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Renal fibrosis is a common pathological process where certain primary or secondary
kidney diseases can continue to progress to the end-stage of the kidney disease;
however, the molecular mechanisms underlying renal fibrosis remain unclear. Recently,
research focusing on examining the function of inflammasomes has attracted a great
deal of attention, and data derived from these research projects have increased our
understanding of the effects and regulation of inflammasomes during renal fibrosis.
Based on this, the present review summarizes recent findings in regard to NLRP3
inflammasome functions during various kidney diseases, and these findings indicate
that the NLRP3 inflammasome not only mediates the inflammatory response but is also
associated with pyroptosis, mitochondrial regulation, and myofibroblast differentiation
during renal fibrosis. These novel findings provide us with a more in-depth understanding
of the pathogenesis of renal fibrosis and will aid in the identification of new targets that
can be used for the prevention and treatment of this disease.

Keywords: NLRP3 inflammasome, inflammatory response, pyroptosis, mitochondrial regulation, myofibroblast
differentiation, renal fibrosis

INTRODUCTION

Renal fibrosis is one of the main underlying causes of end-stage kidney disease (Liu, 2006).
Inflammasomes are intracellular multiprotein complexes that can trigger the host defense response
(Mulay, 2019). The NLRP3 inflammasome is currently the most studied and characterized
inflammasome and acts as an important danger-recognition platform to protect the body from
pathogenic microbial molecules and endogenous risk factors (Medzhitov, 2008). Additionally,
the NLRP3 inflammasome mediates the maturation and release of proinflammatory cytokines to
initiate excessive inflammatory reactions, which cause irreversible damage to the body (Kanneganti
et al., 2007). A large number of studies have also shown that the NLRP3 inflammasome is involved
in the development of chronic kidney diseases (CKD) (Wu et al., 2018; Li et al., 2019; Mulay,
2019). Therefore, the role and regulation of the NLRP3 inflammasome during renal fibrosis
are here reviewed.

RENAL FIBROSIS

Based on specific molecular and cellular mechanisms, the process of renal fibrosis can be artificially
divided into four overlapping stages, namely priming, activation, execution, and progression
(Liu, 2011). Unresolved inflammation after a sustained injury facilitates the fibrogenic stage (the
priming stage), where immune cells infiltrate into the kidney and secrete various factors, including
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chemokines, cytokines, and reactive oxygen species (ROS),
that ultimately result in further renal injury (Imig and Ryan,
2013). During the activation stage, the cells undergo trans-
differentiation and increase their expression of alpha smooth
muscle actin (α-SMA) and their secretion of extracellular matrix
(ECM) (Chevalier et al., 2009). During the execution stage, ECM
components are synthesized and deposited within the interstitial
space and modified to resist proteolytic enzymes (Liu, 2006).
Progression represents the final stage of fibrosis, and this stage
involves several types of renal injuries, including tubular injury,
atrophy, and chronic hypoxia (Hodgkins and Schnaper, 2012;
Pan et al., 2013).

Renal fibrosis is the final outcome of various CKDs, including
diabetic nephropathy (DN), chronic glomerulonephritis, crystal-
related nephropathy, IgA nephropathy, and others (Liu, 2006).
It is characterized by a number of events such as the abnormal
accumulation of ECM, a decrease in or atrophy of renal tubules
and intact renal units, and a decrease in glomerular filtration rate,
all of which can lead to irreversible damage to renal functions
(Nogueira et al., 2017). It is believed that transforming growth
factor (TGF)-β/Smad signaling plays an important role in renal
fibrosis, where this signaling not only regulates the production
and degradation of ECM but also participates in the epithelial-to-
mesenchymal transition (EMT) to form myofibroblasts (Zhang
K. et al., 2013). Connective tissue growth factor (CTGF), a
downstream molecule of TGF-β/Smad, is the key factor for tissue
fibrosis, acting on the kidney in an autocrine/paracrine manner to
promote the abnormal deposition of ECM and fibrosis (Mansour
et al., 2017). Recent findings, however, indicate that NLRP3 and
other inflammasomes are also involved in renal fibrosis (Wu
et al., 2018; Mulay, 2019).

THE NLRP3 INFLAMMASOME

Inflammasomes generally consist of a pattern recognition
receptor (PRR), an apoptosis-associated speck-like protein
(ASC), and the cysteine protease caspase-1 (Kanneganti et al.,
2007). To date, five families of PRRs have been described,
and these include Toll-like receptors (TLRs), nucleotide-binding
oligomerization domain (NOD)-like receptors (NLRs), absent in
melanoma 2 (AIM2)-like receptors (ALRs), Rig-I-like receptors
(RLRs), and C-type lectin receptors (CLRs) (Wang and Yi,
2015; Komada and Muruve, 2019). Existing evidence suggests
that some members of the NLR family and ALR family,
including NLRP1, NLRP3, NLRC4, AIM2, and pyrin, can form
inflammasomes (Martinon et al., 2002; Fernandes- Alnemri et al.,
2009; Hornung et al., 2009; Broz et al., 2010; Xu et al., 2014).
Among these, NLRP3 is the most studied inflammasome.

Composition of the NLRP3
Inflammasome
The NLRP3 protein contains three different domains, namely
a central nucleotide-binding NACHT domain (NOD domain),
C-terminal leucine-rich repeat (LRR), and an N-terminal pyrin
domain (PYD). The NOD domain is mainly responsible for self-
oligomerization during activation, the C-terminus is considered

to be the recognition domain for different ligands, and the
N-terminus primarily mediates the interaction with proteins
(Strowig et al., 2012). As an adapter protein, ASC possesses a PYD
that interacts with the NLRP3 protein and a caspase recruitment
domain (CARD) that interacts with pro-caspase-1, ultimately
forming the NLRP3 inflammasome (Medzhitov, 2008).

Activation of the NLRP3 Inflammasome
It is well established that a variety of exogenous stimuli such
as bacteria, viruses, silica crystals, and ultraviolet rays can
promote the activation of the NLRP3 inflammasome (Martinon
et al., 2002; Dostert et al., 2008; Allen et al., 2009; Wu et al.,
2010). Additionally, endogenous stimuli, including ATP, uric acid
crystal salts, and active oxygen, can also activate it (Mariathasan
et al., 2006; Martinon et al., 2006; Zhou et al., 2010). Although
the specific mechanism remains unclear, it is generally accepted
that potassium (K+) efflux (Munoz-Planillo et al., 2013), the
generation of ROS (Lawlor and Vince, 2014), and lysosomal
damage that coincides with the release of endogenous cathepsins
into the cytosol (Hornung et al., 2008) influence the activation of
the NLRP3 inflammasome.

Two canonical steps occur during the activation of the NLRP3
inflammasome. First, microbial molecules or endogenous factors
promote the expression of NLRP3, pro-IL-1β, and pro-IL-18
through the NF-κB pathway (Bauernfeind et al., 2009). Second,
these stimuli induce the oligomerization and activation of NLRP3
and the recruitment of the adapter protein ASC and pro-caspase-
1, the latter of which undergoes autoproteolytic cleavage into
caspase-1 to activate pro-IL-1β and pro-IL-18 to produce active
cytokines (Martinon et al., 2002; Lamkanfi and Dixit, 2014;
Man and Kanneganti, 2015).

An alternative activation pathway for NLRP3 inflammasomes
involves human caspase-4, caspase-5, and murine caspase-11
and their ability to directly recognize lipopolysaccharides and
toxins, to create macromolecules, and to cleave gasdermin D
(GSDMD) to release its N-terminus, ultimately resulting in the
formation of membrane pores. Caspase-11 can also cleave the
pannexin 1 channel protein, resulting in ATP leakage, efflux of
K+, influx of Ca2+, and, finally, NLRP3 inflammasome activation
and pyroptosis (Yang et al., 2005; Broz and Monack, 2013;
Shi et al., 2017).

NLRP3 INFLAMMASOME AND RENAL
FIBROSIS

Increasing evidence strongly indicates that the expression levels
of NLRP3 and caspase-1 are significantly elevated in the kidneys
of CKD or fibrosis patients (Vilaysane et al., 2010; Ke et al., 2018),
suggesting that the NLRP3 inflammasome may be activated and
involved in the regulation of renal fibrosis.

NLRP3 Inflammasome and Inflammation
During Renal Fibrosis
Classical immune cells such as resident dendritic cells and
infiltrating macrophages can express all of the NLRP3
components and can cause cell death owing to the activation
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of caspase-1 in the kidney (Franke et al., 2012). It has
been previously reported that renal tubular epithelial cells
can express and release IL-18, indicating that the NLRP3
inflammasome and caspase-1 are also present within renal
tubular epithelial cells (Faust et al., 2002; Franke et al.,
2012). Zhang et al. (2012) demonstrated that NLRP3 and
ASC are expressed in glomerular podocytes, suggesting
that podocytes can also form inflammasomes. Studies
examining unilateral ureteral obstruction (UUO) mouse
models and 5/6-nephrectomized mice revealed that these
mice had increased renal matrix accumulation, elevated
levels of phosphorylated NF-κB, and activated NLRP3
inflammasomes (Seo et al., 2019; Wen et al., 2019). Artemisinin
may down-regulate the NF-κB/NLRP3 signaling pathway,
mitigating renal tubulointerstitial inflammation and fibrosis
in 5/6-nephrectomized rats (Wen et al., 2019). Guo et al.
(2016) reported that the use of anti-IL-1β monoclonal
antibodies to neutralize the expression of IL-1β within the
lungs and serum can reduce silica-induced inflammatory
responses in the heart and kidney and attenuate renal
fibrosis in mice.

Some researchers have found that oxalate crystals activate
NLRP3 to promote IL-1β release and macrophage infiltration,
events that are critical in the early stages of crystal-induced renal
fibrogenesis (Ermer et al., 2016). The Shen Shuai II Recipe, which
has been used clinically for >20 years and has been confirmed
to be effective for improving renal function and fibrosis, can
effectively inhibit the activation of the NLRP3/ASC/Caspase-
1/IL-1β axis and reduce inflammatory infiltration (Meng et al.,
2019). Immunoglobulin A nephropathy (IgAN) characterized
by glomerular proliferation and renal inflammation is the most
common form of glomerulonephritis. IgA deposition, mesangial
matrix expansion, and glomerular fibrosis were found to be
significantly increased in IgAN rats. It has been reported that
icariin, a flavonoid derived from the Chinese herb epimedium,
which possesses anti-inflammatory effects, can dramatically
block the nuclear transport of NF-κB, inhibit the activation
of the NLRP3 inflammasome, and reduce the production of
downstream pro-inflammatory cytokines to ameliorate IgAN
(Zhang et al., 2017). Recently, DN has become the second leading
cause of end-stage renal disease, while glomerulonephritis
remains the leading cause. Immunohistochemical results have
revealed positive staining for thioredoxin-interacting protein
(TXNIP), NLRP3, and IL-1β within kidney tissues obtained
from diabetic rats (Feng et al., 2016). NLRP3, caspase-1, IL-
1β, and IL-18 expressions were increased markedly in mesangial
cells and renal tubular epithelial cells that were treated with
high amounts of glucose in vitro (Feng et al., 2016). High
glucose and uric acid levels can mediate inflammatory responses
within tissues via the ROS/TXNIP/NLRP3/IL-1β/IL-18 axis.
Dihydroquercetin, an important natural dihydroflavone, exerts
renal protection effects during DN by suppressing ROS and the
NLRP3 inflammasome (Ding et al., 2018). Recently, Yaribeygi
et al. (2019) collected and summarized a large number of
studies and found that certain antidiabetic drugs such as SGLT2
inhibitors (Ye et al., 2017; Birnbaum et al., 2018), biguanides
(Woo et al., 2014; Li A.Y. et al., 2016), thiazolidinediones

(Wang Y. et al., 2017), and DPP-4 inhibitors (Birnbaum et al.,
2016) can also modulate NLRP3 inflammasome activity to
prevent the development of DN. Together, these studies have
consistently found that the development of various kidney
diseases such as crystal-related nephropathy, IgA nephropathy,
and DN are associated with the activation of the NLRP3
inflammasome, which mediates inflammatory responses through
the NLRP3/CAS1/IL-1β/IL-18 axis and participates in the early
stage of renal fibrosis. Most studies, however, focused on the
role of traditional Chinese herbal medicines or their potent
components for the treatment of renal diseases, and their
results have consistently demonstrated that the inhibition of the
NLRP3 inflammasome is related to the protective effect of these
compounds on the kidney.

Additionally, several studies have suggested that certain
cytokines can also regulate the activation of the NLRP3
inflammasome to mediate renal inflammation and fibrosis
(Chi et al., 2017; Wang S.F. et al., 2017). For example, Chi
et al. (2017) reported that recombinant IL-36a contributes
to the activation of the NLRP3 inflammasome in renal
tubular epithelial cells, macrophages, and dendritic cells
during renal inflammation and fibrosis. IL-22 can down-
regulate the NLRP3/caspase-1/IL-1β pathway and decrease
the expression of fibronectin and type IV collagen in renal
mesangial cells induced by high glucose, suggesting that
IL-22 plays an anti-inflammatory and anti-fibrosis role
by inhibiting the activation of the NLRP3 inflammasome
(Wang S.F. et al., 2017).

NLRP3 Inflammasome and Pyroptosis
During Renal Fibrosis
Pyroptosis is a recently discovered pro-inflammatory
programmed death pattern that is divided into a classical
caspase-1-dependent pyroptosis and a non-caspase-1-dependent
pyroptosis. The non-caspase-1-dependent pyroptosis is mediated
by human caspase-4, caspase-5, and murine caspase-11 (Baker
et al., 2015); however, the morphological changes associated
with the two pathways are similar. NLRP3, caspase-1, IL-18, and
IL-1β are key factors that are required for caspase-1-dependent
pyroptosis. Caspase-1-dependent pyroptosis involves four
major steps, namely inflammasome assembly, the activation
of pro-caspase-1, the maturation of inflammatory factors
(IL-1β and IL-18), and the cleavage of GSDMD (Miao et al.,
2010). Pyroptosis is implicated in the development of various
kidney diseases, such as ischemia–reperfusion acute kidney
injury, DN, crystal-related nephropathy, and renal fibrosis
(Yang et al., 2014; Hutton et al., 2016; Li X. et al., 2016;
Guo et al., 2017). Crystals deposited within the renal tubules
activate the NLRP3 inflammasome and downstream-related
signaling molecules, ultimately causing renal tubular epithelial
pyroptosis (Hutton et al., 2016). A recent study also found
that caspase-11 stimulates the maturation of IL-1 to promote
renal fibrosis by activating caspase-1 (Miao et al., 2019).
It can be observed that pyroptosis also participates in the
progression of renal fibrosis. Further studies focusing on the
interaction between pyroptosis and renal diseases may aid in
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FIGURE 1 | Effect and regulation of the NLRP3 inflammasome during renal fibrosis. The NLRP3 inflammasome not only mediates the inflammatory response but is
also associated with pyroptosis, mitochondrial regulation, and myofibroblast differentiation during renal fibrosis. Regulation of the NLRP3 inflammasome during renal
fibrosis is mediated by the following pathways. (1) Microbial molecules or endogenous risk factors up-regulate the expression of NLRP3, pro-IL-1β, and pro-IL-18
through the NF-κB signaling pathway to induce events such as K+ efflux, the generation of ROS or lysosomal damage, and others. (2) This triggers the
oligomerization and activation of NLRP3 and the recruitment of the adapter protein ASC and pro-caspase-1. Pro-caspase1 undergoes autoproteolytic cleavage into
bioactive caspase-1, which in turn acts on pro-IL-1β and pro-IL-18 to produce IL-1β and IL-18 to mediate inflammation and pyroptosis. (3) TGF-β signaling
participates in the transdifferentiation of myofibroblasts and the production of ECM. (4) The TGF-β/Smad pathway can stimulate the expression of NLRP3, which is
also involved in TGF-β-mediated Smad2/3 phosphorylation. Thus, the interaction between the NF-κB/NLRP3/caspase-1/IL-1β/IL-18 axis and the TGF-β/Smad
signaling pathway may form a pathogenic cycle that leads to the development of renal fibrosis. (5) Additionally, NLRP3 may damage mitochondrial morphology and
induce mitochondrial ROS production, ultimately promoting NLRP3 inflammasome activation. (6) Autophagy can negatively regulate the NLRP3 inflammasome by
decreasing the levels of ASC and the phosphorylation of the NLRP3 protein and by purging mitochondrial ROS.

the development of strategies that can be used to slow the
progression of renal fibrosis.

NLRP3 Inflammasome and Mitochondrial
Regulation During Renal Fibrosis
Almost all NLRP3 activators can induce ROS generation (Zhou
et al., 2010). Zhou et al. (2010) reported that ROS can dissociate
TXNIP from thioredoxin, after which TXNIP binds to NLRP3 to
activate the NLRP3 inflammasome. Kim et al. (2018) suggested
that hypoxia can induce a significant increase in NLRP3 that
is independent of ASC, caspase-1, and IL-1β. NLRP3 in renal
tubular cells is re-localized from the cytosol to the mitochondria
during hypoxia where it binds to mitochondrial antiviral signal
protein (MAVS). The deletion of NLRP3 or MAVS in renal
tubular cells attenuates mitochondrial ROS production and the
depolarization of the mitochondrial membrane potential under
hypoxia (Kim et al., 2018). NLRP3 deletion mutants exhibit
normal mitochondrial morphology and DNA copy numbers in
renal tubule cells, suggesting that NLRP3 deficiency can improve
mitochondrial abnormality (Gong et al., 2016). Guo et al.
(2017) have demonstrated that NLRP3 deletion can reverse the

morphological and functional damage to mitochondria caused
by unilateral ureter obstruction and improve CKD symptoms to
alleviate renal fibrosis.

It should be noted that autophagosomes can negatively
regulate the activation of the NLRP3 inflammasome (Saitoh et al.,
2008). This mechanism may be related to a decrease of ASC,
the phosphorylation of the NLRP3 protein, and the purge of
mitochondrial ROS (Spalinger et al., 2016, 2017; Ko et al., 2017;
Nurmi et al., 2017). Certain studies have demonstrated that
autophagy induced by TGF-β can mitigate the progression of
tubular epithelial cells fibrosis in obstructive renal tissue (Ding
et al., 2014; Lim et al., 2019). In DN, mitochondrial autophagy
is related to the regulation of M1/M2 macrophages, reduced
inflammation, and further damage (Zhao et al., 2017). Hu et al.
(2018) found that autophagy was increased and the degradation
of NLRP3 was accelerated after treatment with Weicao Capsules
in rats with uric acid nephropathy and that this contributed to
the alleviation of inflammation, renal tissue crystallization, and
renal interstitial fibrosis. Based on these findings, we speculate
that a complex interaction exists among ROS, the NLRP3
inflammasome, and autophagy during the progress of fibrosis.
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NLRP3 Inflammasome and Myofibroblast
Differentiation During Renal Fibrosis
In vitro experiments have demonstrated that IL-1β can induce
the development of CKD and the transformation of renal tubular
epithelial cells into myofibroblasts (Zhang et al., 2003). NLRP3
appears to exert non-classical effects on interstitial fibrosis of
renal tubular epithelial cells, such as regulating NLRP3 in TGF-β
signaling in renal tubular epithelial cells (Wang et al., 2013).
Previous research has demonstrated that hyperuric acid increases
the expression of NLRP3/ASC and activates the inflammation-
associated caspase-1 and inflammation-independent smad2/3
pathways (Romero et al., 2017). The ultrastructural colocalization
of NLRP3 and smad2/3 indicates a physical interaction between
these two molecules (Romero et al., 2017). NLRP3 expression
increases after TGF-β stimulation in renal tubular epithelial
cells, and the expression of NLRP3 is associated with epithelial-
to-mesenchymal transition, α-SMA expression, and matrix
metalloproteinase (MMP9) expression (Wang et al., 2013).
Compared to levels in wild-type diabetic mice, the expression
of TGF-β and CTGF and the phosphorylation of Smad2/3
are dramatically reduced in NLRP3−/− diabetic mice in a
manner that can ameliorate renal function (Wu et al., 2018).
Additionally, the overexpression of NLRP3 in 293T cells leads
to increased phosphorylation and activity of Smad3 (Wang
et al., 2013). Thus, not only does TGF-β rely on Smad3
to increase NLRP3 expression, but NLRP3 is also involved
in the expression of TGF-β and TGF-β-mediated Smad2/3
phosphorylation. Autophagy in distal tubular epithelial cells
exerts a protective effect on tubulointerstitial fibrosis after UUO
via modulating the expression of TGF-β and IL-1β (Nam et al.,
2010). Taken together, these findings indicate that autophagy,
NLRP3, and TGF-β exhibit a complex functional relationship
(Figure 1).

OTHER INFLAMMASOMES AND RENAL
FIBROSIS

In addition to the NLRP3 inflammasome, other inflammasomes
such as NLRP1, NLRC4, and AIM2 are also related to
some types of CKD.

The NLRP1 inflammasome was initially discovered to
respond to the Bacillus anthracis lethal factor. A recent study
demonstrated that two NLRP1 gene variants, rs11651270 and
rs2670660, are associated with a decreased risk of development
of DN, suggesting that NLRP1 may play a critical role in
the etiology of DN (Soares et al., 2018). The molecular
mechanisms underlying the participation of NLRP1 in CKD,
however, remain unclear.

Furman et al. (2017) reported that, compared to the levels
in a young group, the expression of NLRP3 and NLRC4 was
significantly increased in aging kidney tissue. Age-associated
renal diseases are related to the NLRC4 inflammasome (Furman
et al., 2017). NLRC4 deficiency resulted in diminished disease
progression in diabetic mice (Yuan et al., 2016).

Unlike the other three inflammasomes, AIM2 is composed
of a DNA-sensing hematopoietic interferon-inducible nuclear

protein that is comprised of 200 amino acids (HIN200) and
a PYD domain (Man et al., 2015; Hu et al., 2016). Therefore,
AIM2 can form a DNA-sensing inflammasome in combination
with ASC and caspase-1 that mediates inflammation and
pyroptosis (Gray et al., 2016). AIM2 deficiency attenuates
renal injury, inflammation, and fibrosis in mouse UUO
models (Komada et al., 2018). Additionally, recent findings
suggest that AIM2 expression is increased in renal tubular
epithelial cells and infiltrating leukocytes derived from patients
with DN or hypertensive nephrosclerosis (Komada et al.,
2018). Findings by Zhang W.J. et al. (2013) also indicate
that AIM2 expression is increased in lupus patients and is
closely correlated with the severity of disease in systemic
lupus erythematosus patients. AIM2 may also be involved in
the pathogenesis of lupus nephritis (Kimkong et al., 2009;
Zhang W.J. et al., 2013).

CONCLUSION

The NLRP3 inflammasome is a complex platform that is
responsible for the activation of cytosolic polyprotein caspase,
which is involved in the maturation and release of IL-1β

and IL-18, which systemically establishes an inflammatory
environment within the kidney under appropriate stimuli.
The typical NLRP3/ASC/caspase-1/IL-1β/IL-18 axis promotes
the pathophysiology of various kidney diseases by mediating
inflammation, and this is likely a critical priming mechanism
for renal fibrosis. Additionally, the NLRP3 inflammasome is
associated with pyroptosis, a process that is also involved in renal
fibrosis. The inflammation-independent NLRP3 inflammasome
is also closely associated with mitochondrial regulation and TGF-
β/Smad signaling. The existence of crosstalk between NLRP3
and the TGF-β/Smad signaling pathway indicates that NLRP3
plays an important role in myofibroblast differentiation and ECM
accumulation. Granata et al. (2015) reported that the NLRP3
inflammasome is activated and the production of mitochondrial
ROS is elevated in immunocompetent peripheral cell lines
isolated from uremic patients undergoing dialysis treatment.
Therefore, the NLRP3 inflammasome pathway may serve as a
valuable prophylactic and therapeutic target for the treatment
of renal fibrosis and may also provide a potential target for
minimizing the severe clinical complications observed in CKD
patients with advanced renal impairment.
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