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Abstract: Azithromycin (AZM) is a macrolide antibiotic used for the treatment of various bacterial
infections. The drug is known to have low oral bioavailability (37%) which may be attributed to its
relatively high molecular weight, low solubility, dissolution rate, and incomplete intestinal absorption.
To overcome these drawbacks, liquid (L) and solid (S) self-emulsifying drug delivery systems
(SEDDs) of AZM were developed and optimized. Eight different pseudo-ternary diagrams were
constructed based on the drug solubility and the emulsification studies in various SEDDs excipients
at different surfactant to co-surfactant (Smix) ratios. Droplet size (DS) < 150 nm, dispersity (Ð) ≤ 0.7,
and transmittance (T)% > 85 in three diluents of distilled water (DW), 0.1 mM HCl, and simulated
intestinal fluids (SIF) were considered as the selection criteria. The final formulations of L-SEDDs
(L-F1(H)), and S-SEDDs (S-F1(H)) were able to meet the selection requirements. Both formulations
were proven to be cytocompatible and able to open up the cellular epithelial tight junctions (TJ).
The drug dissolution studies showed that after 5 min > 90% and 52.22% of the AZM was released
from liquid and solid SEDDs formulations in DW, respectively, compared to 11.27% of the pure AZM,
suggesting the developed SEDDs may enhance the oral delivery of the drug. The formulations were
stable at refrigerator storage conditions.

Keywords: liquid SEDDs; solid SEDDs; drug delivery; self-emulsifying; cytotoxicity; MTT assay;
tight junctions; Caco-2 cell; stability

1. Introduction

Oral drug delivery is the most widely used and the common route of drug administration
because it is convenient, economical, comfortable, and requires no special training for use [1,2].
However, despite these advantages, problems such as poor solubility, low dissolution rates, and limited
drug diffusion through the paracellular pathways before eventually entering the systemic circulation
making it challenging for many drugs to reach the therapeutic levels via this route [3,4].

Azithromycin (AZM) is a semisynthetic 15-membered macrolide antibiotic [5], with a lipophilic
nature (log P = 4), (pKa = 8.74), and a molecular weight of 749 g/mol [6,7]. The drug, which is included
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in the model list of essential medicines on the World Health Organization website [7], is classified
as the first azalide subclass among its family members [8,9] with a superior antibacterial activity
in the market for the last three decades. This makes AZM the drug of choice for the treatment of
various gastrointestinal, respiratory, and genitourinary infections. Recently it has gained increased
popularity owing to its suggested important role in improving the ability of hydroxychloroquine to
eradicate the global outbreak of COVID-19 virus at clinical levels [10]. However, the oral intake of
AZM is associated with a relatively low bioavailability of 37%. The exact reasons for this low oral
bioavailability are not specified. However, many reports are suggesting that it might be attributed
to different factors such as the low aqueous solubility (AZM is practically insoluble in water) which
may lead to erratic dissolution rates [11–15], the drug relatively high molecular weight, the low
stability at the acidic gastric pH (AZM have a high potential of decomposition in acidic medium) [16],
and the incomplete gastrointestinal tract (GIT) absorption [17]. Pharmacokinetically, most poorly
water-soluble drugs have low bioavailability. Furthermore, AZM is recognized to be a substrate for the
P-glycoprotein (P-gp) efflux transporters, which can potentially restrict its transcellular diffusion and
permeability [18–20]. To the best of our knowledge, cellular studies on the paracellular permeability
of AZM and its nanoformulation(s) on colon adenocarcinoma human cells (Caco-2) line are scanty.
Nevertheless, some reports are suggesting that AZM may increase the transepithelial electrical resistance
(TEER) values when studied in certain cell lines such as human airway epithelial cell lines [21,22],
which could be linked to changing the processing of tight junction proteins [22,23]. This may lead to
a negative impact on AZM paracellular transport and permeability. All these drawbacks led to higher
oral AZM dosing regimens and longer times of treatment that, in turn, intensified the associated GIT
side effects, including diarrhea, nausea, and abdominal pain. The only other available dosage form of
AZM is the intravenous infusion, which is also associated with severe adverse effects, including pain
at the injection site and local inflammation [24].

Increasing the solubility and dissolution rates of poorly water-soluble drugs are of the
most challenging tasks in drug development nowadays for enhancing their oral bioavailability.
Different strategies and techniques were employed for this purpose such as complexation,
chemical modification, solid dispersions, and the use of nanocarriers and drug delivery systems.
Solid dispersions [11,15,25], nanosuspensions [26], and niosomes [27] of AZM were employed to
enhance its solubility and dissolution rates.

Lipid-based carriers have been used successfully to enhance the oral delivery of various drugs.
These formulations are generally classified into four types (I, II, III, and IV) [28,29]. In particular,
type III carriers, which are also known as self-emulsifying drug delivery systems (SEDDs), have been
driving a profound interest by the pharmaceutical researchers and industries for their efficacy in
enhancing oral delivery of various therapeutic agents of different physiochemical properties [30–34].
SEDDs are used as effective tools to enhance the GIT absorption and oral bioavailability of poorly
water-soluble drugs by significantly increasing their solubility and improving their dissolution
behavior [35]. Furthermore, SEDDs are also existing as liquid (L-SEDDs) and solid (S-SEDDs)
formulations. The S-SEDDs are suggested to provide better stability, reproducibility, and patient
compliance, in addition to ease of process control [36].

The present study aimed to develop L-SEDDs and S-SEDDs formulations for potentially enhancing
the oral delivery of AZM by increasing its solubility and dissolution rates using excipients that are able
to solubilize the highest amounts of the drug and at the same time have a previously reported capacity
to loosen the intestinal TJ. In this work, AZM-loaded L-SEDDs were prepared and characterized.
The optimized liquid SEEDs were converted to solid SEDDs using various solidifying agents. All the
prepared AZM-loaded liquid and solid SEEDs formulations were characterized in terms of droplet size
(DS), dispersity (Ð), zeta potential (ZP), maximum drug content (DC) which is also called solubilization
capacity, and in vitro release behaviors. The cytotoxicity and the potential abilities of the optimized
liquid and solid formulations to open the epithelial TJ by reducing the trans-epithelial electrical
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resistance (TEER) for better drug permeability were investigated. Furthermore, the stability of the
optimized formulations was evaluated at different storage conditions.

2. Materials and Methods

2.1. Materials

Azithromycin (purity > 97.2%) was a kind gift from Wockhardt research center (Aurangabad, India).
Labrasol®, Labrafac PG®, Labrafil® M 1944 CS, Capryol 90® and Transcutol HP® were purchased
from Gattefossé (Lyon, France). Span 20®, Span 80®, Tween 20®, Tween 80®, octanoic acid ≥ 99%,
castor oil, potassium phosphate monobasic ≥ 99%, Trypsin-EDTA solution 1× (0.25% trypsin,
0.02% EDTA), dimethyl sulfoxide ≥ 99.5% (DMSO), thiazolyl blue tetrazolium bromide 98% (MTT)
and Corning® transwell polycarbonate membrane cell culture inserts 24 well plates were obtained
from Sigma-Aldrich (St. Louis, MO, USA). Cremophor 40®, Cremophor EL® were bought from BASF
(Ludwigshafen, Germany). Pureco® 76 was purchased from Abitec corporation (Janesville, WIS, USA).
Aerosil 200® ≥ 99.8% was obtained from Evonik Inc. (Essen, Germany). Calcium carbonate, mannitol,
and sodium hydroxide pellets were brought from R & M chemicals Ltd. (Essex, UK). HMS lactose
was ordered from B.V. Hollandsche Melksuikerfabriek (Uitgeest, Holland). The medium used for
the cell culture was Gibco® Dulbecco’s modified eagle’s medium (DMEM (1×) + GlutaMAXTM-1),
penicillin-streptomycin solution (Pen-Strep) (which contains 10,000 units of penicillin, and 10 mg
of streptomycin), and Gibco® fetal bovine serum (FBS) (New Zealand origin), along with Gibco®

Dulbecco’s phosphate-buffered saline (1×) (DPBS), and hydrochloric acid (HCl) were bought from
ThermoFisher scientific (Waltham, MA, USA). Caco-2 cells line was obtained from the American Type
Culture Collection (ATCC) (Manassas, VA, USA). Palm oil was purchased from a local Malaysian
market. All other used organic solvents or chemicals were either of analytical or HPLC grades.

2.2. Methods

2.2.1. HPLC Analysis

AZM solubility, drug content, and the in vitro release studies were determined using a previously
validated HPLC method which was specially developed for these purposes [37]. In brief, the separation
was done using Hypersil GOLD C-18 analytical column packed with deactivated silica (250 mm× 4.6 mm
ID × 5 µm) kept at 60 ◦C. A mixture of ammonium acetate solution (30 mmol/L, pH = 6.8) and
acetonitrile at the ratio of (18:82, v/v) was used as the mobile phase. The UV detection was done at
210 nm. Samples were eluted isocratically at a flow rate of 0.7 mL/min. The theoretical plate (N > 1500),
tailing factor (T ≤ 1.5), and resolution (Rs > 3) were as per the United States Pharmacopeia (USP) [5].
The linearity was observed over the concentration range of 5–200 µg/mL (R2 > 0.9999). The limit of
detection (LOD) and limit of quantification (LOQ) were 0.476 µg/mL and 1.443 µg/mL, respectively.
The developed method was statistically confirmed to be accurate, precise, and reproducible.

2.2.2. Preparation and Characterization of Blank Liquid SEDDs

• Excipients selection and screening

Excipients selection was mainly based on their ability to solubilize the highest amounts of the
AZM. The impact of lipids classes as long carbon chain triglycerides (LCT) and medium carbon chain
triglycerides (MCT) was observed, as such differences in carbon chain lengths were reported to have an
influence on drug solubilization potential and the ability to facilitate the emulsification process [38,39].
Extra attention was given to include excipients with previously reported abilities to loosen the cellular
TJ for the possibility of enhancing the drug paracellular route diffusion. Besides, certain compounds
were reported to have other cellular activities (such as P-gp inhibition) along with the TJ loosening
were also investigated. Other excipients which have not been reported for owning any such cellular
activity were also included for their potentials in enhancing AZM solubility, as illustrated in Table 1.
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Table 1. Screened excipients’ role, characteristics, and previously reported cellular activities.

Name Role HLB Chain Length Reported Cellular Activity (s) References

Capryol 90®

Oil

5 Medium-chain (C8) TJ opening [33,40,41]

Castor Oil - Long-chain (C18) - -

Octanoic acid
(caprylic acid or

caprylate)
- Medium-chain (C8) TJ opening [42,43]

Palm Oil - Long-chain.
Mixture of C16 and C18 - -

Pureco 76® - Medium-chain (C8–C10) - -

Cremophor EL®

Surfactant

12–14 Medium-chain C8 TJ opening and P-gp inhibitor [44]

Cremophor RH40® 14–16 Medium-chain C10 TJ opening and P-gp inhibitor [45]

Labrafac PG® 1 Medium-chain.
Mixture of C8 and C10 - -

Labrafil® M 1944 CS 9 Long-chain C18 - -

Labrasol® 12–14 Medium-chain (C8–C10) TJ opening and P-gp inhibitor [44,46]

Tween 20® 16.7 Medium-chain C12 P-gp inhibitor [47–49]

Tween 80® 15 Long-chain C18 TJ opening and P-gp inhibitor [50–52]

Span 20®

Co-surfactant

8.6 Medium-chain C12 P-gp inhibitor [53]

Span 80® 4.3 Long-chain C18 - -

Transcutol HP® - - P-gp inhibitor [54]

(HLB, Hydrophile-lipophile balance; TJ, Tight Junctions; P-gp, P-glycoprotein).

• Solubility study

The solubilization capacities of various excipients were investigated using the equilibrium method
to ensure the selection of excipients that can solubilize the maximum amount of AZM. In brief, an excess
amount of AZM (300 mg) was weighed in multiple 5 mL screw-capped bottles, then 3 mL of the different
oils, surfactants, or co-surfactants were added separately into each bottle and vortexed for 2 min
using ZX3 vortex mixer (VELP Scientifica, Italy). The filled bottles were then placed in a reciprocating
shaker bath (Braun, Melsungen, Germany) at 500 oscillations/min for 72 h and maintained at 37 ± 2 ◦C.
The bottles were centrifuged at 3000 rpm for 15 min to remove the undissolved AZM, and the
resulted supernatant layer was filtered through a 0.45 µm syringe driven filter (Whatman, USA).
Drug concentration in each vehicle was determined by HPLC.

• Emulsification studies

Based on the results of the AZM solubility study, the selected surfactants and co-surfactants were
further screened for their emulsification abilities in the selected oils. Various surfactant to co-surfactant
(Smix) ratios of (1:1), (2:1), (3:1), (4:1), (5:1), (6:1) and (1:2) (v/v) were mixed in separate vials and vortexed
for few seconds until homogenous mixtures were obtained. A fixed oil ratio of 10% was added to each
Smix ratio (90%); the mixtures were then gently vortexed and allowed to equilibrate at a reciprocating
shaker bath for 2 h at room temperature. The produced mixtures had a range of hydrophilic–lipophilic
balance (HLB) values within the range of 6.55 to 14.22. Although the characterization of SEDDs is
mainly conducted using either distilled or deionized water as the dispersing medium [34,55–57], yet,
in this work, the self-emulsification efficiency of various mixtures was evaluated on the bases of the
produced droplet size (DS), dispersity (Ð) and transmittance percentage (T%), in three different diluents
namely: distilled water (DW), 0.1 mM HCl (pH = 4), and simulated intestinal fluids (SIF) (pH = 6.8) for
mimicking the oral route of administration and select the most physically stable formulation(s) [58,59].
All the used diluents were freshly prepared and filtered through a 0.45 µm nylon membrane filter before
use. Each formulation underwent a standard dilution of 1:1000 ratio (10 µL sample to 10 mL diluent)
then gently stirred with a magnetic stirrer and allowed to equilibrate before loading into a cuvette in
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a thermostatic chamber to measure DS and Ð through Photon Correlation Spectroscopy (PCS) using
laser light scattering spectrometer Zetasizer 1000HSA (Malvern Instrument, UK). The measurement of
T% was conducted at a dilution ratio of 10:1000 (100 µL sample to 10 mL diluent), then evaluated at
650 nm using a UV-Vis Spectrophotometer U-2000 (Hitachi, Japan) [60]. Only mixtures that produced
DS < 150 nm, Ð ≤ 0.7, and T% > 85 in the three different diluents were selected for the construction of
the pseudo-ternary diagram.

• Pseudo-ternary diagram construction

This step was done to identify the self-emulsifying regions of the L-SEDDs, where the total
concentration of the three constituents (oil, surfactant, co-surfactant) was always 100%. A series of
19 blank L-SEDDs formulations were prepared by mixing the oil with the previously selected Smix
ratios in different vials and volume ratios (1:9, 1:8.5, 1:8, 1:7.5, 1:7, 1:6.5, 1:6, 1:5.5, 1:5, 1:4.5, 1:4, 1:3.5, 1:3,
1:2.5, 1:2, 1:1.5, 1:1, 1.5:1 and 2:1). The vials were gently vortexed for 20 s and kept in the reciprocating
shaker bath for two hours at room temperature. The blank L-SEDDs formulations were assessed for
visual appearance and DS after preforming the employed standard dilution with filtered DW [61,62].
Only clear-transparent dispersions with DS < 150 nm were considered in the self-emulsified region of
the phase diagrams for this study. The phase diagrams were plotted using CHEMIX® ternary plot
software (CHEMIX School Ver. 3.60, Pub. Arne Standnes, Bergen, Norway).

2.2.3. Preparation and Characterization of AZM-Loaded L-SEDDs

Out of each identified self-emulsification area, three transparent formulations with DS < 150 nm
were selected at three oil concentrations (low, medium, and high) for the maximum DC (or solubilization
capacity) studies. There was a 5% difference between the three oil concentrations. A total of 24 L-SEDDs
formulations were chosen for the DC studies. To perform the experiment, an excess amount of AZM
(200 mg) was accurately weighed in multiple 5 mL screw-capped bottles, then 2 mL of each blank
L-SEDDs formulation was added to each bottle. The samples were then treated as per the procedure of
the AZM solubility studies, and the DC was measured. Both blank L-SEDDs and their corresponding
AZM loaded L-SEDDs (AZM-L-SEDD) formulations were further characterized in terms of DS, Ð,
T%, and zeta potential (ZP) in three diluents (DW, 0.1 mM HCl, and SIF). ZP was measured using
Zetasizer nanoseries Nano-Z, (Malvern Instrument, UK). The AZM-L-SEDDs formulations with the
highest AZM content, DS < 150 nm, Ð ≤ 0.7, T% > 85, and highest ZP value were selected for the
solidification process.

2.2.4. Preparation and Characterization of AZM-Loaded S-SEDDs

Various solidification methods such as adsorption to solid carriers, spray drying, freeze-drying,
rotary evaporation, melt extrusion-spheronization, and melt granulation are available for the
preparation of S-SEDDs [63,64]. In this work, adsorption to solid carriers’ method was adopted,
as the technique is simple, which involves the addition of the L-SEDDs to the selected carriers
with suitable mixing. Furthermore, the produced S-SEDDs by this method are stable and freely
flowing [65,66]. Various water-soluble (mannitol and lactose) and water-insoluble (calcium carbonate
and Aerosil 200®) solidifying agents were screened to select the suitable one for the conversion of the
optimized blank L-SEDDs and AZM-L-SEDDs into blank solid SEDDs (S-SEDDs) and AZM loaded
solid SEDDs (AZM-S-SEDDs), respectively.

At first, the adsorption capacity (expressed as a weight ratio of L-SEDDs: solidifying agent) of
each solidifying agent was studied through a drop-wise addition and mixing of a fixed portion of
blank L-SEDDs (0.5 mL~535.6 mg) with an equivalent portion(s) of the solidifying agent (~535.6 mg) in
a porcelain mortar until a non-sticky solid powder was produced. The mixing was done using a glass
rod after each addition to ensure uniform distribution of the formulation. The obtained S-SEDDs were
left for 24 h at room temperature to dry before further characterization for their DS, Ð, and ZP [67–69].
For DS and Ð measurements, 10 mg of the prepared S-SEDDs were dispersed in 10 mL of filtered
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diluent (DW, 0.1 mM HCl, or SIF). The S-SEDDs formulations solidified with a water-soluble solidifying
agent were gently stirred with a magnetic stirrer for 10 min, then allowed to equilibrate and loaded
into a cuvette in a thermostatic chamber. While those S-SEDDs solidified with a water-insoluble
solidifying agent, the dispersions were first centrifuged using MiniSpin® plus Eppendorf centrifuge
(Eppendorf Ag, Hamburg, Germany) at 8000 rpm for 10 min to remove the water-insoluble solids then
the samples were loaded into a cuvette in a thermostatic chamber [70].

The solidifying agent that produced S-SEDDs formulation with the lowest DS, Ð, and highest
ZP was selected for solidifying AZM-L-SEDDs. Formulations were further examined for their DS, Ð,
and ZP in the previously mentioned three diluents. AZM concentration in AZM-S-SEDDs formulation
was quantified by dissolving the solid formulation (1.51 g) in 10 mL methanol and stirring it with
a magnetic stirrer for 30 min. The solution was then sonicated in an ultrasonic bath (Branson 5510,
Las Animas, CA, USA) for 2 min. Suitable aliquots were taken and diluted with the diluting solution
and filtered with a 0.2 µm pore size nylon filter, then injected into HPLC.

2.2.5. Transmission Electron Microscope (TEM)

The morphology and shape of the final selected SEDD formulations in their liquid and solid
forms were studied by TEM. A drop of the dispersed liquid or solid formulation in DW (as per
the dispersing procedures for DS and Ð measurements) was placed onto 400 mesh carbon-coated
copper grid, air dried, then negatively stained with 2% phosphotungstic acid for 5 min at room
temperature. After that, the excess sample was removed using a filter paper and allowed to dry
before observation. Images were taken under the transmission electron microscope TEM (LIBRA 120,
Carl Zeiss, Oberkochen, Germany).

2.2.6. Cell Culture Studies

• Cell stock preparation

Caco-2 cells with passage numbers of 25 and 26 were grown and maintained on culture flask in
DMEM supplemented with 10% v/v of FBS and 1% v/v of 1% Pen-Strep (named as the complete medium)
and were maintained at 37 ◦C in an atmosphere of 5% CO2 and 90% relative humidity in a Binder®

constant climate chamber (Tuttlingen, Germany) [71]. Once 80% of the flask surface is covered by
cell monolayer, cells were split and washed twice with DPBS, then the trypsin-EDTA solution was
added and gently swirled, ensuring the complete covering of trypsin to all the cells. The flask was
then incubated for 10 min in an atmosphere of 5% CO2 and 90% relative humidity. Cells stock was
prepared by aspirating out the trypsin-EDTA, and adding the complete medium, then centrifuging
this cells stock in HERAEUS® LABOFUGE 400R centrifuge ThermoFisher Scientific (Waltham, MA,
USA) at 900 rpm for 5 min to create a pellet at the bottom of the centrifuge tube. The cell pellet was
re-suspended in 3 mL of fresh complete medium for further use as a cell stock. All cell culture buffers
and solutions were pre-warmed to 37 ◦C prior to contact with the cells, and all protocols involved the
handling of Caco-2 cells in cultures were performed aseptically.

• Cytotoxicity assay

The cytocompatibility of the optimized blank L-SEDDS and S-SEDDs formulas was investigated
using the microtiter tetrazolium assay (MTT). The assay was done according to previously described
methods [72,73], with slight modifications. Proper dilutions of the cell stock with the complete medium
were made to get the required seeding density of 51,000 cells/cm2 on Biofil® tissue culture 96 well
plates (Guangzhou, China).

After 24 h of seeding on the 96 well plates at 37 ◦C in an incubator with 5% CO2 and 90% relative
humidity, the attached cells were washed twice with DPBS, then concentrations of blank L-SEDDS
(0.25, 0.5, 1, and 2% v/v) and blank S-SEEDs (0.39, 0.77, 1.54, and 3.08% w/v) were selected for the study.
The SEDDs were dispersed in DMEM solution, gently vortexed, filtered using a 0.2 µm sterile filter
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membrane, and added to the 96 wells plates then incubated for 4 h. DMEM alone was employed as
blank. After incubation, the supernatant layer was discarded, and all cells were washed twice with
DPBS. To observe cells’ vibrant reductive activity, a final concentration of 1 mg/mL of thiazolyl blue
tetrazolium bromide dye solution (MTT solution) was dissolved in DPBS within a tube wrapped in
aluminum foil to protect it from light, and the cells in the well plates were loaded with 100 µL of sterile
and filtered MTT solution and incubated for another 4 h. Then the supernatant layers were removed,
the precipitated formazan crystals were dissolved in DMSO, and the plates were gently rotated on an
orbital shaker for 5 min. The color of the resulted formazan solutions in DMSO was measured at 570 nm
with background subtraction at 690 nm by a Multiskan™ FC microplate photometer (Thermo Scientific,
Waltham, MA, USA) with Skanit software version 3.2. The percentage of cells viability was calculated
with respect to the control [74], as follows:

Viability % =
Abs sample−Abs blank
Abs control−Abs blank

∗ 100 (1)

where, Abs sample: Absorbance of cells treated with formulations. Abs control: Absorbance of cells not
treated with formulations. Abs blank: Absorbance of blank.

• Transepithelial electrical resistance evaluation

Transepithelial electrical resistance (TEER) is a widely accepted quantitative technique to measure
the integrity of tight junction dynamics in cell culture models of epithelial monolayers where the TJ
proteins in the paracellular route contribute to an ohmic resistance (RTEER) in the equivalent circuit [75].
The TJ opening was investigated as per the previous protocol [76]. Cells suspension corresponding to
51,000 cells/cm2 was prepared from the cells’ stock and added to the apical transwell compartments
of all plates. The plates were maintained at 37 ◦C in an incubator with 5% CO2 and 90% relative
humidity until they formed a polarized/differentiated monolayer, which took approximately a period
of 21–23 days. During that period, a regular replacement of cells medium in both chambers (every 48 h),
and monolayer’s integrity monitoring were conducted by measuring the TEER using an EVOM2®

epithelial volt ohmmeter with STX100 electrodes (World Precision Instruments Ltd., Stevenage, UK).
Figure 1 shows a schematic diagram of the measuring procedure of the TEER. The Caco-2 cell monolayer
with average TEER values ≥ 300 Ω.cm2 indicated that cells are intact [69], and accordingly, they were
used in this study. Raw data were measured in Ohm (Ω) and converted to Ω × cm2 based on the area
of transwell plate inserts, which is equal to 0.4 cm2 for the used 24-well plate [77].
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On the day of the experiment, the cell cultures medium was removed, the monolayers were
washed with DPBS, and fresh medium was placed in both chambers; cell cultures were left for 15 min.
to equilibrate before starting the measurements. The monolayers TEER values were measured in
all the studied plates for the first 10 min of the test before adding any samples, including DMSO as
control, DMEM as blank, pure AZM, blank and AZM incorporated L-SEDDs, as well as blank and
AZM incorporated S-SEDDs formulations.

The selected studied concentration was based on the MTT assay results. The blank and AZM
incorporated L-SEDDs at the concentration of 0.5%, and an equivalent concentration of blank and AZM
incorporated S-SEDDs formulations, as well as pure AZM, were dispersed in DMEM. All samples
were filtered using a 0.2 µm sterile filter membrane immediately before use. At the apical side, 10 µL
of the medium was replaced with 10 µL of each of the seven studied solutions, and once the addition
is made, TEER values were measured at different time intervals including, every minute for 30 min,
and then every hour for a period of 4 h. The resistance of the monolayer was calculated using the
following equation:

R cell layer = R sample − R blank (2)

where, R cell layer: Resistance of the Caco-2 monolayer. R sample: Resistance reading of the studied
sample. R blank: Resistance reading of the blank.

2.2.7. The In Vitro AZM Release Studies

The in vitro release of the optimized L-SEDDs and S-SEDDs formulations was performed in
comparison to the pure AZM powder using Varian® 7000 USP dissolution apparatus II (Santa Clara,
CA, USA), paddle method, as recommended by USFDA [78]. Three different dissolution media were
employed, namely: DW, 0.1 mM HCl (pH = 4), and SIF (pH = 6.8). The SIF was prepared by mixing
250 mL of 0.2 M potassium phosphate monobasic solution with 118 mL of 0.2 M sodium hydroxide
solution then diluted with DW to 1000 mL [79]. A volume of 900 mL of the selected dissolution medium
was placed in each vessel of the dissolution apparatus and was kept at 37 ± 2 ◦C with a paddle rotating
speed of 100 rpm. An amount of 100 mg of pure AZM powder, and equivalent volume and weight of
AZM-loaded L-SEDDs and S-SEDDs formulations that are containing 100 mg of the drug were placed
in the vessels [15,80]. From each vessel, 5 mL aliquot was drawn at selected time intervals of 5, 15, 30,
60, 90, 120, 180, and 240 min, respectively, and were filtered through 0.45 µm polytetrafluoroethylene
(PTEF) filters (Titan®, West Springfield, MA, USA). The drawn aliquots were directly replaced with an
equal volume of the same fresh dissolution media, and AZM was quantified by HPLC.

2.2.8. Stability Studies

Stability studies of the optimized AZM incorporated L-SEDDS and S-SEDDS formulas were
conducted for three months under three different temperatures and relative humidity conditions,
namely refrigerator (4 ± 2 ◦C), room condition (25 ± 2 ◦C and 60 ± 5 relative humidity %), and humidity
chamber (40 ± 2 ◦C and 75 ± 5 relative humidity %). The samples were analyzed for their DS, Ð, ZP,
DC %, and the in vitro release profiles at different time intervals of 0, 0.5, 1, 2, and 3 months.

2.2.9. Statistical Analysis

All experiments were carried out for at least in triplicate. To test the statistical significance,
a one-way analysis of variance (ANOVA) with Tukey’s HSD (honest significant difference) tests were
used. The difference in all the analyses was considered statistically significant when p < 0.05. All the
statistical tests were done using (Minitab® statistical software, version 17.2.1.0, Minitab Inc., USA).
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3. Results and Discussion

3.1. Excipients Selection and Solubility Studies

In this study, excipients of different carbon chain lengths were employed for better screening of
SEDDs ingredients. Figure 2 illustrates the solubility of AZM in the screened excipients.
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Among the studied excipients, the highest solubility of AZM was observed in the oils of Capryol
90® (80.16 ± 0.83 mg/mL), and Octanoic acid (74.5 ± 0.035 mg/mL), in the surfactants of Labrasol®

(97.44 ± 0.7 mg/mL), and Tween 20® (69.43 ± 0.81 mg/mL) and in the co-surfactants of Transcutol® HP
(85.41 ± 0.27 mg/mL), and Span 20® (53.48 ± 0.75 mg/mL).

Based on the literature review, many reports showed that drugs’ solubilities in various oils
and surfactants might vary based on the carbon chain lengths of the oils and surfactants [81],
including MCT [82–84], and LCT [85,86]. This attitude is probably linked to the employed drug
physicochemical properties [82,87]. Among the studied excipients, AZM showed higher solubility in
the MCT rather than the LCT. This may be linked to the high log p-value of AZM (4.02), where such
drugs are shown to be more soluble in MCT than LCT [88]. Furthermore, MCT are reported to have
a higher solvent capacity [89,90]. In contrast, AZM showed poor solubility in Cremophor RH40® and
Cremophor EL® despite being medium-chain surfactants; this is likely because these surfactants are
derived from edible oil (castor oil), where some lipophilic drugs reported to have very low solubility
in such oils during SEDDs formulation studies [91–93].

3.2. Emulsification Efficiency Studies

Based on the solubility study results, all possible combinations of the various excipients were
investigated for emulsification efficiency, as illustrated in Table 2. As more than two types of chemicals
were incorporated in the SEDDs formulations, then one of the components was used at a fixed ratio
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(oil) [94], while others (Smix) were studied at the previously mentioned ratios in the method section.
Precisely, a fixed ratio of 10% of the oil was employed as recommended to produce spontaneous
L-SEDDs formulations with small DS upon dispersion [28].

Table 2. The combination of the selected components in liquid self-emulsifying drug delivery systems
(L-SEDDs) formulations.

No. Formulation Code Oil Surfactant Co-Surfactant

1 A1

Capryol 90®

Labrasol® Transcutol HP®

2 B1 Labrasol® Span 20®

3 C1 Tween 20® Transcutol HP®

4 D1 Tween 20® Span 20®

5 A2

Octanoic acid

Labrasol® Transcutol HP®

6 B2 Labrasol® Span 20®

7 C2 Tween 20® Transcutol HP®

8 D2 Tween 20® Span 20®

As the present SEDDs formulations are designed for oral delivery, the potential effects of GIT
conditions on SEDDs emulsification were considered by performing the emulsification studies in
different diluents, namely DW, 0.1 mM HCl (pH = 4), and SIF (pH = 6.8). The formulations that were
able to maintain their DS < 150 nm, Ð ≤ 0.7, and T% > 85 in all the three diluents were selected for the
next steps.

The selection criteria are based on the fact that the smaller DS is associated with greater absorption,
and faster release, facilitated hydrophobic drug solubilization, and quick transport from the stomach
and distribution along the GIT [38,95–97]. Furthermore, the L-SEDDS formulations with DS < 150 nm
showed higher size robustness upon dilutions in the different media in the emulsification study.
On the other hand, smaller Ð values were required to get a better system homogeneity [98,99].
While T% > 85 was considered, as it indicates good emulsification in terms of rapid and reproducible
equilibrium [100–102].

By performing the emulsification studies, Tween 20® was shown to be superior to Labrasol®

in emulsifying Capryol 90® or Octanoic acid in A1, A2, and B1, B2 formulations. This ability
might be attributed to the higher HLB value of Tween 20® (16.7) than the HLB value of Labrasol®

(12–14) [103,104].
Based on the discussed selection criteria, C1 and C2 formulations at the Smix ratios of (2:1),

(5:1), (6:1) and (2:1), (3:1), (4:1), (5:1), (6:1), respectively were selected for further studies through the
construction of pseudo-ternary diagram.

3.3. Construction of Pseudo-Ternary Phase Diagram

Ternary phase diagrams are constructed to determine self-emulsification areas at which various
concentrations of the excipients (oil, surfactant, and co-surfactant) would possess a transparent
appearance and DS < 150 nm. These parameters were considered for selecting the optimum L-SEDDs
formulations. Based on the emulsification study, eight diagrams were constructed (Figure 3).

Different blank L-SEDDs samples with three levels of oil: Smix ratios including (8:1), (5:1),
and (3.5:1) that meet the set selection criteria were further investigated. These ratios represent
high (H), medium (M), and low (L) concentrations on the pseudo-ternary diagram as described in
Table 3. This approach was considered to avoid the use of a high concentration of surfactants (>60%),
which is associated with GIT irritation when used in L-SEDDS formulations [105,106]. In the pseudo
ternary phase diagram, each blue dot represents a formulation with various combination ratios of
(oil: surfactant: co-surfactant) where all set criteria are met.
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Table 3. The selected L-SEDDs components’ concentrations and droplet size (DS) out of the constructed
pseudo-ternary diagrams. Mean ± SD, n = 3.

Oil % Surfactant % Co-Surfactant % DS (nm)

Diagram 1: Capryol 90®, Tween 20®, and Transcutol HP® at Smix ratio of 2:1

11.11111 59.25926 29.62963 113.6 ± 1.3

16.66667 55.55556 27.77778 126.03 ± 1.3

22.22222 51.85185 25.92593 139.2 ± 0.69

Diagram 2: Capryol 90®, Tween 20®, and Transcutol HP® at a Smix ratio of 5:1

11.11111 74.07407 14.81481 56.17 ± 0.76

16.66667 69.44444 13.88889 76 ± 1

22.22222 64.81481 12.96296 94 ± 1

Diagram 3: Capryol 90®, Tween 20®, and Transcutol HP® at a Smix ratio of 6:1

11.11111 76.19048 12.69841 10.1 ± 0.3

16.66667 71.42857 11.90476 12.13 ± 0.31

22.22222 66.66667 11.11111 60.27 ± 1.1

Diagram 4: Octanoic acid, Tween 20®, and Transcutol HP® at a Smix ratio of 2:1

11.11111 59.25926 29.62963 125.1 ± 1.1

16.66667 55.55556 27.77778 140.03 ± 0.95

22.22222 51.85185 25.92593 145 ± 1

Diagram 5: Octanoic acid, Tween 20®, and Transcutol HP® at a Smix ratio of 3:1

11.11111 66.66667 22.22222 98.13 ± 0.91

16.66667 62.5 20.83333 112.73 ± 1.14

22.22222 58.33333 19.44444 144.23 ± 0.93
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Table 3. Cont.

Oil % Surfactant % Co-Surfactant % DS (nm)

Diagram 6: Octanoic acid, Tween 20®, and Transcutol HP® at a Smix ratio of 4:1

11.11111 71.11111 17.77778 86.37 ± 1.1

16.66667 66.66667 16.66667 103.6 ± 0.36

22.22222 62.22222 15.55556 112.2 ± 0.72

Diagram 7: Octanoic acid, Tween 20®, and Transcutol HP® at a Smix ratio of 5:1.

11.11111 74.07407 14.81481 63.67 ± 1.5

16.66667 69.44444 13.88889 87.1 ± 1.2

22.22222 64.81481 12.96296 109.07 ± 0.86

Diagram 8: Octanoic acid, Tween 20®, and Transcutol HP® at a Smix ratio of 6:1

11.11111 76.19048 12.69841 10.13 ± 0.15

16.66667 71.42857 11.90476 13.43 ± 0.35

22.22222 66.66667 11.11111 97.43 ± 1.09

(DS, Droplet size; Smix, Surfactant to co-surfactant ratio).

3.4. Preparation of AZM Loaded L-SEDDs

AZM Incorporation and Its Impact on L-SEDDs Properties

The optimal drug incorporation into the L-SEDDs formulations depends on the compatibility
between the added drug and the physicochemical properties of the formulation. The results of AZM
incorporation and its related impacts on the L-SEDDs characteristics are shown in Tables 4 and 5.

The results of exploring DC or solubilization capacity of various formulations showed that it is
directly proportional to the oil concentration increment where L-F1(L), L-F1(M), and L-F1(H) formulations
were found to have a DC of 12.3 ± 0.05, 32.23 ± 0.07, and 60.42 ± 0.4 mg/mL, respectively. While the DC
of L-F2(L), L-F2(M), and L-F2(H) formulations were 18.68 ± 0.16, 29.97 ± 0.14 and 46.9 ± 0.67 mg/mL,
respectively. L-F1(H) and L-F2(H) formulations of both oils with Smix of Tween 20® and Transcutol
HP® at 2:1 ratio showed the highest DC, and their characteristics were within the selection criteria.
The higher was the oil concentration, the more was the amount of AZM incorporated in the formulations.
This finding is probably related to the higher solubility of AZM in the oil phase than to its solubility in
the used surfactant (Figure 2). However, L-F1(H) formulation (prepared with Capryol 90® oil) showed
higher drug content (60.42 ± 0.4 mg/mL) than L-F2(H) formulation (prepared with Octanoic acid)
(46.9 ± 0.674 mg/mL); this might be attributed to the higher solubility of AZM in Capryol 90® than in
octanoic acid oil.

AZM addition to the blank L-SEDDs formulations also caused some changes in their DS, Ð,
ZP, and T% characteristics (Tables 4 and 5). These changes might be linked to the entering of the
drug molecule into the interfacial surface where surfactant molecules exist [98]. Unlike formulations
constructed with octanoic acid, formulations with Capryol 90® oil showed characteristics robustness
upon drug incorporation. Such observations were in line with previously reported data using high oil
concentrations of 25% Capmul 808G EP/NF [107], as well as 30% of oil mixture (Maisine® 35-1 and
Labrafac® CC (1:1)) [108,109].

Increasing oil concentration was associated with significant increases in DS and Ð, as well as a
decrease in T% in all formulations. These effects could be attributed to the presence of an insufficient
amount of surfactant and co-surfactant in the mixture to reduce the DS, and Ð values.
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Table 4. Characterization of blank and AZM-L-F1 formulations at Capryol 90® oil concentrations of low, medium, and high analyzed in the three diluents. Mean ± SD,
n = 3.

Blank L-SEDDs AZM-L-SEDDs

DW

Code DS (nm) Ð ZP (mV) T% DS (nm) Ð ZP (mV) T%

L-F1(L) 112.63 ± 1.02 0.56 ± 0.05 −18.5 ± 0.96 90.17 ± 0.56 112.17 ± 1.26 0.41 ± 0.01 −21.73 ± 0.96 91.51 ± 0.19

L-F1(M) 125.4 ± 1.02 0.57 ± 0.002 −23.3 ± 1.4 90.01 ± 0.66 124.9 ± 1.65 0.47 ± 0.01 −23.1 ± 0.96 90.33 ± 0.31

L-F1(H) 138.6 ± 0.85 0.59 ± 0.009 −23.03 ± 1.1 90.1 ± 0.11 141.57 ± 1.1 0.52 ± 0.004 −26.47 ± 0.65 90.1 ± 0.1

0.1 mM HCl (pH = 4)

L-F1(L) 116.83 ± 1.3 0.56 ± 0.004 1.24 ± 1.5 94.75 ± 0.11 97.6 ± 1.6 0.52 ± 0.003 0.33 ± 1.7 98.2 ± 0.23

L-F1(M) 112.63 ± 1.4 0.54 ± 0.01 −0.89 ± 0.28 94.45 ± 0.11 91.23 ± 0.76 0.54 ± 0.003 −0.896 ± 0.35 98.04 ± 0.06

L-F1(H) 93.5 ± 1.3 0.62 ± 0.002 0.24 ± 0.47 94.75 ± 0.05 86.6 ± 1.44 0.52 ± 0.003 0.567 ± 2.2 97.99 ± 0.09

SIF (pH = 6.8)

L-F1(L) 89.43 ± 0.53 0.628 ± 0.005 −3.23 ± 0.11 93.3 ± 0.1 166.27 ± 1.96 0.824 ± 0.01 −3.27 ± 0.55 97.47 ± 0.08

L-F1(M) 86.63 ± 1.25 0.63 ± 0.01 −5.86 ± 0.68 93.48 ± 0.13 154.67 ± 2.1 0.83 ± 0.02 −6.05 ± 1.3 95.23 ± 0.12

L-F1(H) 95.47 ± 1.7 0.657 ± 0.04 −5.28 ± 0.89 93.38 ± 0.13 148.1 ± 1.6 0.68 ± 0.006 −5.97 ± 1.8 94.55 ± 0.48

(Blank L-SEDDs, Blank liquid self-emulsifying drug delivery systems; AZM-L-SEDDs, Azithromycin-loaded self-emulsifying drug delivery systems; DW, Distilled water; DS, Droplet size;
Ð, Dispersity; ZP, Zeta potential; T%, Transmittance percentage; HCl, Hydrochloric acid).
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Table 5. Characterization of blank and AZM-L-F2 formulations at Octanoic acid oil concentrations of low, medium, and high analyzed in the three diluents. Mean ± SD,
n = 3.

Blank L-SEDDs AZM-L-SEDDs

DW

Code DS (nm) Ð ZP (mV) T% DS (nm) Ð ZP (mV) T%

L-F2(L) 124.93 ± 1.5 0.64 ± 0.003 −17 ± 0.76 89.44 ± 0.26 143.1 ± 1.4 0.84 ± 0.02 −16.3 ± 0.87 90.47 ± 0.24

L-F2(M) 139.73 ± 1.31 0.59 ± 0.005 −17.1 ± 0.53 88.69 ± 0.08 148.43 ± 1.3 0.71 ± 0.003 −17.77 ± 0.96 89.03 ± 0.15

L-F2(H) 143.9 ± 1.64 0.68 ± 0.002 −18.23 ± 0.59 88.83 ± 0.32 267.8 ± 1.9 1 ± 0 −18.43 ± 0.97 77.96 ± 0.48

0.1 mM HCl (pH = 4)

L-F2(L) 104.65 ± 0.5 0.45 ± 0.002 0.27 ± 1.8 94.75 ± 0.1 113.7 ± 1.8 0.61 ± 0.07 0.086 ± 1.1 97.17 ± 0.55

L-F2(M) 113.53 ± 1.8 0.47 ± 0.003 −2.6 ± 0.4 93.77 ± 0.04 127.6 ± 1.5 0.54 ± 0.009 −0.58 ± 0.83 96.56 ± 0.57

L-F2(H) 130.37 ± 0.6 0.55 ± 0.002 0.24 ± 0.5 90.75 ± 0.07 136.7 ± 1.9 0.54 ± 0.02 0.62 ± 0.8 91.76 ± 0.58

SIF (pH = 6.8)

L-F2(L) 126.77 ± 1.2 1 ± 0 −3.61 ± 0.5 93.03 ± 0.11 149.77 ± 1.5 0.68 ± 0.01 −1.53 ± 0.17 89.1 ± 0.68

L-F2(M) 115.6 ± 1.1 1 ± 0 −4.18 ± 0.7 93.47 ± 0.12 159.47 ± 0.93 1 ± 0 −4.16 ± 1.02 86.62 ± 0.29

L-F2(H) 127.2 ± 1.4 1 ± 0 −4.44 ± 0.7 93.35 ± 0.13 226.3 ± 2.01 0.99 ± 0.006 −3.88 ± 0.69 75.02 ± 0.08

(Blank L-SEDDs, Blank liquid self-emulsifying drug delivery systems; AZM-L-SEDDs, Azithromycin-loaded self-emulsifying drug delivery systems DW, Distilled water; DS, Droplet size;
Ð, Dispersity; ZP, Zeta potential; T%, Transmittance percentage; HCl, Hydrochloric acid).
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The ZP measurement results showed that the charge of the prepared L-SEDDs formulations was
negative when dispersed in DW and SIF. This may be linked to the presence of free fatty acids in the
oil phase and/or surfactant [110]. However, upon the dilution of L-SEDDs formulations with 0.1 mM
HCl, the ZP charge was shifted to be positive. This could be due to the neutralization of fatty acids and
their negatively charged hydroxyl groups (OH−) by the available positively charged hydrogens (H+)
in such acidic medium.

Furthermore, increasing oil(s) concentration was associated with a significant increase in the
ZP values of the formulations, yet, relatively lower ZP values were obtained for formulations
constructed with octanoic acid oil compared with those constructed with Capryol 90® oil. This might
be related to the presence of a carboxyl group in the structure of octanoic acid [104]. The blank L-F1(H)

formulation as well as its drug-loaded form AZM-L-F1(H) were shown to have the highest ZP values of
(−23.03 ± 1.1 mV)) and (−26.47 ± 0.65 mV) respectively.

Based on all the previously described characterizations, L-F1(H) and its drug-loaded AZM-L-F1(H)

formulations were found to meet the selection criteria and were selected for further study.
The formulation was composed of 22.22%, 51.85%, and 25.93% (v/v) of Capryol 90®, Tween 20®,
and Transcutol HP® respectively.

3.5. Preparation of Solid Self-Emulsifying Drug Delivery System (S-SEDDs)

The water-insoluble solidifying agents such as Aerosil 200® and calcium carbonate as well as the
water-soluble solidifying agents such as mannitol and lactose are the most common solidifiers used for
the production of S-SEDDs formulations [111–116]. In this study, the adsorption capacity (expressed as
a weight ratio of L- SEDDs (L-F1(H)): Solidifying agent) of these solidifying agents were investigated.
It was observed that each solidifying agent had a different adsorption capacity to yield a non-sticky
solid powder of S-SEDDs formulations, as illustrated in Table 6.

Table 6. Adsorption capacity and characterization of blank S-SEDDs (S-F1(H)) formulation. Mean ± SD,
n = 3.

Solidifying Agent Adsorption Capacity
(L-F1(H)): Solidifying Agent DS (nm) Ð ZP (mV)

Calcium carbonate (1:4) 1863.67 ± 10.3 1 ± 0 −14.47 ± 1.001

Aerosil 200® (2:1) 156.67 ± 1.5 0.62 ± 0.004 −21.7 ± 1.4

Lactose (1:3) 384.7 ± 4.04 1 ± 0 −40.33 ± 1.07

Mannitol (1:2) 845.63 ± 6.2 1 ± 0 −23.4 ± 1.3

(DS, Droplet size; Ð, Dispersity; ZP, Zeta potential).

Aerosil200® was found to have the highest adsorption capacity of 2:1. Furthermore, it produced
blank S-SEDDs formulation with the lowest DS (156.67 ± 1.5 nm) and Ð (0.62 ± 0.004). Accordingly,
Aerosil200® was selected as the optimized solidifier for production of the solid SEDDs (S-F1(H))
formulation. The characterization results of the solidified blank and AZM-loaded S-F1(H) formulations
are shown in Table 7.

The results of the solidification process showed that S-F1(H) formulation had bigger DS, higher Ð
values, and significantly lower AZM DC (38.79 ± 0.52 mg/g) in comparison to the L-F1(H) formulation
which had smaller DS, lower Ð values and higher AZM DC (60.42 ± 0.4 mg/mL). Such effects are
linked to the need of using large amounts of Aerosil 200® (~535.6 mg) to produce solid S-SEDDs
formulation. The same pattern of characteristic change was previously reported upon solidifying
L-SEDDs formulation [117].
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Table 7. Characterization of the optimized blank and AZM loaded S-F1(H) formulations in DW, 0.1 mM
HCl, and SIF diluents. Mean ± SD, n = 3.

Blank S-SEDDs (S-F1(H)) AZM S-SEDDs (S-F1(H))

DW

DS (nm) Ð ZP (mV) DS (nm) Ð ZP (mV)

157.1 ± 1.85 0.61 ± 0.01 −22.67 ± 2.3 155.3 ± 1.91 0.62 ± 0.03 −19.43 ± 0.15

0.1 mM HCl (pH = 4)

139.03 ± 1.8 1 ± 0 2.1 ± 0.2 136.6 ± 1.9 0.73 ± 0.01 0.88 ± 0.02

SIF (pH = 6.8)

195.32 ± 1.9 1 ± 0 −5.93 ± 1.1 191.5 ± 1.4 1 ± 0 −7.43 ± 0.81

(DW, Distilled water; DS, Droplet size; Ð, Dispersity; ZP, Zeta potential; HCl, Hydrochloric acid; SIF, Simulated
intestinal fluid).

3.6. Transmission Electron Microscope (TEM)

The TEM images of the optimized AZM-loaded L-F1(H) and S-F1(H) formulations have revealed
the formation of emulsion upon their dispersion (Figure 4A,B). The dispersed droplets of the prepared
liquid and solid SEDDs formulations were spherical in shape with no signs of aggregation (Figure 4C,D).
These findings are in line with previous TEM studies of liquid and solid SEDDS formulations [118–121].
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3.7. Cell Culture

3.7.1. Cytotoxicity Assay

Despite the fact that AZM is known to be cytocompatible [122,123] and the used excipients are
considered relatively safe where they are used in the food, cosmetics or pharmaceutical industries
(such as Transcutol® HP [124], Tween 20® [125], and Capryol 90® [126]), However, the cytotoxicity
study in this work was conducted before proceeding to the TEER assay to make sure that the SEDDs
effects on TEER must not be linked to the cytotoxicity of the excipients or their combination in the
developed SEDDs formulations. Caco-2 cell monolayer model was used in this study because it
is a reliable in vitro model, an approved standard by USFDA and pharmaceutical companies to
investigate the cytotoxicity and behavior of developed formulations and/or drug in the intestinal
tract [127,128]. The MTT assay is one of the most popular in vitro cytotoxicity assays. Its mechanism is
based on the conversion of the water-soluble thiazolyl blue tetrazolium bromide dye to an insoluble
purple-colored formazan, which is quantified by a microplate photometer [129]. The amount of formed
crystals and the obtained readings represent the metabolic activities, and thus the number of the
present viable cells [129,130]. The selected concentrations of the finally optimized blank formulations
were chosen so that both formulations would have the same drug concentration when later preforming
the TEER evaluation.

The results of the MTT assay indicated that the blank L-F1(H) and S-F1(H) formulations had low
cytotoxicity with no induced toxic effects during the 4 h incubation period and at the different studied
concentrations. As shown in Figure 5, the cells viabilities were above ~90% and ~86% for the tested
blank L-F1(H) and S-F1(H) formulations, respectively.
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3.7.2. Transepithelial Electrical Resistance Evaluation

The modulation of TJ is a potent strategy to improve hydrophobic drug delivery [131];
such modulations were related to the used formulations’ excipients, mostly the surfactants [132–134]
and some fatty acids [42]. In general, the opening of the TJ is associated with a decrease of transepithelial
electrical resistance (TEER) [135,136]. The TEER evaluation study results are shown in Figure 6.
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It was revealed that pure AZM had no significant impact on TJ in the Caco-2 cell line model and
within the studied period of 4 h. Such results are in contrast with previous studies that showed pure
AZM could increase the TEER values in airway epithelial cells [21]. Such a difference in AZM behavior
might be linked to the variations in cell lines’ type, source, passage number, and culturing conditions.
These results are suggesting the need for more studies to understand the exact cellular mechanisms
of AZM permeation and its relation to its bioavailability using different cell lines and in vivo levels.
Upon treating the cells with the set samples, and during the first 10 min of the measurement period,
all samples (AZM, controls, blank and drug-loaded formulations) showed almost no significant changes
in the TEER values. After that, only blank and drug-loaded formulations of L-SEDDs and S-SEDDs
were able to decrease the TEER values sharply. These declines were significant (p < 0.05) in comparison
to the TEER values of pure AZM, and could be linked to the ability of the optimized formulations to
modulate the intestinal tight junction, possibly due to the presence of Capryol 90®, which has a proven
ability to produce an appreciable reversible opening of TJ [33], which in turn might offer better delivery
of AZM via paracellular pathways [137]

3.8. The In Vitro Release Studies

The in vitro release of AZM is usually conducted in a medium that mimics the intestinal pH such
as phosphate buffer (pH = 6). This is because AZM is not sufficiently stable in acidic pH mediums
such as simulated gastric fluids (SGF, pH = 1.2) [138]. Accordingly, three different release solutions
were employed in this study including 0.1 mM HCl (pH = 4), DW (pH = 5.5), and SIF medium
(pH = 6.8) [103,104,139]. Figure 7 represents the in vitro release profiles of AZM from AZM-L-F1(H)

and AZM-S-F1(H) formulations, compared to the release of the pure AZM in the media of DW, 0.1 mM
HCl, and SIF, respectively.

The liquid and solid SEDDs formulations were able to significantly (p < 0.05) increase the
percentage of AZM release by 2.2-fold in DW, 1.9 and 1.8 folds in HCl, 1.7 and 1.6 folds in SIF,
respectively in comparison with the pure AZM during the 4 h dissolution period.

The cumulative release percentages from the pure AZM were only 43.68 ± 0.84%, 50.57 ± 1.24%
and 58.87 ± 2.23% in DW, HCl and SIF media respectively. In contrast, the AZM-L-F1(H) formulation
released > 90% of the AZM within the first 5 min of the dissolution in all the studied dissolution media
including 96.65 ± 1.77%, 96.21 ± 1.06%, 98.49 ± 0.77% in DW, HCl, and SIF, respectively. While the
AZM-S-F1(H) formulation showed a slower release pattern whereby in 5 min, only 52.22%, 74.74%,
and 70.01% were released in DW, HCL, and SIF, respectively. Unlike the L-SEDDs, S-SEDDs formulation
needed 60 min, 30 min, and 15 min to reach > 90% of AZM in DW, HCL, and SIF. Such delay of AZM
release from S-SEDDs formulation was in line with previous studies [34,140]. The researchers linked it
to that the S-SEDDs formulation needed more step such as desorption of the adsorbed SEDDs from the
Aerosol 200® during dissolution process [141]. Based on these results, the developed formulations
were able to significantly enhance the dissolution rate of AZM in comparison to the pure drug powder.
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3.9. Stability Studies

3.9.1. Physical Stability

The physical appearance of AZM-L-F1(H) and AZM-S-F1(H) formulations were maintained
unchanged during the 3 months of storage under the different conditions at the set different
storage conditions.

3.9.2. Droplet Size, Ð, and Zeta Potential

The results of the stability studies of AZM-L-F1(H) and AZM-S-F1(H) formulations under the three
different storage conditions are shown in Tables 8 and 9. Both formulations showed better stability
in the refrigerator condition (4 ± 2 ◦C) when compared with the other studied storage conditions
(i.e., room and humidity chamber conditions). For instance, after three months of storage in the
refrigerator, the ZP values of both formulations were maintained unchanged, while there were slight
but significant increases in DS of ~8 and 5 nm, respectively. The same increment patterns were seen in
the Ð values of the AZM-L-F1(H) formulation at the three storage conditions. In contrast, there were no
changes in the Ð values of the AZM-S-F1(H) formula under all the storage conditions during the three
months period.
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Table 8. Stability studies for AZM-L-F1(H) formulation under the three different storage conditions.
Mean ± SD, n = 3.

Parameters
Time (Months)

0 0.5 1 2 3

Refrigerator (4 ± 2 ◦C)

Physical stability

DS (nm) 141.23 ± 0.38 141.6 ± 0.99 142 ± 1.15 146.87 ± 1.3 149.97 ± 1.16

Ð 0.528 ± 0.006 0.522 ± 0.01 0.534 ± 0.005 0.541 ± 0.009 0.56 ± 0.01

ZP (mV) −26.78 ± 1.056 −27.43 ± 1.23 −26.73 ± 1.07 −25.69 ± 0.56 −26.3 ± 0.5

Chemical stability

DC (%) 99.843 ± 0.353 99.79 ± 0.45 99.66 ± 0.162 99.37 ± 0.12 99.43 ± 0.22

Room condition (25 ± 2 ◦C/60 ± 5% RH)

Physical stability

DS (nm) 141.23 ± 0.38 142.03 ± 0.42 143.7 ± 1.31 148.23 ± 1.23 156.83 ± 1.5

Ð 0.528 ± 0.006 0.524 ± 0.04 0.53 ± 0.002 0.54 ± 0.003 0.552 ± 0.01

ZP (mV) −26.78 ± 1.056 −26.7 ± 1.1 −26.37 ± 0.42 −25.73 ± 51 −25.47 ± 0.65

Chemical stability

DC (%) 99.843 ± 0.353 99.65 ± 0.2 99.42 ± 0.14 99.241 ± 0.17 99.11 ± 0.12

Humidity chamber (40 ± 2 ◦C/75 ± 5% RH)

Physical stability

DS (nm) 141.23 ± 0.38 142.03 ± 1.16 147.55 ± 1.05 149.57 ± 1.37 166.63 ± 1.56

Ð 0.528 ± 0.006 0.529 ± 0.007 0.53 ± 0.003 0.542 ± 0.007 0.613 ± 0.05

ZP (mV) −26.78 ± 1.056 −26.93 ± 0.15 −25.97 ± 0.7 −25.67 ± 0.32 −23.3 ± 0.56

Chemical stability

DC (%) 99.843 ± 0.353 99.74 ± 0.13 99.12 ± 0.08 98.95 ± 0.1 98.58 ± 0.43

(DS, Droplet size; Ð, Dispersity; ZP, Zeta potential; DC%, Drug content percentage; RH, Relative humidity).

Table 9. Stability studies for AZM-S-F1(H) formulation under the three different storage conditions.
Mean ± SD, n = 3.

Parameters
Time (Months)

0 0.5 1 2 3

Refrigerator (4 ± 3 ◦C)

Physical stability

DS (nm) 155.93 ± 1.39 155.13 ± 1.35 156.27 ± 1.19 157.33 ± 0.59 159.2 ± 0.78

Ð 0.64 ± 0.04 0.65 ± 0.015 0.64 ± 0.015 0.66 ± 0.021 0.66 ± 0.01

ZP (mV) −19.28 ± 0.45 −19.23 ± 0.32 −19.27 ± 0.45 −18.97 ± 0.75 −18.49 ± 0.6

Chemical stability

DC (%) 98.599 ± 0.32 98.52 ± 0.38 98.41 ± 0.57 98.37 ± 0.2 98.09 ± 0.5

Room condition (25 ± 2 ◦C/60 ± 5% RH)

Physical stability

DS (nm) 155.93 ± 1.39 155.8 ± 1.67 155.6 ± 1.25 158.3 ± 1.25 161.55 ± 1.1

Ð 0.64 ± 0.04 0.627 ± 0.025 0.65 ± 0.02 0.647 ± 0.03 0.68 ± 0.006

ZP (mV) −19.28 ± 0.45 −19.15 ± 0.53 −18.97 ± 0.31 −18.77 ± 0.31 −16.27 ± 0.45



Pharmaceutics 2020, 12, 1052 22 of 29

Table 9. Cont.

Parameters
Time (Months)

0 0.5 1 2 3

Chemical stability

DC (%) 98.599 ± 0.32 98.42 ± 0.12 98.34 ± 0.36 98.06 ± 0.33 97.92 ± 0.43

Humidity chamber (40 ± 2 ◦C/75 ± 5% RH)

Physical stability

DS (nm) 155.93 ± 1.39 156.4 ± 0.6 158 ± 1 162.37 ± 1.1 164.1 ± 1.02

Ð 0.64 ± 0.04 0.65 ± 0.01 0.653 ± 0.015 0.657 ± 0.015 0.603 ± 0.006

ZP (mV) −19.28 ± 0.45 −19.03 ± 0.4 −18.9 ± 0.3 −18.63 ± 0.42 −15.3 ± 0.56

Chemical stability

DC (%) 98.599 ± 0.32 98.44 ± 0.28 98.014 ± 0.4 97.86 ± 0.37 97.48 ± 0.58

(DS, Droplet size; Ð, Dispersity; ZP, Zeta potential; DC%, Drug content percentage; RH, Relative humidity).

3.9.3. Chemical Stability

All formulations showed no statistically significant changes in DC% when stored in the refrigerator
(p < 0.05). However, under the room storage condition (25 ± 2 ◦C/60 ± 5% RH), only AZM-S-F1(H)

formulation was stable with no significant decreases in the DC% for the period of three months.
On the other hand, decreases in DC% were observed in both formulations when stored at the humidity
chamber (40 ± 2 ◦C/75 ± 5% RH).

4. Conclusions

Liquid and solid emulsifying SEDDS were successfully developed and optimized. The medium
carbon chain triglycerides (MCT) were better than the long carbon chain triglycerides (LCT) as
solubilizing agents for AZM. The hydrophobic solidifying agent (Aerosil 200®) was found to have
the best solidification capacity among the studied solidifying agents to produce solid SEDDs. In this
study, the main suggested reasons behind the low oral bioavailability of AZM were addressed,
whereby both the liquid and solid SEDDs formulations improved the solubility and dissolution rate
of the drug. However, more studies are required to specify the exact reasons that are responsible
for the low oral bioavailability of this drug. The cytotoxicity study using MTT assay revealed that
the AZM-SEDDs formulations had a low toxicity profile. Furthermore, the transepithelial electrical
resistance (TEER) evaluations showed that both formulations had the abilities to open the tight
epithelial junction. The formulations were relatively stable at the refrigerator storage condition for
3 months. Therefore, it is suggested that the developed liquid and solid self-emulsifying drug delivery
systems are potential nanocarriers for the oral delivery of AZM.
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