the comprehensive

treatment of lung cancer. Hypofractionated radiotherapy is the

best treatment for stage I-II (T1-3N0-T1-2N1) lung cancer

patients, especially for elderly patients with comorbidities who

are not ideal candidates for surgery. Previous studies have

shown that stereotactic body radiation therapy (SBRT) results

in fewer complications, but has almost the same local control

rate as surgery.1,2 Concurrent chemoradiotherapy is recom-

mended for locally advanced stage II-III lung cancer, while

radiotherapy is considered a local consolidation therapy for

stage IV lung cancer metastases.3

The tolerance dose of lung tissue is still the primary con-

straint for improving the target dose. The radiation dose to the

lung tissue has continuously decreased with the growth and

development of treatments and technology. One report has

demonstrated that symptomatic radiation-induced pneumonia

(RIP) and fibrosis were serious complications occurring in an

estimated 5-50% of patients with lung cancer.4 The effect of the

continuous improvement of radiotherapy techniques to further

reduce the dose to the lung is decreasing. In this regard, func-

tional lung avoidance radiotherapy has been proposed.5,6 In this

process, the lung is first divided into a high functional area
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(HFA) and a low functional area (LFA), based on functional

imaging results. Then, the radiotherapy planning is designed to

spare as much of the HFA as possible, based on the subarea, as

one opinion suggested that sparing the HFA may reduce the

occurrence of pulmonary complications.

Functional avoidance based on positron emission tomogra-

phy (PET),7 single-photon emission computed tomography

(SPECT),8 magnetic resonance imaging (MRI),9 and

4-dimensional computed tomography (4DCT)-ventilation10-12

imaging has been demonstrated in a variety of studies. Of

these methods, 4DCT-ventilation imaging, which uses data

to create lung function maps for functional avoidance plan-

ning, is the most ideal. Compared with other imaging modal-

ities, 4DCT-ventilation imaging provides functional

information from standard treatment procedures without addi-

tional image acquisition, which does not increase the eco-

nomic burden on the patient. Furthermore, 4DCT-ventilation

imaging allows for rapid image processing without the need

for a radioactive contrast agent, and provides a 4-D map of

anatomical structures.

The history of development of 4DCT-ventilation for func-

tional lung avoidance radiotherapy can be found in retrospec-

tive studies by institutions worldwide.11-13 However, previous

studies involving 4DCT-ventilation imaging for functional

lung avoidance have primarily focused on demonstrating the

feasibility of sparing HFAs. Little information in current liter-

ature addresses the evaluation of dose-volume in relation to

functional weight, because planning the avoidance of HFAs

would inevitably increase the dose to LFAs. The acquisition

of data regarding functional avoidance and loss of functional

defect are expected to be obtained. The first goal of data acqui-

sition is to evaluate the ratio of the functional area to the func-

tional defect area. Since the HFA has a higher ventilation

capacity and oxygen concentration than the LFA, and oxygen

is known to increase tissue sensitization to radiation therapy, the

Hounsfield unit (HU) changes, which indicate ventilation ability,

are used as a weight for dose analysis. Therefore, we analyzed

patients who had completed radiotherapy at the radiation oncol-

ogy center of our hospital using 4DCT-ventilation imaging to

determine the weight for a weighted-dose in order to explore the

feasibility of the weighted-dose analysis for predicting RIP.

Materials and Methods

A total of 16 patients were included for analysis in the pres-

ent study. The patient population consisted of 12 men and 4

women, aged between 46 and 66 years, with a median age of

56. Patients with squamous cell carcinoma (n ¼ 6), adeno-

carcinoma (n ¼ 6), and small-cell lung cancer (n ¼ 4)

received platinum-based double-drug chemotherapy with

radiotherapy.

A 24-slice CT scanner (Siemens, Munich, Germany) was

used to acquire 4-D data using an abdominal pressure respira-

tory induction system. The patients were placed in a supine

position with their hands above their head, and were held in

place by a thermoplastic reticular membrane during scanning.

The respiratory cycle was divided into 10 phases for data col-

lection.14 A CT sequence was imaged with the patient breath-

ing freely. The anatomy was scanned from the clavicle to the

liver. Each patient’s CT scan was reconstructed with a 3.0 mm

slice thickness and transferred to the Pinnacle TPS 9.10.

All 16 patients were treated with a Trilogy linear accel-

erator (Varian Medical Systems, CA, USA) using a 6 MV

photon beam. Intensity-modulated radiotherapy (IMRT) plans

(named original plans, OPs) with 5-6 fields were designed

for every patient, based on direct machine parameter

optimization.

An OPs was designed for each of the 16 patients by the

radiation oncology physicists once the internal target volume

(ITV), planning target volume (PTV), and organs at risk (OAR)

were defined by the doctors. The initial objective functions for

the OPs are as follows: PTV – 60-66 Gy/30F, D95% > 60-66 Gy;

heart – V30 < 40%, V40 < 30%; right lung and left lung – V5 <

65%, V20 < 30%; esophagus – V50 < 30%, V60 < 10%; spinal

cord – maximum dose (MaxD) < 45 Gy. These initial objective

functions were used during the optimization, during which

the physicists modified the objective functions several times

until individualized optimal objective functions for each

patient were established. The OPs were designed using

free-breathing CT imaging because similar dosimetric charac-

teristics between the free-breathing and the average intensity

projection CTs have been reported in previous literature.15,16

Moreover, we had been using the free-breathing CT as the basis

of planning, and were quite sure that it was better for the OP

design. The left and right lungs were then merged into the

A-Lung for evaluation. (Note: D95% – minimum absorbed dose

which reaches 95% of the target volume; Vx is the ratio

between the volume of organs with absorbed a dose greater

than x Gy and the total volume of organs)

A deformable image registration algorithm in MIM,(a soft-

ware for imaging analysis, was used to register end-inhale CT

sequences with the corresponding end-exhale CT sequences, in

order to calculate a 4DCT-ventilation weighted-dose map for

each patient.

In the present study, the end-inhale and end-exhale CT

sequences were selected for the calculation of 4DCT-

ventilation with a grid of 4.0 mm. The registration was used

to calculate ventilation based on the HU density change, as

follows10:

Vin � Vex

Vex
¼ 1000

HUin � HUex

HUexð1000þ HUinÞ
ð1Þ

where Vin and Vex are the end-inhale and end-exhale volumes,

and HUin and HUex are the end-inhale and end-exhale Houns-

field units of the individual lung voxels, respectively. HUs

were defined as the average value in the 4.0 mm-grid, as this

size grid is sufficient for the dose calculation of conventional

fraction radiotherapy. During CT image reconstruction for

planning, with a slice thickness of 3.0 mm, the grid would be

slightly larger than 3.0 mm when calculating the average HU

and 4DCT-ventilation.
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Assuming that the original dose (OD) in the OP was D0, i

and the weighted dose (WD) in the WP was Dw, i, the equation

relating D0, i and Dw, i was as follows:

Dw;i ¼ D0;ið1þ 1000
HUin;i � HUex;i

HUex;ið1000þ Hin;iÞ
Þ ð2Þ

which considers the change in lung function identified by ven-

tilation in each grid to calculate the dose.

The end-inhale and the end-exhale CT sequence images

were subtracted to achieve HUin;i � HUex;i after registration,

which created a ventilation map (VP) in A-Lung, as shown in

Figure 1. Then, the VP and free-breathing CT underwent

deformable image registration. The one-to-one correspondence

between D0, i and HUin;i � HUex;i was used to calculate Dw, i, as

shown in Figure 2.

The occurrence of radiation-induced pneumonia is related to

many factors, and it is of great clinical significance to control

these factors. Studies have shown that the dose factors heavily

associated with radiation-induced pneumonia are V5, V20,

where DVx ¼ Vw, x in the WP – V0, x in the OP, and mean lung

dose (MLD) calculated from A-Lung.17-19 Therefore, the para-

meters evaluated in the present study include V5, V20, and

MLD. The corresponding values after weighted-dose

calculation are V5, w, V20, w, and MLDw, and their differences

are DV20 (V20, w-V20), DV5 (V5, w-V5), and DMLD (MLDw-

MLD). The correlations between the differences, DV5, DV20,

and DMLD, and the occurrence of radiation-induced pneumo-

nia were analyzed.

Results

The average A-Lung values for V5, V20, and MLD of the

16 patients were 67.9 + 7.5% (55.4-80.2%), 29.9 + 2.9%
(26.3-38.6%), and 1741 + 152 cGy (1504-2172 cGy) in the

Ops, versus 79.2 + 6.8% (67.3-88.6%), 38.4 + 2.7%
(34.7-44.2%), and 1916 + 147 cGy (1645-2290 cGy) in the

WPs, respectively, as shown in Table 1.

Based on the clinical symptoms of adverse events (RIP)

described in the Common Terminology Criteria for Adverse

Events 4.0 (CTCAE4.0), 3 radiation oncologists on the same

team assessed and graded RIP. As shown in Table 2, 5 of the

16 patients had acute RIP (pneumonia which occurred < 1

month after the completion of radiotherapy), 4 of which

(patients 3, 8, 11, and 15) had grade III RIP (patient required

oxygen) and higher DV5, DV20, and DMLD values compared to

those of the other 12 patients, as shown in Table 1. However,

the V5, V20, and MLD values for those 4 patients were not at

Figure 1. The end-inhale computed tomography (CT) sequence was set as the “Planning CT (fixed image)”, shown in the first layer. The end-
exhale CT sequence was set as the “Diagnostic CT (floating image)”, shown in the second layer. The Hounsfield unit (HU) density-change map
was achieved using deformable image registration and was subtracted, as shown in the third layer.
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the top of the OPs. The Spearman correlation analysis was used

to analyze the correlation between RIP and DV20, DMLD, and

DV5. The results were as follows: RIP vs. DV20, r ¼ 0.5123;

RIP vs. DMLD, r ¼ 0.5119; and RIP vs. DV5, r ¼ 0.1904.

Discussion

RIP is one of the major limitations of radiotherapy for patients

with lung cancer. It is irreversible and may interrupt treatment,

while at the same time, serious pneumonia may endanger the

patient’s life. RIP is influenced by a variety of factors.20,21

As of yet, the mechanisms of RIP are not well understood.

The widely-accepted view at this time is that RIP is caused

by damaged type II epithelial and endothelial cells and a series

of signals from numerous acute inflammatory cells in locally

damaged lungs.22,23 Irrespective of the pneumonia

Table 1. Data Regarding the Original Dose (OD) in the Lung From the Original Plan (OP), the Weighted-Dose (WD) From the Weighted Plan
(WP), and the Dose Difference (DD).a

Pat. V5(%) V20(%) MLD (cGy) V5, w (%) V20, w(%) MLDw (cGy) DV5 (%) DV20 (%) DMLD (cGy)

1 80.2 30.2 1710 88.6 35.5 1854 8.4 5.3 144
2 59.3 31.4 1782 73.3 37.2 1931 14 5.8 149
3 55.4 26.6 1593 67.3 37.2 1889 11.9 10.6 296
4 78.6 38.6 2172 87.3 44.2 2290 8.7 5.6 118
5 62.2 28.2 1819 70.6 38.7 2025 8.4 10.5 206
6 73.1 31.9 1790 81.9 41.9 1911 8.8 10.0 121
7 68.5 27.7 1691 84.5 35.6 1843 16.0 7.9 152
8 65.7 28.5 1630 78.7 40.2 1863 13.0 11.7 233
9 74.3 32.2 1942 87.4 39.4 2132 13.1 7.2 190
10 72.4 31.3 1785 83.1 39.6 1953 10.7 8.3 168
11 68.5 30.0 1760 81.4 42.6 2018 12.9 12.6 258
12 67.2 26.3 1620 78.8 34.7 1751 11.6 8.4 131
13 77.5 30.9 1776 86.4 37.1 1886 8.9 6.2 110
14 65.8 30.2 1504 76.3 36.4 1645 10.5 6.2 141
15 56.5 27.7 1622 69.5 39.1 1890 13.0 11.4 268
16 61.5 27.3 1655 71.9 35.4 1778 10.4 8.1 123
Mean 67.9 29.9 1741 79.2 38.4 1916
s 7.5 2.9 152 6.8 2.7 147

aDV20 (V20, w-V20), DV5 (V5, w-V5), DMLD (MLDw-MLD).

Figure 2. Deformable image registration of the free-breathing CT, which was the original plan (OP) design, and the HU density change map. The
established one-to-one correspondence between D0, i and HUin;i � HUex;i was used for calculating Dw, i

Table 2. Pneumonia Statistics Table.a

Patient 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Pneumonia
p p p p p

a“
p

” lables patients suffering from pneumonia.
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pathogenesis, one important clinical phenomenon is the decline

in ventilatory function once radiation-induced pneumonia

occurs.24

As functional imaging was lacking in the past, radiation

oncologists held the opinion that the lung was a typical parallel

organ, and that the function of each part was homogeneous, as

was the radiation sensitivity. Thus, dose assessment usually

focuses on the Vx and MLD of the entire lung, although dose

location has not yet garnered much attention. Although there

have been studies conducted based on the division of the lung

into upper and lower parts, these results were rarely used in

clinical practice.25

After the development of functional imaging, lung function

could be clearly evaluated, and the lung could be divided into

the HFA and LFA, corresponding to good and poor ventilation,

respectively. The information regarding HFAs and LFAs pro-

vided by lung-function imaging was used to make the thera-

peutic dose as small as possible in the HFA and protect the

HFA in the design of the radiotherapy plan. The occurrence

rate and severity of RIP are expected to be reduced by this

method.26-28 However, one thing that was not demonstrated

was the acquisition of HFA avoidance rather than loss of LFA

involvement. This is very important, because no matter how the

plans were designed, it was impossible to avoid HFAs com-

pletely, especially in cases with tumors located in HFAs. It is of

note, however, that even in the HFA and LFA, lung function

was not homogenous.

In the present study, we did not set any certain parameter by

which to distinguish lung tissue into HFA and LFA, based on

this knowledge. The function of each voxel/grid was labeled

with 4DCT-ventilation, in an attempt to have the “label” reflect

the dose of the voxel/grid. The results indicated that this

method might be useful. Of the 16 patients, 5 patients (patients

3, 4, 8, 11, and 15) suffered from RIP. We considered V5, V20,

and MLD to be closely associated with RIP, and found that the

V5 of the OPs in patients 3, 4, 8, 11, and 15 ranked (from high

to low) 16th, 2nd, 10th, 8th, and 15th, of 16 patients, V20

ranked 15th, 1st, 10th, 9th, and 13th, and MLD ranked 15th,

1st, 14th, 8th, and 13th. In other words, these patients did not

rank in the top in for V5, V20, or MLD; however, they suffered

from RIP, while the other 11 patients with higher V5, V20, and

MLD values did not.

When V5, w, V20, w, and MLDw were evaluated, it was easy

to find that the ranking of DV5, DV20, and DMLD for patients

3, 4, 8, 11, and 15 were at the top, particularly the DV20 and

DMLD for patients 3, 8, 11, and 15. For patients 3, 8, 11, and

15, the rate of high-dose radiation exposure to the HFA was

higher than that of the other patients. Subsequently, the HFA of

the lung was more seriously damaged, which undoubtedly

increased the probability of developing RIP. The results of the

Spearman correlation analysis corroborated this, as for RIP vs.

DV20, r ¼ 0.5123; RIP vs. DMLD, r ¼ 0 .5119; and RIP vs.

DV5, r ¼ 0.1904. Spearman’s rank-order correlation is a

method used to study the correlation between 2 variables

according to ranking data. The RIP correlation coefficients for

DV20 and DMLD were greater than 0.5, indicating a certain

correlation between RIP and both DV20 and DMLD.

Of course, there were individual differences in the realized

clinical probability. It was evident that of the 16 patients, the

DV20 and DMLD for patient 5 were higher, however, the

patient didn’t suffer from acute RIP.

There were many points worth discussing, if the weighted

method was used to explain the clinical results of these

16 patients, such as how equation (2) expressed the weighted

dose. By comparing equations (1) and (2), we found that equa-

tion (2) reflected the amount of air exchange in the grid

(4.0 mm� 4.0 mm� 4.0 mm). The results of the present study

showed that radiation sensitivity was positively correlated with

oxygen amount, regardless of cells and tissues.29-32 The DV20

and DMLD values found in the present study were produced by

equation (2). Namely, the DV20 and DMLD were clinical

(macro) manifestations of “oxygen concentration-increasing-

radiosensitivity.”

However, the number of patients in the present study was

small, and further studies are needed to evaluate whether this

approach would have the same results in a larger sample. Addi-

tionally, there may be other factors that could have induced

errors in the analysis, such as the CT used in the studies, arti-

facts, and ventilation reconstruction algorithms, which depend

on the improvement of image processing technology and

algorithms.

Conclusion

The 4DCT-ventilation-based weighted-dose analysis in the

present study showed that there was some correlation between

RIPP and both DV20 and DMLD, when comparing the

weighted-dose and conventional DVH analyses.
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