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Abstract: Polymer-based fibrous composites are gaining popularity in marine and sports industries
because of their prominent features like easy to process, better strength to weight ratio, durability and
cost-effectiveness. Still, erosive behavior of composites under cyclic abrasive impact is a significant
concern for the research fraternity. In this paper, the S type woven glass fibers reinforced polymer
matrix composites (PMCs) are used to analyze the bonding behavior of reinforcement and matrix
against the natural abrasive slurry. The response surface methodology is adopted to analyze the effect
of various erosion parameters on the erosion resistance. The slurry pressure, impingement angle and
nozzle diameter, were used as erosion parameters whereas erosion loss, i.e., weight loss during an
erosion phenomenon was considered as a response parameter. The artificial neural network model
was used to validate the attained outcomes for an optimum solution. The comparative analysis
of response surface methodology (RSM) and artificial neural network (ANN) models shows good
agreement with the erosion behavior of glass fiber reinforced polymer matrix composites.

Keywords: artificial neural network; erosion; glass fibers; polymer matrix composites; response
surface methodology

1. Introduction

The demand for polymer matrix composites (PMCs) has been increased significantly in recent years
for industrial and household’s applications [1–4]. The lightweight, better strength and economically
affordability made them highly recommended material for the shed in coastal as well as in desert
areas. However, the constant abrasive attack in the form of storm and slurry mixed winds causes
surface degradation [5,6]. The continuous bombardments of these particles weaken the bonding
strength, which causes material failure. This constant bombardment degrades the surface and reduces
the material’s life [7]. The erosion on the surface initiates with imprints of minute cracks induced
due to stress caused by continuous slurry impact. The components made up of PMCs in aircraft’s
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outer structure faces surface erosion because of the existence of highly abrasive particles in the air [8,9].
The erosion of fibrous composites depends upon various process parameters such as impacting
particles, angle of impingement, velocity, etc. Tewari et al. [10] reported that erosion of fibrous
composites is significantly influenced by fiber orientation because unidirectional fiber orientation
exhibits semi ductile erosion behavior. Pool et al. [11] reported that polymer composite shows brittle
erosion behavior whereas permanent aramid fiber epoxy shows quasi ductile behavior. The increase
in weight fraction of glass fiber as reinforcement can convert ductile erosion behavior into brittle
behavior [12]. The effect of particle size during erosion is also analyzed and reported that erosion
rate of the composite surface is directly proportional to the size of impacting particle and sometimes
becomes zero by using particle size of the range of 2 µm [13]. Miyazaki et al. [14] revealed that
fiber-reinforced polymers (FRPs) having treated fibers exhibits better resistance against erosion than
non-treated fibers because of higher interfacial strength between matrix and reinforcement. The angle
of impingement significantly affects the erosion rate of the composite surface. Rajesh et al. [15]
revealed that the impact of an abrasive particle at an oblique angle (30◦) is much more influencing than
the normal impact angle (90◦). The optimization of process parameters for tribological behavior has
been performed by various scientists using several techniques like the Taguchi’s methodology [16],
response surface methodology [17], artificial neural network [18], genetic algorithm [19], etc. Response
surface methodology (RSM) is employed as an optimization tool for the modeling and optimization
of single as well as multi-objective optimization [20]. In recent times, several research investigations
have been performed based on RSM, which consist of empirical finite element models [21]. Generally,
a high range of experimental runs is required for the higher-order RSM models. However, this
limitation can be avoided by introducing an artificial neural network (ANN). An artificial neural
network (ANN) works on the computational method to mimic the neurological indulgence ability
of the human intellect [22]. Human awareness has been simulated by ANN in an assessment and
depicted implications when offered with loud, complex, unnecessary and constrained confirmation.
Before implementing ANN, partial preceding expectations are mandatory about the process beneath
the analysis. The ANN can assess any practical function arbitrarily. The capability of ANN to
investigate and rationalize the performance of any complicated and non-linear process makes ANN
important modeling tool [23,24]. Several researchers have implemented the collective analysis on RSM
and ANN. Josh et al. [25] equated RSM and ANN models for mining of artemisinin. Patel et al. [26]
forecast surface roughness during roller burnishing by using RSM and ANN models. Lipinski et al. [27]
used artificial neural networks to model surface roughness and grinding forces during the grinding
process. Song et al. [28] combined ANN with RSM to investigate cutting forces during laser-assisted
machining of fused silica.

The erosion of composite surface comes out to be a significant concern for the components, which
are continuously exposed to abrasive and dusty environment. The erosion of composite surface
depends upon several factors, which include the velocity of erodent, impact distance, erodent size, type
nature, etc. To analyze the effect of various parameters, which influences the erosion of composites,
the present paper deals with the erosion of polymer composites using ANN and RSM. The experiments
were planned as per response surface methodology by considering slurry pressure, nozzle diameter
and impingement angle as input erosion parameters as shown in Table 1.

Table 1. Machining parameters and levels.

Symbol Erosion Parameters Level 1 Level 2 Level 3

P Slurry Pressure (Psi) 60 75 90
N Nozzle Diameter (mm) 2.0 2.5 3.0
I Impingement Angle (◦) 30 60 90
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2. Materials and Methods

Erosion of the composite surface is a complex material phenomenon in which several
controlled/uncontrolled parameters collectively affect output quality characteristics. In this paper,
statistical analysis of different process parameters for wear behavior of the hybrid polymer matrix
composite was studied using the response surface methodology [29]. The box Behnken design based
experimental plan was used to study the optimal parametric combination. The experimentation
was performed on the developed solid particle erosion test setup (Figure 1) based on the ASTM G76
standard. The polymer matrix composite reinforced with S glass fibers was used as a workpiece
material. The river sand particles were mixed with air to bombard on the workpiece as abrasive slurry.
The SEM of the cut sectional view of the fabricated composite is shown in Figure 2. The figure clearly
shows the different layers of fibers bonded with the polymer matrix. The morphology of the abrasive
river sand particles is shown in Figure 3. The magnified images of the sand particles depict that
particles possess tapered and sharp edges, which will affect the erosion phenomenon. To keep an eye
on erosion behavior, the electronics weighing machine with a least count of 0.0001 g was used to record
weight loss. To make the data analysis simple, the ranges were coded based on experimental runs.
The point of optimality was chosen at 0 levels. The coded values were determined as follows [30]:

Xk =
Nk − N0

N1 − N0
(1)
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Here N1, and No are values at level 1, and level 0 whereas NK is actual parametric value to
level interest.

The observed experimental results are shown in Table 2. A developed mathematical model based
on RSM for correlation of erosion in terms of coded parameters is as follows:

Erosion = 2.3128 + 0.00825 × A − 0.0045 × B + 0.062 × C + 0.00625 × AB + 0.00025 ×
AC − 0.00225 ×BC + 0.010475 × A2 + 0.013975 × B2 − 0.276025 × C2

(2)

Table 2. Controllable parameters and results.

Exp.
No.

Slurry
Pressure

(Psi)

Coded
Value

Nozzle
Diameter

(mm)

Coded
Value

Impingement
Angle (◦)

Coded
Value

Mean
Erosion

(mg/min)

1 75 0 2.5 0 60 0 2.229
2 75 0 2.5 0 60 0 2.325
3 75 0 2 −1 90 1 2.117
4 75 0 3 1 90 1 2.113
5 90 1 2 −1 60 0 2.351
6 60 −1 3 1 60 0 2.311
7 75 0 2 −1 30 −1 1.984
8 75 0 2.5 0 60 0 2.315
9 90 1 2.5 0 30 −1 1.993
10 60 −1 2.5 0 90 1 2.101
11 90 1 3 1 60 0 2.345
12 75 0 2.5 0 60 0 2.334
13 60 −1 2 −1 60 0 2.342
14 90 1 2.5 0 90 1 2.113
15 60 −1 2.5 0 30 −1 1.982
16 75 0 3 1 30 −1 1.989
17 75 0 2.5 0 60 0 2.361

3. Response Surface Methodology

Response surface methodology (RSM) explores the association among numerous process
parameters with the response parameter. The observational model is generated by using f numerical
and geometric techniques. The generated model is used to improve the response reaction, which
is prejudiced by several input parameters. In this paper, the Box–Behnken design was adopted for
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experimental planning. During RSM, a quantifiable system of association among input parameters
and response parameter could be stated as

Y = φ(P, N, I) (3)

Here Y is anticipated response and Fis response function. For the analysis, a second-order
polynomial regression model, which is called a quadratic model, can be written as

Y = b0 +
k∑

i=1

bix +
k∑

i=1

bix2 +
∑
i<j

bijxixj (4)

The term b0 and bi are second-order regression coefficients and bii and bij represents a quadratic
effect. K represents several machining parameters and xi and xj represents terms, which deal with
the effect of machining parameters.

4. Artificial Neural Network

Artificial neural network (ANN) model is an algebraic model that spontaneously approximates
the ability of conventional neural systems. A multilayer perceptron (MLP) was generated in through
three input neurons viz. slurry pressure, nozzle diameter and impingement angle, neurons as hidden
layers, and target neuron representing the erosion loss. The eccentricity of forecasts from investigational
results was reduced by neurons essential in the hidden layer and investigated by a trial. A minimum
of ten neurons was obligatory to construct the most recent model using the data accessible, and
the development of new neurons presented the probability of over-fitting the model. A cumulative of
90% of investigative consequences was used to formulate the model, with the remaining outcomes,
divided justifiably between model consent and testing. The procedure of deciphering fitting problems
requires a neural network to plot between input statistics and a set of numeric targets (Figure 4).
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During the training phase, the process starts by providing input (data) into the input nodes of
the neural network. Then, the feed will be forwarded to the present output on the output nodes of
the network. If a similar input is feed in the network, the small error will be generated. In every attempt
of training data, the overall error of the network can be measured. The training phase will complete
after attaining the best possible solution. The accuracy of the prediction can be influenced by the ANN
parameter, i.e., the number of hidden layers. The single hidden layer can estimate the function, which
comprises of continuous mapping from one finite space to the adjacent whereas multiple hidden
layers signify the arbitrary decision boundary to arbitrary accuracy with a rational activation function.
Additionally, multiple hidden layers can estimate any suave mapping to any precision. If there is no
hidden layer present, the network will show a discrete linear function.
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5. Results

5.1. Parametric Evaluation through RSM

The ANOVA test was conducted to validate the suitability of developed models for creating a link
between the erosion parameters and response. The analysis of variance for erosion is depicted in
Table 3. From the ANOVA table, it is clear that the impingement angle was the most significant erosion
parameter for the solid particle jet erosion process. The combined effect of machining parameters on
erosion is shown in Figure 5a–c. Figure 5a shows the influence of slurry pressure and nozzle diameter
on the erosion rate at a constant impingement angle of 60◦. The interaction of parameters predicts that
at a constant impingement angle of 60◦, the erosion was highest with a slurry pressure of 75 Psi and
a nozzle diameter of 2.5 mm. The combined effect of the nozzle diameter and impingement angle at
constant slurry pressure of 75 Psi is shown in Figure 5b. The results predict that erosion increased with
an increase in the impingement angle from 30 to 60◦ but started decreasing in the next level. During
this phase, the nozzle diameter had the least effect on erosion loss. Figure 5c shows the interaction
effect of slurry pressure and impingement angle on erosion at a constant nozzle diameter of 2.5 mm.
The surface plot indicates that a medium level of impingement angle with maximum slurry pressure
produced higher erosion over the composite surface.

Table 3. ANOVA for the erosion analysis.

Source Sum of
Squares df Mean

Square F Value p-Value Remarks

Model 0.35 9 0.039 26.83 0.0001 Significant
A-P 5.445 × 10−4 1 5.445 × 10−4 0.37 0.5607
B-N 1.620 × 10−4 1 1.620 × 10−4 0.11 0.7488
C-I 0.031 1 0.031 21.06 0.0025
AB 1.563 × 10−4 1 1.563 × 10−4 0.11 0.7531
AC 2.500 × 10−7 1 2.500 × 10−7 0.001712 0.9899
BC 2.025 × 10−5 1 2.025 × 10−5 0.014 0.9096
A2 4.620 × 10−4 1 4.620 × 10−4 0.32 0.5913
B2 8.223 × 10−4 1 8.223 × 10−4 0.56 0.4774
C2 0.32 1 0.32 219.73 <0.0001

Residual 0.010 7 1.460 × 10−3

Lack of Fit 2.710 × 10−4 3 9.033 × 10−5 0.036 0.9894 Not Significant
Pure Error 9.949 × 10−3 4 2.487 × 10−3

Cor Total 0.36 16
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Figure 5. (a) Response surface plots for slurry pressure and nozzle diameter on erosion. (b) Response
surface plots for slurry pressure and impingement angle on erosion. (c) Response surface plots for
nozzle diameter and impingement angle on erosion.

5.2. Modeling Through ANN

The model is incited by the observance that can acquire within the prospect of a trainer. During
modeling, the trainer specifies the precise responses to the contributing parameters. The neural
model can equally gain without a trainer, reliant on the criteria of self-association. The neural model
illustration is principally established on technical models. The model can be reflected as a model
of neurons arranged in limited layers to be explicit the contributing parameters, hidden neurons
and response. This methodology has arisen as an innovative and extensive model, which can be
regulated to assess any mapping with enough perceptiveness of layers and number of neurons. Table 4
shows the result obtained from the planning of the model. Mean squared error (MSE) characterizes
the mediocre squared divergence amid response and targets. The lesser approximations of MSE are
healthier, and zero shows no error. Regression (R) values express the linking amid response and
goals. An R-value of 1 indicates a sensible bond, and 0 indicates an uneven association. Although,



Materials 2020, 13, 1381 8 of 13

the approximations of MSE and R are nearby zero and one individually. This suggests the curve fitting
was exact in the control. The predictable network model was planned equitably, and its presentation
was scheduled to validate if any alteration to be prepared for the training practice. Figure 6 shows
the performance curve for the developed models. The models show the best validation point occurred
at the second iteration. Figure 7 determines the generated regression plots for the testing, training
and validation procedure. The obtained result shows the linkage between target and response from
the model. Figure 8 exhibits the error histogram for the organized neural model.

Table 4. Mean squared error and R values from model.

Phases Sample MSE R

Training 11 3.18611 × 10−4 9.93792 × 10−1

Validation 3 5.16810 × 10−3 9.61107 × 10−1

Testing 3 8.59712 × 10−3 7.60270 × 10−1
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6. Discussion

The overall analysis shows that the impingement angle of striking the slurry influenced the erosion
process more significantly than slurry pressure and nozzle diameter. The available trends show that
the present composite material could be classified in the semi ductile category because these materials
show the highest erosion in the range of 45–60◦ for the impingement angle [31]. Additionally,
the essential factor in controlling the erosion behavior is the nature of the erodent particle. The irregular
shape and size of erodent particles induce high erosion in polymer matrix composites [32]. The form
of striking erosive particles profoundly influences the nature of deformation of the surface. The round
edge particles induce plastic deformation, whereas sharp and hard particles exhibit brittle deformation
of the surface [33]. The state of the composite surface at a variable impingement angle is shown
in Figure 9a–c. At the impingement angle of 30◦, the abrasive slurry chipped off and tore down
the composite surface, which made glass fibers visible as shown in Figure 9a. The slurry impact
somehow degraded the upper layer, but the strong interfacial bond strength kept the fibers and matrix
closely bonded. However, with the change in the impingement angle to 60◦, the degradation rate of
the primary layer of matrix increased and brought reinforcement into direct contact of the abrasive
slurry. The exposed reinforcement aligned in one direction and resulted in high erosion loss. The upper
surface damage at the impingement angle of 60◦ is visible in Figure 9b. The further increase in
the impingement angle to 90◦ decreases the horizontal component [34]. This decrease in the horizontal
component decreased the cutting rate of fibers and matrix as compared to erosion at 60º because
the increased vertical composite produced a harrier surface, which significantly reduced the erosion
rate (Figure 9c). Although few broken fibers and matrix cracks were visible over the surface, still
the matrix was uniformly bonded with fiber reinforcement.
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The validation and test outcomes additionally demonstrated the R-value that was more prominent
than 0.90. The comparative analysis of the test and the anticipated value of erosion are shown in
Table 5. The obtained results for erosion shows 0.043% deviation concerning results obtained from RSM
(Figure 10). The attained conclusions designated a prodigious pact between neural system anticipation
and test validation standards.

Table 5. Comparative analysis on response surface methodology (RSM) and artificial neural network
(ANN).

Model Parametric Values Erosion Deviation

RSM [75;2.5;60] 2.325
0.43%ANN [75;2.5;60] 2.324
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7. Conclusions

The following conclusions were drawn from the present study:

1. The erosion during the solid particle impact is deeply affected by the impingement angle.
The maximum erosion occurred at an angle of 60◦, which means the composite lay in the category
of semi ductile materials.

2. From the ANOVA table for erosion, the most significant and influential parameter was found to
be the impingement angle. Additionally, the generated quadratic models were suitably fitted
with investigational results.

3. The SEM analysis of the river sand particles shows the irregular and sharp conical edges, which
were responsible for the high erosion rate.

4. The SEM analysis of composite surface shows that the impingement angle of 60◦ degraded
the upper layer of the composite very finely and exposed the fibers, which caused an excess
material loss in comparison to a 30◦ and 90◦ impingement angle.

5. MATLAB’s neural network fitting app was used for generating a network model, which produced
good comparative results by using hidden layers and neurons. The developed model showed
0.43% deviation with the results obtained from RSM based model.

6. The multiple hidden layers signified an arbitrary decision boundary to arbitrary accuracy with
rational activation function and provided precise result with minimal deviation in comparison to
the RSM model.

7. The comparative analysis showed that the ANN model could be used proficiently for
the validation of single response optimized results obtained during solid particle erosion of
polymer matrix composites.
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