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Resistance to sulfadoxine–pyrimethamine (SP) in Plasmodium falciparum malaria parasites is associated
with mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes, and
these mutations have spread resistance worldwide. SP, used for several years in Senegal, has been recom-
mended for intermittent preventive treatment for malaria in pregnancy (IPTp) and has been widely
implemented since 2003 in this country. There is currently limited data on SP resistance from molecular
marker genotyping, and no data on pyrimethamine ex vivo sensitivity in Senegal. Molecular markers of SP
resistance and pyrimethamine ex vivo sensitivity were investigated in 416 parasite samples collected
from the general population, from the Thies region between 2003 and 2011. The prevalence of the
N51I/C59R/S108N triple mutation in dhfr increased from 40% in 2003 to 93% in 2011. Furthermore, the
prevalence of the dhfr N51I/C59R/S108N and dhps A437G quadruple mutation increased, from 20% to
66% over the same time frame, then down to 44% by 2011. There was a significant increase in the prev-
alence of the dhfr triple mutation, as well as an association between dhfr genotypes and pyrimethamine
response. Conversely, dhps mutations in codons 436 and 437 did not show consistent variation between
2003 and 2011. These findings suggest that regular screening for molecular markers of antifolate resis-
tance and ex vivo drug response monitoring should be incorporated with ongoing in vivo efficacy moni-
toring in areas where IPTp-SP is implemented and where pyrimethamine and sulfa drugs are still widely
administered in the general population.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Plasmodium falciparum malaria continues to be a major global
cause of mortality and morbidity. Malaria treatment and control
has been complicated by the emergence of resistance to wide-
spread antimalarial drug use. The most common method for mea-
suring antimalarial resistance is estimating the in vivo efficacy of
the antimalarial, such as sulfadoxine–pyrimethamine (SP). Since
2003, SP has been used in the intermittent preventive treatment
for pregnant women (IPTp-SP) in many Sub-Saharan African
countries, including in Senegal since 2003 (WHO, 2004). sulfadox-
ine–pyrimethamine in combination with amodiaquine was also re-
cently recommended by the WHO for seasonal malaria
chemoprevention (SMC) in some malaria-endemic countries
(WHO Global Malaria Programme, 2012). Due to the recent recom-
mendation to use artemisinin combination therapies (ACTs) for the
treatment of uncomplicated malaria (WHO, 2010), it is no longer
acceptable to carry out in vivo efficacy studies of SP used alone
for the treatment of uncomplicated malaria. Nonetheless, it is crit-
ical to assess parasite SP resistance in order to monitor the efficacy
of SP use in IPTp and SMC.

Antimalarial drug sensitivity testing provides information on
the frequency of resistant phenotypes among the populations of
parasites being transmitted, as well as the possible cross-resistance
patterns of antimalarial drugs. Isolates are defined as resistant to
pyrimethamine when the 50-percent inhibitory concentration
(IC50) is greater than 2000 nM (Aubouy et al., 2003). In vitro meth-
ods to measure parasite resistance to individual components is a
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useful adjunct to in vivo studies (Desjardins et al., 1979; Smilkstein
et al., 2004; Baniecki et al., 2007; Laufer et al., 2007; Kurth et al.,
2009; Ndiaye et al., 2010). In vivo and in vitro drug sensitivity tests
present numerous technical and cost limitations, and these limita-
tions have led to a search for genetic markers of resistance.

As in vivo drug efficacy cannot be routinely monitored in IPTp-
SP, an alternative method to track SP resistance is to study the fre-
quency of molecular markers that are associated with SP resistance
in the parasite population. The mechanism of action of SP is well
documented: point mutations at codons 50, 51, 59, 108, and 164
in the dhfr gene (Bzik et al., 1987; Cowman et al., 1988; Peterson
et al., 1988, 1990; Foote et al., 1990; Basco et al., 1995; Reeder
et al., 1996) are found to confer resistance to pyrimethamine, while
mutations at codons 437, 540, 581, and 613 of the dhps gene confer
resistance to sulfadoxine (Brooks et al., 1994; Triglia and Cowman,
1994; Bickii et al., 1998; Warhurst, 2001; Warsame et al., 2001).
The single dhfr 108 mutation can increase in vitro resistance to
pyrimethamine by 100-fold relative to wild-type (Reeder et al.,
1996; Sirawaraporn et al., 1997), and the progressive addition of
mutations altering Cys50 to Arg (C50R), Asn51 to Ile (N51I),
Cys59 to Arg (C59R), and Ile164 to Leu (I164L) in the gene can yield
higher levels of SP resistance both in vitro and in vivo (Reeder et al.,
1996; Sirawaraporn et al., 1997). The triple dhfr mutant genotype
consisting of N51I, C59R, and S108N shows in vitro resistance to
pyrimethamine that is 225 times higher than a wild-type lab strain
(Basco et al., 1995; Nzila-Mounda et al., 1998), and has a strong
association with in vivo SP treatment failure (Basco et al., 1998; Ku-
blin et al., 2002; Happi et al., 2005). Sulfadoxine is the most com-
mon of the sulfones and sulfonamide class of drugs used in
prophylaxis and/or treatment for human malaria caused by P. fal-
ciparum. A change at codon A437G in dhps is the first step in resis-
tance to sulfa drugs, followed by sequential mutations at K540E,
A581G, and A613S/T, which cause a further increase in drug resis-
tance (Triglia et al., 1997). The quintuple mutant genotype consist-
ing of the double dhps mutant genotype (A437G, K540E) in
combination with the dhfr triple mutant genotype (S108N, N51I,
C59R) also predicts clinical failure (Omar et al., 2001; Kublin
et al., 2002; Mugittu et al., 2004; Staedke et al., 2004; Alker
et al., 2008).

In Senegal, malaria remains a formidable public health issue,
causing significant morbidity and mortality in infants and preg-
nant women (WHO Malaria Report, 2012). In the absence of an
effective vaccine, the National Malaria Control Program has fol-
lowed WHO recommendations for IPTp-SP since 2003. The rapid
spread of SP-resistant parasites highlights the need for regular
monitoring of ex vivo parasite sensitivity to pyrimethamine and
dhfr/dhps mutations in countries like Senegal, where SP has been
widely used for several years.
2. Materials and methods

2.1. Study population

This study was conducted from 2003 to 2011 at the Service de
Lutte Anti-Parasitaire (SLAP) clinic, in the Thies region of Senegal.
Thies is an urban area, 70 km from the capital city of Dakar, where
malaria is hypoendemic (1 < EIR < 5) (Trape et al., 1992; Faye et al.,
1995; Thomas et al., 2002). Individuals seeking treatment for
uncomplicated P. falciparum malaria at the SLAP clinic in Thies
were tested for malaria infection by microscopy and rapid diagnos-
tic test (RDT). Patients that presented with symptoms consistent
with mild malaria, including fever and a positive blood slide with
only P. falciparum, were offered enrollment into the study. Exclu-
sion criteria included severe disease and/or history of recent treat-
ment with anti-malarial drugs. The Human Subjects Committee of
Harvard School of Public Health in Boston, (protocol #P10256-127)
and the Ethics Committee of the Senegal Ministry of Health in Da-
kar (Protocol #16330) both approved the protocols used in these
studies.

2.2. Blood sample collection

For screening, thin and thick blood films were performed for
parasite detection and identification of malaria parasite species
and parasite counts by light microscopy using Giemsa stain (10%
dilution). Blood samples were collected either on Whatman FTA fil-
ter papers (Whatman catalog #WB120205) or via venous blood
draw from consenting patients, who were then treated with the
first line treatment regimen according to the guidelines of the
Senegalese Ministry of Health. Filter papers alone were collected
in 2003 for genotyping, while both filter papers for genotyping
and venous blood for the ex vivo drug assay were collected from
2008–2011. Blood samples were collected after written informed
consent was obtained from each patient or their parent/guardian.

2.3. DNA extraction and genotyping

DNA extraction was performed from filter paper blood spots
using a QIAamp DNA Minikit (Qiagen #51183) following manufac-
turer’s instructions (Thomas et al., 2002). In 2003, dhfr and dhps
mutations were analyzed using the PCR-RFLP protocol (Ndiaye
et al., 2005), with primers used to amplify the region that includes
codons 50, 51, 59, 108, and 164 in dhfr and codons 436, 437, 540,
581, and 613 in dhps. In 2008, 2009, 2010, and 2011, haplotypes
were analyzed using High Resolution Melting genotyping (Daniels
et al., 2012) (Table 1).

2.4. Ex vivo drug assay

Parasites were drug tested using the ex vivo DAPI assay (Ndiaye
et al., 2010). Briefly, 180 lL of media plus parasitized erythrocytes
at 2% hematocrit and parasitemia between 0.4% and 1% were dis-
tributed into 96-well plates preloaded with 20 lL of serially diluted
pyrimethamine, prepared in duplicate wells. Pyrimethamine was
obtained from Sigma (catalog #P7771) and stock solutions were
prepared in DMSO. Drug plates were prepared in a single batch
and frozen prior to use, and lab strain controls (3D7 and Dd2) were
used to validate each plate batch. Two sets of serial dilutions were
prepared in unsupplemented RPMI and distributed in duplicate into
96 well black plates: a series with high pyrimethamine concentra-
tions from 295 to 2.7 lM, followed by a series of low pyrimeth-
amine concentrations from 1366.6 to 3.3 nM. Samples that had
parasitemia greater than 1% were diluted with leukocyte-free O+
donor red blood cells resulting in a final parasitemia of 0.4–1%.
Parasites were cultured for 48–72 h at 37� Celsius in standard gas
conditions (1% O2, 5% CO2, and 94% N2) before addition of
40,6-diamidino-2-phenylindole (DAPI) solution, as previously de-
scribed (Ndiaye et al., 2010). After culture, drug plates were read
using a fluorescent plate reader. The 50% inhibitory concentration
(IC50) was calculated using GraphPad Prism v5.0, estimated by
non-linear regression analysis of log10-transformed dose-response
curves.

2.5. Statistical analysis

Two-tailed Fisher’s exact test was used to determine whether
mutant allele frequencies increased by year (2003 versus 2011).
Mann–Whitney U test was used to determine whether median
IC50 values differed for parasites with wild-type and mutant alleles.
GraphPad Prism was used to analyze IC50s for pyrimethamine. For
all statistical tests, alpha = 0.05.
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3. Results

3.1. Patient ages and parasite densities

We monitored 416 Senegalese patients from 2003–2011 with
ages ranging from 2 to 65 years. Patient parasitemia increased be-
tween 2003 and 2008 (p < 0.002) (Table 2).

3.2. Prevalence of dhfr and dhps point mutations

A total of 416 P. falciparum samples collected between 2003 and
2011 were successfully genotyped for the following mutations:
dhfr C50R, N51I, C59R, S108N, and I164L, and dhps S436A,
A437G, K540E, A581G, and A613S/T. We did not detect the follow-
ing mutations: dhfr C50R and I164L, and dhps K540E, A581G, and
A613S/T. Fig. 1 shows that the prevalence of mutations in dhfr in
2003 was between 40% (N51I and C59R) and 67% (S108N), and rose
to 93% or greater in 2011, resulting in a significant increase
(Fischer’s exact, p = 0.0002) from 2003 to 2011. Dhps mutations
individually fluctuated (no significant change) between 2003 and
2011. The dhps mutations at codons 436 and 437 did not show sig-
nificant variation between 2003 and 2011 (p = 0.08), but rather
fluctuated between 2% and 23% (S436A) and between 20% and
67% (A437G). Among all isolates, no more than 6 isolates had
mixed alleles at any given dhfr or dhps locus.

We observed that the prevalence of the dhfr 51I/59R/108N tri-
ple mutant genotype increased significantly from 40% in 2003 to
93% in 2011 (Fisher’s exact, p = 0.0002); and the prevalence of
the dhfr 51I/59R/108N and dhps 437G quadruple mutant genotype
also increased from 20% to 44% over the same time period (Fig. 2).
We did not observed the appearance of the dhfr 51I/59R/108N and
dhps 437G/540E quintuple mutant genotype. The quadruple mu-
tant genotype increased between 2003 and 2008, and decreased
between 2008 and 2011.

3.3. Ex vivo susceptibility of Senegalese P. falciparum isolates to
pyrimethamine

A DAPI-based ex vivo assay was used to test pyrimethamine
sensitivity in 66 parasite isolates from 2011 (Ndiaye et al., 2010).
3D7 and Dd2 parasites were used as control strains; their IC50s
were 47.2 and 49,464 nM, respectively. Out of the 66 isolates, 56
(84.8%) were found to be resistant to pyrimethamine with IC50s
greater than 2000 nM. The median pyrimethamine IC50 was
25,125 nM with a minimum of 2.4 nM and a maximum of
11,107 nM (Table 3). The median IC50 among sensitive isolates
and resistant isolates were 247.8 (2.4–1503) nM, and 30,705
(2259–201,046) nM, respectively (Table 4).

3.4. Correlation between dhfr polymorphisms and pyrimethamine
ex vivo susceptibility

The correlation between the dhfr mutation and resistance to
pyrimethamine measured ex vivo was verified by our study. We
found significant increases in the geometric means of the IC50 val-
ues for ex vivo pyrimethamine susceptibility among parasites bear-
ing single mutations within dhfr (Fig. 3, Mann–Whitney U test,
p = 0.0001). In the pyrimethamine resistant isolates, the mean
IC50 for parasites with the mutant 108N allele (N = 58, mean
IC50 = 31,181 nM, CI95% 30,002–32,606) was 324 times higher than
the mean IC50 for parasites with the wild-type S108 allele (N = 9,
mean IC50 = 96 nM, CI95% 94.7–97). The mean IC50 for parasites
with the mutant 51I allele (N = 56, mean IC50 = 31,540 nM, CI95%
30,160–32,100) was 240 times higher than the mean IC50 for par-
asites with the wild-type N51 allele (N = 6, mean IC50 = 131 nM,



Table 2
Ages and parasitemias of patients included in this study from 2003 to 2011.

2003 2008 2009 2010 2011

Number (n) 15 93 84 94 130
Median age (years) 17.7 (7–54) 23 (2–55) 23.5 (4–61) 17 (3–65) 16.5 (3–59)

Median parasitemia (lowest–highest)
asexual parasite/lL

12,216 (1019–110,000) 18,000 (4500–135,000) 22,500 (2250–351,000) 23,400 (450–585,000) 22,500 (3150–315,000)

Fig. 1. Evolution of dhfr N51I/C59R/S108N and dhps mutation prevalence after expanded SP use in Thies, Senegal. The prevalence of the dhfr mutant alleles for both 51I/59R
and 108N increased significantly between 2003 and 2011 (Fischer’s exact, p = 0.0002). Dhps mutation individually fluctuated (no significant change) between 2003 and 2011
(Ndiaye et al., 2005), (Daniels et al., 2012).

Fig. 2. Haplotype frequencies and number of mutations in dhfr codons 51, 59, 108 and dhps 436 and 437, present in P. falciparum isolates from Thies between 2003 and 2011.
Haplotype frequencies were determined by HRM (in 2003) or PCR-RFLP (in 2008–2011). Significant increases were detected using Fisher’s exact test to detect differences
between 2003 and 2011. The prevalence of the dhfr 51I/59R/108N triple mutant genotype increased from 40% in 2003 to 93% in 2011 (Fischer’s exact, p = 0.0002); and the
prevalence of the dhfr 51I/59R/108N and dhps 437G quadruple mutant genotype increased from 20% to 44% over the same time period. 2003 data was previously reported in
Ndiaye et al. (2005).
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Table 3
Pyrimethamine IC50 values and percentage of resistant parasites tested in 2011.

Drug tested IC50 median (nM) (CI 95%) Range Resistant isolates (%) (n/N)

Min Max

Pyrimethamine (n = 66) 11,107 (20,104–27,046) 2.4 201,046 84.8% (56/66)

Table 4
Ex vivo pyrimethamine IC50 values for resistant and sensitive isolates.

Isolates tested Pyrimethamine sensitive isolates (n = 10) Pyrimethamine resistant isolates (n = 56) (Mann–Whitney U test) p-value

Field isolates (n = 66) median
(lowest–highest) IC50 (nM)

15.5 (2.4–1503) 15,725 (2259–201,046) 0.0001

3D7 47.2 –
Dd2 – 49,464

Fig. 3. IC50 (nM) comparisons between mutant and wild type alleles at codons 51, 59, and 108 in dhfr and comparison between parasites with wild type versus dhfr N51I/
C59R/S108N triple mutation and dhfr N51I/C59R/S108N and dhps A437G quadruple mutation. (a) We found significant increases in the geometric mean IC50 values for ex vivo
pyrimethamine susceptibility between mutant and wild type alleles (Mann–Whitney U test, p = 0.0001). Pyrimethamine IC50s were measured ex vivo in 2011 using the DAPI
drug assay. (b) IC50s were different between wild type and dhfr N51I/C59R/S108N triple mutation parasites, as well as between wild type and dhfr N51I/C59R/S108N and dhps
A437G quadruple mutation parasites (Mann–Whitney U test, p = 0.0002 for both comparisons).
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CI95% 130.7–133.6). Likewise, the mean IC50 for parasites with the
mutant 59R allele (N = 57, mean IC50 = 31,021 nM, CI95% 30,259–
32,119) was 5640 times higher than the mean IC50 for parasites
with the wild-type C59 allele (N = 2, mean IC50 = 5.5 nM, CI95%
5.2–5.8) (Fig. 3a). We observed a mean IC50 1000 times higher be-
tween wild type and triple mutant dhfr 51I/59R/108N parasites,
(Mann–Whitney U test, p = 0.0002), as well as between wild type
and dhfr 51I/59R/108N and dhps 437G quadruple mutant parasites
(Mann–Whitney U test, p = 0.0002) (Fig. 3b). Four of the 10 isolates
that were sensitive to pyrimethamine also had the mutation at dhfr
108, while all six parasites with the dhfr S108 wild-type allele were
sensitive to pyrimethamine. The six isolates with the wild-type al-
lele at dhfr C51 were also sensitive to pyrimethamine, and the
same observation was made for isolates with the wild-type dhfr
C59 allele. This illustrates that all parasites with the wild-type
alleles at dhfr 51, 59 and 108 were sensitive to pyrimethamine,
and the correlation between dhfr mutation and phenotypes was
statistically significant (Fisher exact, p = 0.00001).
4. Discussion

In 2003, Senegal adopted intermittent preventive treatment for
pregnant women (IPTp) using sulfadoxine–pyrimethamine (SP). At
the same time, between 2003 and 2004, Senegal switched to sulfa-
doxine–pyrimethamine with amodiaquine as the first-line therapy
for uncomplicated malaria in response to increasing chloroquine
resistance (WHO Roll Back Malaria Focus on Senegal, 2010). In
2005, Senegal adopted artemisinin combination therapies (ACTs)
as first line treatment for uncomplicated malaria. The results
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reported here were obtained from samples collected from the gen-
eral population in an urban site with expanded SP use, and this is
one of the few reports that includes both dhfr/dhps polymorphisms
and ex vivo drug phenotype data. Previous studies carried out in
Senegal and other West African countries have focused on rural
sites and studied P. falciparum polymorphisms without assessment
of corresponding ex vivo phenotypes.

Our results show an increase in the prevalence of parasites
bearing individual dhfr mutations at codons 51, 59, and 108 in an
interval of eight years. Furthermore, the number of parasites with
all three dhfr mutations increased from 40% in 2003 (Ndiaye et al.,
2005), to 93% in 2011. Emergence of the dhfr 51I/59R/108N triple
mutant has been observed in countries using sulfadoxine–pyri-
methamine alone or in combination, as first line treatment for
uncomplicated malaria as reported in Africa and elsewhere (Bwijo
et al., 2003; Griffin et al., 2010; Malisa et al., 2010; Raman et al.,
2010; Yusuf et al., 2010; Zakeri et al., 2010; Mula et al., 2011;
Mombo-Ngoma et al., 2011; Naidoo and Ropper, 2011). A similar
increase in the dhfr N51I/C59R/S108N triple mutation has been ob-
served after IPT in children in southern Senegal (Faye et al., 2011),
as well as in rural regions in Mali (Dicko et al., 2010) and southern
Mozambique (Enosse et al., 2008), with dhfr mutations being an
important predictive risk factor of in vivo resistance (Boumbou-
Moukoko et al., 2009; Picot et al., 2009). Dhps mutations individu-
ally fluctuated (no significant change) between 2003 and 2011 in
this study, but when considered in combination with dhfr muta-
tions, the number of parasites with an additional mutation at dhps
437 (dhfr N51I/C59R/S108N and dhps A437G quadruple mutation)
increased from 2003 to 2008 and then steadily decreased until
2011. Interestingly, we found that mutations at dhps codons 436
and 437 were not always inherited together, despite residing very
close to each other on the chromosome (Bwijo et al., 2003; Bou-
you-Akotet et al., 2010).

The quintuple mutant dhfr 51I/59R/108N and dhps 437G/ 540E
has not been previously observed in Senegal (Ndiaye et al., 2005,
2006; Henry et al., 2006; Faye et al., 2011), or in Mali (Dicko
et al., 2010). The dhfr I164L mutation was also not found in this
study. The combination of dhfr C59R and dhps K540E mutations,
which predict clinical failure of sulfadoxine–pyrimethamine (Basco
et al., 2000; Kublin et al., 2002; Talisuna et al., 2004; McCollum
et al., 2012), were also not found in our study.

We found a correlation between the dhfr S108N single mutation
and pyrimethamine resistance, and a correlation between the dhfr
N51I/C59R/S108N triple mutation, as well as the dhfr N51I/C59R/
S108N and dhps A437G quadruple mutation, and pyrimethamine
resistance. Overall, we found a significant difference in the geomet-
ric mean IC50 values for pyrimethamine (p = 0.0009) between par-
asites possessing wild-type and resistant alleles in dhfr, as has been
reported by others (Andriantsoanirina et al., 2011). We confirmed
the existence of an association between the dhfr genotype and
chemosensitivity to pyrimethamine in P. falciparum isolates from
Thies, as the increase in the number of mutations was associated
with an increase in ex vivo resistance to pyrimethamine, similar
to what has been observed in Gabon (Aubouy et al., 2003), Central
African Republic (Menard et al., 2006), and Cote D’Ivoire (Djaman
et al., 2007). However, some parasites harbored the N51I, C59R,
and S108N mutations in dhfr but were still susceptible to pyri-
methamine as reported in isolates from Brazil (Petersen et al.,
1991), and Gabon (Aubouy et al., 2003) for the dhfr S108N muta-
tion and Papua New Guinea (Reeder et al., 1996) for dhfr S108N
and dhfr C59R. Further sequencing of these parasites for possible
compensatory mutations may explain this finding. The ex vivo as-
say data does not permit strong conclusions because we obtained
ex vivo pyrimethamine data from only 1 year; however, the high
rates of pyrimethamine ex vivo resistance in this study are corre-
lated with high rates of the dhfr N51I/C59R/S108N triple mutation.
The use of SP in IPTp may not be the only driver of parasite poly-
morphisms in this population, because Senegal has used sulfadox-
ine and/or pyrimethamine in the national antimalarial treatment
plan for many years, and furthermore these drugs are still being
used in antibacterial combination therapy. Nonetheless, this type
of general population survey could form part of the monitoring
system for IPTp as an alert strategy plan, because the genetic and
phenotypic diversity among parasites infecting the general popula-
tion in very low transmission areas like Thies (EIR < 5), likely re-
flect the parasites circulating among pregnant women.

Our study is not without limitations. The small number of pa-
tients recruited in 2003 was due to logistical constraints, which
were addressed in the following years and allowed for deeper sam-
pling in 2008–2011. The intervening years were also spent devel-
oping the DAPI ex vivo drug assay (Ndiaye et al., 2010) and High
Resolution Melting genotyping (Daniels et al., 2012). The latter
technology is a reliable, adaptable, and accessible tool that pro-
vides comparable results to PCR-RFLP. Future studies will strength-
en the present data set and will provide valuable information for
the Senegalese National Malaria Control Program.

In conclusion, our results show an increasing prevalence of dhfr
N51I/C59R/S108N triple and dhfr N51I/C59R/S108N and dhps
A437G quadruple mutations between 2003 and 2011 in Thies, Sen-
egal. This study suggests that intermittent drug pressure with SP is
selecting parasites with mutant alleles. The use of SP is not only
implemented in IPTp, but also recently for seasonal malaria che-
moprevention in children, thus surveillance of molecular markers
of drug resistance and ex vivo drug sensitivity assays should be
an integral part of planned malaria control programs, so that resis-
tance dynamics can be assessed and the most effective treatment
can be selected or modified.
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