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SUMMARY

To decarbonize the economy, many governments have set targets for the use of
renewable energy sources. These are often formulated as relative shares of elec-
tricity demand or supply. Implementing respective constraints in energy models
is a surprisingly delicate issue. They may cause a modeling artifact of excessive
electricity storage use. We introduce this phenomenon as ‘‘unintended storage
cycling’’, which can be detected in case of simultaneous storage charging and dis-
charging. In this paper, we provide an analytical representation of different ap-
proaches for implementing minimum renewable share constraints in energy
models, and show how these may lead to unintended storage cycling. Using a
parsimonious optimization model, we quantify related distortions of optimal
dispatch and investment decisions as well as market prices, and identify impor-
tant drivers of the phenomenon. Finally, we provide recommendations on how
to avoid the distorting effects of unintended storage cycling in energy modeling.

INTRODUCTION

Replacing conventional electricity generation with renewable energy sources is a prime option for miti-

gating greenhouse gas emissions in the power sector. Technological progress, economies of scale, and

support measures have led to substantially growing shares of renewables in power sectors around the

world. Firm renewable capacity potentials, i.e., for hydroelectric and biomass power, are limited in many

regions. Variable renewable energy (VRE), such as wind and solar photovoltaics (PV), will thus play a major

role in the further transition. These technologies have variable generation characteristics, as their temporal

availability depends on weather conditions, such as wind speeds and cloud cover (Joskow, 2011). Invest-

ment costs for VRE have tremendously decreased in recent years (IEA, 2020). Owing to an insufficient inter-

nalization of greenhouse gas emissions (Ricke et al., 2018) and low marginal generation costs of existing

thermal power plants, policy support continues to be relevant for low-cost renewable deployment above

penetration levels that would emerge without policy intervention (Polzin et al., 2019).

Many governments on state, national, and even intergovernmental levels have adopted a minimum renew-

able energy share by a target date to promote the deployment of renewable energy (Özdemir et al., 2020).

Essentially, this share describes the ratio of energy from renewable sources to the total energy supplied or

consumed in a specific economic sector, or in the entire energy system. Such targets and related policy

measures can facilitate investment in VRE technologies, and usually rise over time.

For instance, Germany has a long tradition of setting renewable energy targets for its power sector, in

particular via the Renewable Energy Sources Act (EEG). The 2021 version of the EEG includes a renew-

able share of 65% in gross electricity consumption by 2030 (Bundesregierung, 2020). France and Spain

aim for a share of 40% and 74% of total generation by 2030, respectively, while Sweden envisages a fully

renewable power sector by 2040 (REN21, 2021). In the United States, renewable portfolio standards

require a certain share of a utility’s total generation to come from renewable energy sources. In 2020,

30 states had adopted mandatory standards, while in eight states voluntary standards are in place

(Zhou and Solomon, 2020). For instance, California aims at a 60% (100%) renewable share by 2030

(2045) (California PUC, 2021). China targets a renewable share of 35% in its total electricity generation

by 2030 (REN21, 2020). Japan aims at 22%–24% for the same target year. Overall, 137 countries had

renewable energy targets in place for the power sector in 2020 (REN21, 2021). While some of these coun-

tries have set only absolute renewable power capacity targets (e.g., Switzerland or New Zealand), most

make use of some sort of minimum renewable energy target.
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Figure 1. Stylized illustration of unintended storage cycling

Instead of curtailing (dashed green) VRE surplus, the optimization may lead to unintended storage cycling (solid red), i.e.,

to additional storage conversion losses (dashed red), which remove excess renewable electricity from the system.
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Capacity expansion models of the power sector or the entire energy system are frequently used to explore

future scenarios with high shares of renewables and determine least-cost solutions (Dagoumas and Kolt-

saklis, 2019). To be policy-relevant, such models are often constrained by renewable energy targets. In

this case, an unexpected modeling artifact related to VRE generation may occur. Figure 1 illustrates the

general mechanism. At high shares of VRE, situations arise in which the VRE generation potential tempo-

rarily exceeds the demand for electricity. In these situations, curtailing the renewable surplus would be an

obvious option (dashed green arrow). However, certain minimal renewable share constraint formulations

may lead to a situation where renewable curtailment is replaced by storage conversion losses (red dashed

error), facilitated by additional, and often simultaneous, storage charging and discharging. Such unin-

tended storage cycling drives up generation from VRE compared to the first-mentioned option of curtailing

renewable surplus generation, and may thus facilitate achieving renewable energy constraints at lower

costs. Note that this mechanism may arise in energy models, but does not relate to real-world storage

applications.

The phenomenon of unintended storage cycling has, to the best of our knowledge, not been described or

discussed in the energy modeling literature (Bistline et al., 2020). There is reason to believe that this artifact

is undetected or ignored, yet prevailing in the power sector and energy system modeling domain. Our pa-

per aims at closing this gap. To this end, we first provide a systematic representation of different ap-

proaches for implementing minimum renewable share constraints in energy models. Using a parsimonious

optimization model of a power sector (see section on the formal definition of a parsimonious dispatch and

investment model), we analytically derive some intuition as to how these constraints may lead to unin-

tended storage cycling and examine their impact on equilibrium conditions of storage operators. For a styl-

ized model parameterization (see the section on the numerical implementation), we numerically analyze

how this phenomenon may distort model outcomes. We quantify the effects on dispatch and investment

decisions of both storage and other technologies, and on market prices. We also explore important drivers

of unintended storage cycling. Finally, we discuss different options for avoiding the distorting effects of un-

intended storage cycling in energy modeling and provide recommendations for energy modelers. Addi-

tional material is available in the supplemental information.

In energy modeling applications, constraints requiring a certain renewable share may be manifold. A re-

view by Gillich et al. (2019) shows that some applications use constraints for installed renewable generation

capacity (e.g., in GW). Other model applications use constraints on the share of renewable energy (e.g., in

TWh). Table 1 shows a selection of well-established European models and model applications that employ

renewable capacity and energy targets. Additionally, two commonly implemented climate policy instru-

ments are listed, which also influence the share of renewable energy sources in model outcomes: an annual

greenhouse gas emission budget and an explicit CO2 price. The information is based on a review of

research articles, model documentations as well as other references such as dissertations, and, wherever

possible, on personal validation by model developers or affiliated modelers.

Renewable energy constraints in power sector and energy system models may come in various forms. Energy

provision from renewable (conventional) energy sources has to achieve (must not exceed) a certain share in total
2 iScience 25, 104002, April 15, 2022



Table 1. Model features that affect the shares of renewable energy sources in selected European energy models and model applications

Model

Renewable

share in

demand

Conventional

share in

demand

Renewable

share in

generation

Conventional

share in

generation

Renewable

capacity target CO2 budget CO2 price Documentation

AnyMOD xa xa Göke (2021)

Backbone* xa xa xa xa Helistö et al. (2020,

2021); Lindroos

et al. (2021);

Ikäheimo et al.

(2022); Rasku et

al. (2020)

Helistö et al. (2019)

Calliope* Tröndle (2020), xb xa xa xa Pfenninger and

Keirstead (2015);

Pfenninger (2017)

Pickering and

Choudhary (2021)

Pickering and

Choudhary (2021)

Pfenninger and

Pickering (2018)

DIETER* Zerrahn and Schill

(2017); Schill et al.

(2017b); Schill and

Zerrahn (2018)

Schill and Zerrahn

(2020); Stöckl et al.

(2021)

xb xb Zerrahn and Schill

(2017); Gaete-

Morales et al.

(2021)

DIMENSION* xc xc xc xc Bründlinger et al.

(2018)

Helgeson and

Peter (2020)

xa Richter (2011);

Helgeson and

Peter (2020)

dynELMOD* Kittel et al. (2020) Gerbaulet et al.

(2019)

Gerbaulet and

Lorenz (2017)

EMMA* xb Hirth (2013);

Ruhnau et al.

(2020); Ruhnau

(2021); Ruhnau

et al. (2021)

xa Hirth (2013);

Ruhnau et al.

(2020); Ruhnau

(2021); Ruhnau et al. (2021)

Hirth (2013)

ELTRAMOD Anke and Möst

(2021)

Anke et al. (2020);

Hobbie et al. (2019)

Eising et al. (2020) Ladwig (2018)

EU-REGEN* xa Mier and Weissbart

(2020); Weissbart

(2020); Azarova

and Mier (2021)

Mier and Azarova

(2021); Siala et al.

(2020)

Weissbart and

Blanford (2019)

E2M2* Fleischer (2019) Torralba-Dı́az et al.

(2020)

Schick et al. (2020) Gillich et al. (2019);

Fleischer (2019);

Guthoff et al.

(2021); Torralba-

Dı́az et al. (2020)

Torralba-Dı́az et al.

(2020); Schick et al.

(2020)

Fleischer (2019)

(Continued on next page)
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Table 1. Continued

Model

Renewable

share in

demand

Conventional

share in

demand

Renewable

share in

generation

Conventional

share in

generation

Renewable

capacity target CO2 budget CO2 price Documentation

ENTIGRIS* Senkpiel et al.

(2019)

Senkpiel et al.

(2019)

Senkpiel et al.

(2019)

n/a

GENESYS xc xc Bussar et al. (2014);

Bussar (2019)

GENeSYS-MOD* Loeffler et al.

(2017)

Hainsch et al.

(2021)

Burandt et al.

(2018)

Burandt et al.

(2018)

ISAaR xa xc Böing and Regett

(2019)

LIMES-EU* Pietzcker et al.

(2021)

xa Pietzcker et al.

(2021)

Osorio et al.

(2020b)

Osorio et al.

(2020a); Knopf

et al. (2015)

LUT Model* xb Bogdanov et al.

(2021)

SolarPower Europe

and LUT University

(2020)

SolarPower Europe

and LUT University

(2020)

Renewable Energy

Institute, Agora

Energiewende,

LUT University

(2021)

xa Satymov et al.

(2021)

Bogdanov et al.

(2021)

oemof xc xc Hilpert et al. (2020) xc xc Hilpert et al. (2020)

PLEXOS* xc xc xc xc xc xc xc Deane et al. (2015)

PyPSA* Brown and

Reichenberg (2021)

xc xc Brown and

Reichenberg

(2021); Parzen et al.

(2021)

Neumann and

Brown (2021)

Brown et al. (2018a)

REMix* Xiao et al. (2020) Gils et al. (2017);

Scholz et al. (2017)

Moser et al. (2020) Gils et al. (2019) Gils et al. (2017);

Scholz et al. (2017)

SpineOpt.jl xa xa xa xa xa Ihlemann et al., 2021

Notes: * Personal communication confirms that the artifact has been observed in this model.
aPossible, but not used or documented in model applications so far.
bUsed in model applications, but not published yet.
cApplicable according to personal communication, but insufficient information for linking specific model applications to this particular constraint available.
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demand or generation within a particular sector, or in the entire energy system. Additionally, storage losses may

be covered to a different extent in such constraints. Based on this survey, we systematize possible ways of im-

plementing renewable energy targets, and examine their impact on modeling results.

The artifact of unintended storage cycling may occur in all cost-optimizing power sector and energy system

models that include binding renewable targets. Personal communication further confirms that the phenom-

enon has already been observed in various European energymodels, which aremarkedwith an asterisk (*) in

Table 1. For entries without an asterisk, it was not possible to clarify whether the artifact has been observed

so far. Albeit the artifact has been observed, we do not claim that it prevails in the listed applications.

Not all of the listed models consider storage losses in the formulation of the renewable target, and only a

minority does so to the full extent. We discuss how this impacts the results of linear optimizationmodels. As

we show in this paper, an incomplete consideration of storage losses in the renewable energy constraint

causes unintended storage cycling.
An illustration of different types of unintended storage cycling

Unintended storage cycling can be observed in case of simultaneous charging and discharging of storage.

This involves energy that is cycled through the storage within the same period, which we refer to as same-

period cycling (SPC). Further, there is also an inter-temporal instance of the artifact: Across-period cycling

(APC). It refers to a situation in which unintendedly discharged energy has been charged prior to the period

of unintended discharge. Both SPC and APC are excessive and constitute unintended storage use.

There are four conceivable types of unintended storage cycling. They differ in terms of the ratio of storage

charging to discharging within the same period. Further, they vary in terms of the temporality of unintend-

edly cycled energy, which may be cycled either within the period (SPC only), or within the same and across

periods (SPC and APC). Figure 2 illustrates these types with stylized numbers. For the sake of illustration,

they are based on an assumed low efficiency for charging and discharging of 80%, respectively.

The first type occurs in a situation in which storage charging and discharging within the same period are equal

(Figure2A).Owing toconversion losses, outof10MWhchargedenergy (leftbar)only6.4MWhcanbedischarged

(dark area, right bar). This energy amount represents the unintendedly cycled energywithin the sameperiod (or-

ange area,middle bar). Corresponding losses when charging anddischarging amount to 2.0 and 1.6MWh (light

anddark redareas,middlebar), respectively.Wedefine the total energy required for cycling these10MWhwithin

the samehour as SPC. It comprises theunintendedly cycledenergy (6.4MWh)plus conversion losses (3.6MWh in

total), totaling 10MWh. To achieve a total discharge of 10MWh in this period, it takes another 3.6 MWh (lighter

area, right bar) of energy that already had to be stored during a previous period. This additional unintendedly

cycled energy of 3.6 MWh (light green, middle bar) is cycled across periods. Again, it entails storage conversion

losses when charging (1.125 MWh, medium green, middle bar) and discharging (0.9 MWh, dark green, middle

bar). We define the energy for unintended cycling across periods (3.6 MWh plus 2.025 MWh losses), totaling

5.625 MWh, as APC. The total energy required for equal storage charging and discharging of 10 MWh within

the same period is 25.625 MWh. It contains the total charging, which is the sum of SPC and APC (15.625

MWh), plus the total unintendeddischarging (10MWh). Thenet effect of such storageuseon the system’senergy

balance in the respective hour is zero. Thus, the entire 25.625 MWh are considered as unintended storage use.

We thendefineunintended storage losses as the energy removed from the system throughSPCandAPC losses.

Essentially, unintended storage cycling transforms VRE surplus into unintended storage losses and circumvents

renewable curtailment. In our running example, the unintended storage loss is 5.625 MWh.

The second type of unintended storage cycling occurs when storage discharge exceeds the same-period

charging, i.e., effective discharging (Figure 2B). Both SPC and APC occur in this case, similar to the first

type. However, the difference between the same-period charging and discharging (dark area, right bar) ex-

erts a net effect on the system’s energy balance in this period. This is intended storage use that helps to

serve demand, and needs to be distinguished from storage use solely arising to generate additional losses

to remove excess electricity from the system.

The third and fourth types of unintended storage cycling occur when more energy is charged than discharged

within the same period. In the third type, total discharged energy consists of both SPC and APC, with less use

of APC compared to the first type (Figure 2C). In the fourth type, effective charging occurs. There is no APC,
iScience 25, 104002, April 15, 2022 5
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Figure 2. Four types of unintended storage cycling

(A) Type 1: Storage charging equals discharging.

(B) Type 2: Storage discharging exceeds charging.

(C) Type 3: Storage charging exceeds discharging; discharging exceeds same-period unintendedly cycled energy.

(D) Type 4: Storage charging exceeds discharging; but not the full cycling potential is exploited.
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and the unintended cycling potential is not necessarily fully exhausted (Figure 2D). In the depicted case, the SPC

is smaller than the charged energy, leaving room for some level of intended charging.

RESULTS

An analytical approach to unintended storage cycling

Alternative renewable energy constraint formulations

Renewable energy constraints in energy models may be generalized as follows:

base elementXshareref 3 reference elementGshareloss 3 losses (Equation 1)

Varying the base and reference element, four basic constraint formulations are possible. For the sake of argu-

ment, we denote them constraint families: (1) a minimum renewable share in total demand, (2) a minimum

renewable share in total generation, and, conversely, (3) a maximum conventional share in total demand, and

(4) a maximum conventional share in total generation. Note that total generation includes storage losses, while

total demand does not. Generation from renewables in constraint families (1) and (2) may include both firm and

variable renewable energy sources. Formulations (3) and (4) indirectly enforce minimum renewable shares, as

the limited generation from conventional technologies has to be complemented by renewables.

Reflecting different practices in the modeling literature, we investigate three variations for each constraint

family as to what degree renewable generators cover storage losses. We denote this characteristic Storage

Loss Coverage by Renewables (SLCR). Let 4 be the targeted renewable share, the SLCR then may take the

following values: (a) storage losses are completely supplied from conventional energy sources (zero SLCR);
6 iScience 25, 104002, April 15, 2022



Table 2. Investigated constraint formulations differentiated by constraint family and SLCR level

Model

specification Base element Sign

Shareref &

reference

element G

Shareloss

storage losses

Associated

constraint

1a
P

s˛R;t
Gs;t R 4

P
t
dt (10i)

1b
P

s˛R;t
Gs;t R 4

P
t
dt + 4

P
r ;t
ðGin

r;t � Gout
r ;t Þ (10i)

1c
P

s˛R;t
Gs;t R 4

P
t
dt +

P
r ;t
ðGin

r ;t � Gout
r ;t Þ (10i)

2a
P

s˛R;t
Gs;t R 4

P
s;t
Gs;t � 4

P
r ;t
ðGin

r;t � Gout
r ;t Þ (10i)

2b
P

s˛R;t
Gs;t R 4

P
s;t
Gs;t (10i)

2c
P

s˛R;t
Gs;t R 4

P
s;t
Gs;t + ð1 � 4ÞP

r ;t
ðGin

r ;t �Gout
r ;t Þ (10i)

3a
P
s˛C;t

Gs;t % ð1 � 4ÞP
t
dt +

P
r ;t
ðGin

r ;t � Gout
r ;t Þ (10j)

3b
P
s˛C;t

Gs;t % ð1 � 4ÞP
t
dt + ð1 � 4ÞP

r ;t
ðGin

r ;t �Gout
r ;t Þ (10j)

3c
P
s˛C;t

Gs;t % ð1 � 4ÞP
t
dt (10j)

4a
P
s˛C;t

Gs;t % ð1 � 4ÞP
s;t
Gs;t + 4

P
r ;t
ðGin

r;t � Gout
r ;t Þ (10j)

4b
P
s˛C;t

Gs;t % ð1 � 4ÞP
s;t
Gs;t (10j)

4c
P
s˛C;t

Gs;t % ð1 � 4ÞP
s;t
Gs;t � ð1 � 4ÞP

r ;t
ðGin

r ;t �Gout
r ;t Þ (10j)

These constraint formulations base on Equation (1). The right-hand sides of the inequalities defineQ orU of the optimization

problem introduced in the section on the formal definition of a parsimonious dispatch and investment model.
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(b) storage losses are shared between renewable and conventional energy sources according to the tar-

geted renewable share 4 and ð1 � 4Þ, respectively (proportionate SLCR); or (c) storage losses are

completely covered by renewables (complete SLCR).

Given current economics, power sector costs generally increase with VRE penetration, as the need for

providing temporal flexibility rises. Note that we are interested in settings with high VRE penetration where

the renewable energy constraint is binding, i.e., with a penetration beyond the optimal share of an uncon-

strained model without an explicit renewable energy constraint. Model specifications with zero SLCR are

the least restrictive ones, as these require the lowest use of VRE. In contrast, models with complete

SLCR are most restrictive, as these require storage losses to be completely covered by VRE. Model spec-

ifications with proportionate SLCR may appear most intuitive and appropriately restrictive. Yet, we show

that incomplete SLCR levels lead to unintended storage cycling.

In total, the four constraint families and three SLCR levels yield twelve differentmodel specifications (Table

2). The nomenclature is introduced in the section on the formal definition of a parsimonious dispatch and

investment model.

Intuition for unintended storage cycling

We first provide some intuition for model specification (1a), i.e., a model using a minimum renewable

share in demand. Suppose the optimal renewable share of an unconstrained model is below 4
P
t
dt . Intro-

ducing constraint (10i), forces the model to increase renewable generation. Further, suppose there are

hours with renewable curtailment. There are two options to increase
P

s˛R;t
Gs;t . Either increase renewable

generation capacity, which incurs additional investment costs, or transform renewable curtailment into

storage losses, which only incurs variable storage costs. The latter is done by increasing Gs˛R;t in curtail-

ment hours, and by subsequently charging and discharging storage in these hours. This leads to addi-

tional storage losses from unintended storage cycling, which are not accounted for in the renewable

constraint formulation of model specification (1a). Suppose demand is 100 MWh in one of these
iScience 25, 104002, April 15, 2022 7
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curtailment hours, and storage charging and discharging capacity is 10 MW with a round-trip efficiency of

80%. Without unintended storage cycling, Gs˛R;t in this hour is 100 MWh. Making use of unintended stor-

age cycling, Gs˛R;t can increase to 102 MWh, consisting of 10 MWh charged into storage and 92 MWh to

satisfy demand. In the same hour, 8 MWh are discharged from storage to serve the load of 100 MWh. In

this example, renewable generation increases by 2 MWh compared to a setting without unintended stor-

age cycling. This is done without additional renewable investments, but by transforming 2 MWh of

renewable curtailment into storage losses, which allows us to meet constraint (10i), i.e.,
P

s˛R;t
Gs;tR

4
P
t
dt , at lower costs. Note that the additional 2 MWh of renewable generation contribute to meeting

the renewable energy target (Equation 10i), but do not serve electricity demand (Equation 10b), as

the energy is lost in the storage conversion process.

Under model specification (1b), a similar reasoning applies. The only difference is that storage losses are

partially accounted for in the renewable constraint with 4
P
r;t
ðGin

r;t � Gout
r;t Þ. Only the remaining fraction of

storage losses, ð1 � 4ÞP
r;t
ðGin

r;t � Gout
r;t Þ, can be used to transform curtailment into storage losses via unin-

tended storage cycling. Suppose the targeted renewable share is 4= 80% in the setting described above.

Unintended storage cycling still leads to a renewable generation increase of 2 MWh in the exemplary hour,

which is transformed into storage losses. Yet, 80% of these losses are accounted for in the renewable

constraint. Thus, only 20% of the increase in renewable generation, i.e., 0.4 MWh, helps to relax the renew-

able constraint. To achieve a similar effect as under model (1a), more unintended storage cycling would be

required.

Under model specification (1c), storage losses are completely covered by the renewable energy constraint.

Unintended storage cycling would only increase total variable storage costs, without providing any benefit

in terms of meeting the renewable constraint. Accordingly, renewable generation can only be increased via

additional renewable capacity investments.

A similar reasoning applies to the other renewable share constraints listed in Table 2. For models using

constraint family (2), the only difference is that the fraction of storage losses covered by renewables is

slightly less intuitive than in the example described above, as storage losses are already included in overall

generation
P
s;t
Gs;t . The effects in constraint families (3) and (4) are similar to the ones in (1) and (2),

respectively.

Long-term equilibrium conditions for storage

We first consider an unconstrained long-term equilibrium of the model defined in the section on the

long-term equilibrium conditions for storage without binding renewable energy targets, i.e., discarding

constraints (10j) and (10i). Joskow (2011) stresses that both cost and value of a technology matter in such

a setting. The levelized cost of storage (LCOS) of a storage unit r is the average cost of each unit energy

discharged (Pawel, 2014). It includes investment and variable costs as well as the cost of the electricity

used for charging. As it relates to the storage output, the LCOS also consider the value of conversion

losses.

LCOSr =

P
+i

+
r C

+
r +

P
t;�o

�
r G

�
r ;t +

P
tltG

in
r;tP

tG
out
r;t

(Equation 2)

When interpreting the LCOSmetrics, the temporal heterogeneity of electricity as a good has to be consid-

ered. The value of electricity is time-variant due to a number of reasons (Joskow, 2011; Hirth, 2013; Ueckerdt

et al., 2013). Both the electricity demand and the output of many generation technologies are fluctuating in

nature. Especially, the value of VRE depends on the time when they generate, i.e., their variable availability

profile (López-Prol and Schill, 2021), and the location of generation in the geographical context. Conse-

quently, the electricity price fluctuates over time and space, too. Transmission and distribution grid con-

straints might further affect the locational value of VRE.

The market value (MV) accommodates these variations in electricity value (Joskow, 2011). The MV of a stor-

age technology r refers to the average value of each unit of energy supplied to the system. Storage oper-

ators generate revenue by dispatching stored energy at market prices lt . They exploit arbitrage
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Table 3. Storage operators’ zero-profit conditions

model Costs revenue

1a LCOSr = MVr

1b LCOSr +4mqNSLr = MVr

1c LCOSr +mqNSLr = MVr

2a, 4a LCOSr � 4mqNSLr = MVr

2b, 4b LCOSr = MVr

2c, 4c LCOSr + ð1 � 4ÞmqNSLr = MVr

3a LCOSr � muNSLr = MVr

3b LCOSr � ð1 � 4ÞmuNSLr = MVr

3c LCOSr = MVr
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opportunities, ideally dispatching during periods with high prices, while charging during low-price periods

(Brown and Reichenberg, 2021).

MVr =

P
tltG

out
r;tP

tG
out
r ;t

(Equation 3)

Storage achieves economic efficiency if LCOS equals its marginal economic value, and competitiveness if

LCOS is less or equal to its MV. For perfect and complete markets, themarginal economic value and theMV

coincide (Ueckerdt et al., 2013). In the long-term equilibrium of an unconstrained optimum, consequently,

LCOS equals storage MV, i.e., storage operators generate zero profit as costs perfectly match revenue

(zero-profit condition) (Brown and Reichenberg, 2021). Using the Lagrangian function and Karush-Kuhn-

Tucker (KKT) conditions (Section SI.3), Section SI.4 proves this optimality condition.

LCOSr = MVr (Equation 4)

Imposing a binding renewable energy target, i.e., including constraints (10j) and (10i), may alter the zero-

profit condition of storage in a long-term equilibrium. For clarity, we define a new metric, the normalized

storage conversion losses (NSL) of a storage unit r. It indicates storage conversion losses related to each

unit of storage output.

NSLr =

P
t

�
Gin

r ;t �Gout
r;t

�
P

tG
out
r ;t

(Equation 5)

Table 3 shows that a binding renewable energy target may affect the composition of storage costs and rev-

enue streams of all investigated model specifications. Exemplary proofs of those conditions can be found

in Section SI.5.

Within each constraint family, the LCOS increase by a certain margin, the more storage losses are covered by

renewables. This margin is a multiple of the factor mq=uNSLr , which represents the storage loss per unit storage

output, valued at themarginal system costs of an additional unit of renewable generation. For a binding renew-

able target, renewable energy becomes a scarce good with additional inherent value. When renewable energy

is lost in storage conversion processes, its inherent value for achieving the renewable constraint is annihilated.

Restoring the lost energy incurs additional costs. We thus interpret this factor as storage integration costs that

arise in a systemwith a binding renewable energy constraint. If the constraint is not binding, the dual variable of

the minimum renewable constraint mq=u is zero, and the zero-profit condition of storage remains unchanged

compared to the unconstrained optimum without renewable policy targets.

Models with complete SLCR include all storage losses arising in the system in the formulation of the renew-

able energy constraint. The zero-profit condition of storage operators properly accounts for all storage loss

costs related to the binding renewable target. The economic trade-off between storage use and renewable

curtailment is properly specified such that unintended storage cycling is prevented.

In contrast, models with zero SLCR neglect storage losses in the minimum renewable constraint. They

can be completely covered by conventional generators. Consequently, the zero-profit condition of
iScience 25, 104002, April 15, 2022 9
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Figure 3. Number of hours in which unintended storage cycling occurs and total system costs per SLCR level at a

minimum renewable share of 80%

These graphs are similar for all constraint families, with only marginal differences.

(A) Number of hours in which unintended storage cycling occurs.

(B) Total systems costs.
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storage operators does not include any storage loss costs related to the binding renewable target.

Within the same constraint family, the zero-profit condition is reduced by the factor mq=uNSLr compared

to models with complete SLCR. Similarly, models with proportionate SLCR only partially require renew-

ables to cover storage losses. The system costs of storage losses are thus only partially imposed on stor-

age operators in the long-term equilibrium. Compared to models with complete SLCR within the same

constraint family, the zero-profit condition is reduced by the factor ð1 � 4Þmq=uNSLr , which corresponds

to the share of storage loss costs that is not accounted for in the renewable constraint. In other words,

models based on zero and proportionate SLCR do not fully account for the underlying LCOS related to

the binding renewable target. This causes excessive storage use and too little VRE surplus curtailment in

the long-term equilibrium.
Numerical results for unintended storage cycling

Occurrence and effects on total system costs

We test 12 different model specifications with alternative minimum renewable share constraint formula-

tions as detailed in Table 2, using the stylized numerical model introduced in the section on the numer-

ical implementation. We find that unintended storage cycling is a frequently occurring modeling artifact.

It arises when the SLCR level of the imposed renewable share constraint is incomplete (i.e., constraints

with suffix a and b in Table 2), regardless of the constraint family (1, 2, 3, or 4). This is most pronounced

for models with proportionate SLCR. Only models with complete SLCR (constraints c) prevent the model

artifact (Figure 3A), i.e., requiring renewable generation to completely cover storage losses averts unin-

tended storage cycling. We further find the fourth type of unintended storage cycling to be most com-

mon. Most model outcomes vary across SLCR levels (i.e., constraints with suffix a, b, or c), but coincide

across constraint families. For the sake of illustration, we thus present our findings differentiated by SLCR

level, unless stated otherwise.

Confirming the intuition laid out in the previous sections, the artifact leads to lower-cost solutions (Fig-

ure 3B). This essentially happens as the renewable constraint is partly relaxed in the sense that storage los-

ses also contribute to meeting the renewable target. Compared to the setting with complete SLCR, some

renewable curtailment is avoided and transformed into additional VRE generation, and subsequently, into

storage losses. However, this energy is not used to serve final demand—which is clearly an unintended ef-

fect of the renewable constraint formulation.

Effects on optimal dispatch and investment decisions

Figure 4 illustrates generation, curtailment, and storage use for an exemplary week for model specifications

imposing a minimum renewable share in demand with zero SLCR (1a), proportionate SLCR (1b), and com-

plete SLCR (1c). Respective illustrations for the other three constraint families (2, 3, and 4) are very similar
10 iScience 25, 104002, April 15, 2022
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Figure 4. Generation and price profiles for the second week of the target year at a renewable target of 80% in total demand

The positive part of the ordinate relates to storage discharging, its negative part to charging.

(A) Model specification (1a) with zero SLCR.

(B) Model specification (1b) with proportionate SLCR.

(C) Model specification (1c) with complete SLCR.
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with only marginal deviations. In themodels with zero and proportionate SLCR, unintended storage cycling

takes place, e.g., between hours 200 and 230, but not in the model with complete SLCR. The artifact’s

impact is not limited to the simultaneity of charging and discharging. The hourly storage usage patterns

also differ substantially.

Unintended storage cycling also affects the generation profiles of renewable and conventional genera-

tors, as well as residual load. The latter is demand for electricity in a given time period, e.g., 1 h, net of

VRE generation potential during this period. A positive residual load refers to situations in which demand

exceeds the VRE generation potential, and requires the use of dispatchable generation technologies. In

contrast, the residual load is negative if the VRE generation potential exceeds demand. Residual load in

the exemplary week is lower during periods of renewable curtailment in models with zero or proportion-

ate SLCR compared to models with complete SLCR. This is a consequence of lower curtailment of renew-

able generation, notably during the first days of the week, which is transformed into additional storage

losses related to unintended storage cycling. During the last days of the week, renewable energy is

scarce as a result of prevailing weather conditions, and residual load has to be met by dispatchable po-

wer plants. Generation from conventional technologies in models with zero or proportionate SLCR
iScience 25, 104002, April 15, 2022 11
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Figure 5. Installed capacity, annual generation, curtailment, and storage losses per technology at a renewable share of 80%

(A) Installed generation capacity including storage charging and discharging.

(B) Installed storage energy capacity.

(C) Generation including storage charging (negative part of ordinate) and discharging.

(D) Storage losses and curtailment.
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slightly exceeds their complete SLCR equivalent. This is caused by lower VRE capacity in the models with

incomplete SLCR.

Unintended storage cycling also distorts optimal capacity and annual dispatch decisions. The effects are

largely similar in models using the same SLCR level across all constraint families. In models with incomplete

SLCR, VRE generation capacity (Figure 5A) and storage energy capacity (Figure 5B) decrease, while the

dispatch of conventional generators as well as storage use increase (Figure 5C). Renewable curtailment de-

clines and is partly converted into unintended storage losses (Figure 5D). Note that while investment de-

cisions coincide across all constraint families (Figure S2), constraint family (3) models use a bit less wind po-

wer and more PV (Figure S1).

If unintended storage cycling occurs, the increase in total storage charging and discharging is related to

unintended storage use (Figure 5C), generating unintended storage losses (Figure 5D). This effect is

most pronounced in models with proportionate SLCR, as only the fraction of the additional storage losses

helps to achieve the renewable target that is not covered by the renewable energy constraint (compare the
12 iScience 25, 104002, April 15, 2022
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section on the intuition for unintended storage cycling). About 96% of the unintended storage use relates

to SPC, while APC accounts for the remaining 4%.

Renewable curtailment decreases due to the conversion of renewable curtailment into additional VRE genera-

tion, and subsequently, unintended storage losses. This substitution is most effective in models with zero SLCR.

Because of the additional renewable generation that is not curtailed, but removed via unintended storage

cycling, much less VRE capacity is required in models with incomplete SLCR to meet the renewable energy

constraint (Figure 5A). This is most pronounced for wind power, which is the most expensive renewable energy

source under the parameterization used here. PV capacity slightly increases, while optimal wind power deploy-

ment disproportionately decreases compared to the case with complete SLCR. The same holds true for gener-

ation from both technologies (Figure 5C). Renewable curtailment decreases further as a consequence of the ca-

pacity effect. Accordingly, renewable surplus energy declines, such that the need for storing excess energy over

a longer period of time decreases, which yields a lower optimal storage energy capacity (Figure 5B).

Renewable energy that is removed from the system in the form of unintended storage losses contributes to the

renewable energy constraint. However, it does not provide useful energy for serving demand. To meet the sys-

tem’s energy balance, generation from coal plants thus increases during hours in which, due to the VRE capacity

effect, the VREgeneration potential decreases compared to a settingwithout unintended storage cycling. This is

most pronounced for models with zero SLCR. Because of the increase in generation from coal plants, carbon

dioxide emissions grow by 25% or 6% in models with zero or proportionate SLCR, respectively.

Aside from effects directly related to unintended storage cycling, the developments illustrated in Figure 5 are

also driven by a lower ambition level of the renewable energy constraints of models with zero or proportionate

SLCR. Because storage losses can, at least partly, be covered by conventional generators here, these models

require lower renewable generation than a specification with complete SLCR by definition. Section SI.7 disen-

tangles the impact of both factors. The factor separation raises complementary insights, but also introduces

new complexities (Figure S3). For practical model applications, only the combined effects of varying renewable

ambition levels and unintended storage cycling are relevant, which are shown in Figure 5.

System effects of storage illustrated with residual load duration curves

To illustrate system effects of electricity storage and VRE, a residual load duration curve (RLDC) can be used

(Ueckerdt et al., 2015; Zerrahn et al., 2018; Schill, 2020). A standard RLDC sorts all hourly residual load

values of a full year in descending order (solid lines in Figure 7). With increasing VRE penetration, the

RLDC shifts downward especially on the right-hand side (López-Prol and Schill, 2021). Augmented versions

of residual load duration curves can be calculated that also consider optimal curtailment and electricity

storage use (Figures 6 and 7).

In a case without unintended storage cycling, the optimum storage takes up a certain amount of renewable

surplus generation (area A in Figure 6A, leading to the plateau B) as well as some generation from dispatch-

able power plants with low variable costs (area C). Storage shifts this energy to periods with positive resid-

ual load and VRE shortage (area D), displacing conventional generation. Optimal renewable curtailment

yields a number of situations with zero residual load in which storage is not being used (plateau E of the

RLDC after curtailment in Figure 6A).

Accordingly, RLDCs illustrate the trade-off between optimal storage sizing and VRE curtailment. As storage

investments incur costs, it is not optimal to fully take up renewable surplus generation, but to also allow

some VRE curtailment. In general, this lowers the need for both storage charging and energy capacity

(Schill, 2014; Zerrahn et al., 2018).

Unintended storage cycling distorts these optimal curtailment and storage use patterns, as illustrated in

Figure 6B, which shows the case with proportionate SLCR. The RLDC of a model specification with zero

SLCR is similarly affected and omitted for the sake of clarity. A larger part of VRE surplus generation is taken

up by storage and not curtailed (compare area in F in Figure 6B to area A in Figure 6A). Unintended storage

cycling results in energy being charged (area G in Figure 6B) and discharged again in the same period (area

H). In contrast to the case without unintended storage cycling, there are no hours left in which VRE surplus is

curtailed without storage being charged, which would result in a plateau of the residual load at the zero

line. Instead, there are hours in whichmaximumpossible unintended storage losses are generated (plateau
iScience 25, 104002, April 15, 2022 13
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Figure 6. Different configurations of the RLDC at a targeted renewable share of 80%

(A) Model specification (1c) with complete SLCR.

(B) Model specification (1b) with proportionate SLCR.
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I). Here, both storage charging and discharging are at maximum capacity, while the remaining VRE surplus

is curtailed. Note that same-period storage cycling is limited not only by the installed storage charging ca-

pacity but also by the discharging capacity. In our parameterization, optimal storage discharging capacity

is lower than the optimal charging capacity. In hours to the left and right of those in plateau I, unintended

storage cycling may also occur. Yet, not the full cycling potential is exploited here. On the right-hand side

of plateau I, storage charging capacity is never at themaximum, while storage discharging capacity is never

at the maximum on the left-hand side of plateau I. The RLDCs of constraint family (3) models deviate only

marginally from the other constraint families.

Optimal dispatch and investment decisions of all technologies are affectedbyunintended storage cycling, which

is most pronounced in settings with zero SLCR. Here, optimal storage charging capacity slightly increases to

expand the unintendedstorage cyclingpotential (vertical distancebetweendashed lines inplateau J in Figure 7).

Further, the VRE capacity is lower than inmodels with complete SLCR, yielding an upward shift of the RLDC (area

between solid lines in Figure 7). While the shifted VRE surplus energy from the negative part of the RLDC in-

creases, the additionally charged energy is not used to serve demand, but partly removed from the system via

unintended storage cycling. As a consequence, conventional generation increases (area K between the dashed

lines in Figure 7). This goes along with additional capacity entry of coal inmodels with zero SLCR, which helps to

serve residual load during peak periods (vertical distance between dashed lines in plateau L in Figure 7). Note

that, while less pronounced, similar effects also occur in settings with proportionate SLCR. Yet, for better illustra-

tion, we contrast RLDCs of models with zero and complete SLCR.
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Figure 7. Different configurations of the RLDC for the model specification (1a) with zero SLCR in black and the

specification (1c) with complete SLCR in gray at a targeted renewable share of 80%
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Effects on market clearing prices

The merit order ranks available generation technologies in ascending order of variable generation costs. In

our cost-minimizing setting, technologies with lowest variable costs are dispatched first to meet the de-

mand. In the absence of electricity storage, the technology that supplies the last unit of demand— themar-

ginal technology — sets the uniform price for the power sector at the intersection of demand and supply.

The dual variable lt of the energy balance, Equation (10b), indicates the resulting price, which depends on

the optimality condition of the marginal technology. It can be derived from the first-order condition of the

underlying optimization model that applies to the generation variable of the marginal technology (Biggar

and Hesamzadeh, 2014, Ch.4). The price constitutes the sum of variable costs and the dual variables of con-

straints that may be binding for the marginal technology.

If storage is deployed, the first-order condition of storage discharging includes variable costs, the dual variable

of capacity- and energy-related constraints, and the derivative of the renewable energy constraint (Equations

SI.16a and SI.16b). While most of these summands coincide for all model specifications, the derivative of the

renewable constraint may vary over both constraint families and SLCR levels (Equations SI.18a–SI.18l).

Similarly, the first-order condition of storage charging determines the price at which storage charges

(Equations SI.17a and SI.17b). This is the price that results at the intersection of demand and supply. It

may also change across both constraint families and SLCR levels due to a variation in the derivation of

the renewable energy constraint with respect to storage charging (Equations SI.19a–SI.19l).

Figure 8 illustrates the estimated distribution (kernel density estimation) of prices. We interpret the

dual variables of the energy balance as hourly wholesale prices, compare Brown and Reichenberg

(2021) for model specifications based on constraint family (1). The observed prices vary across SLCR

levels for two reasons. First, as the capacity portfolio changes across SLCR levels, the shape of the merit

order and the intersection of the supply curve with demand may be affected. Second, varying optimality

conditions for storage charging and discharging drive the differences in wholesale prices between

different SLCR levels.

Figure 8 also shows that unintended storage cycling occurs only in low-price periods, i.e., in hours with

renewable curtailment. Note that prices may become negative in models using constraint family (1), which

can be interpreted as the consequence of an energy-based renewable support mechanism (Brown and

Reichenberg, 2021; López-Prol and Schill, 2021).

Price formations of models based on constraint families (2) to (4) are characterized by the same variation in

the distribution across SLCR levels, but a constant level shift may apply for each constraint family. This effect

is due to a variation of optimality conditions of generators across constraint families. It may be explored in

more detail in the future, but is beyond the scope of this paper.
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Figure 8. Distribution of prices across different SLCR levels for a minimum renewable share in demand

The left side of each violin in dark blue shows the distribution of prices during hours without simultaneous storage charging

and discharging. The right side in teal refers to the prices of all hours in which the unintended storage cycling occurs. The

bubbles represent underlying discrete prices to visualize accumulations and outliers. The numbers at the top indicate

average prices, while the numbers at the bottom refer to the number of hourly prices for each of the violin’s sides.
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Drivers of unintended storage cycling

To disentangle the drivers of unintended storage cycling, we conduct sensitivity analyses with respect to

key input parameters: the renewable energy target, storage efficiency, as well as the variable costs of stor-

age use, renewable generation, and renewable curtailment.

With increasing renewable penetration, the number of hours with unintended storage cycling and the en-

ergy related to the artifact grow disproportionately (Figures 9A and 10). Below a renewable share of 40%,

no storage is deployed due to very limited VRE surplus generation. Accordingly, unintended storage

cycling does not occur. As the required VRE penetration increases, VRE surplus energy and optimal elec-

tricity storage capacities also grow. Unintended storage cycling becomes available and is increasingly

used. In a fully renewable power sector, model specifications with proportionate and complete SLCR

converge, because the renewable share constraints coincide (see Table 2 for 4 = 1). Both of these SLCR

levels then prevent unintended storage cycling altogether (see top row in Figure 9A), while model speci-

fications with zero SLCR still suffer from the artifact (see also Figure 10B). By construction, the latter do

not comply with the notion of a fully renewable power sector even at a renewable share of 100%, as they

do not explicitly require complete storage losses to be covered by renewables. Instead, some level of con-

ventional generation always remains in the system under zero SLCR constraint formulations.

The round-trip efficiency of the electricity storage technology determines storage losses. Yet, unintended stor-

age cycling does not increase with lower round-trip efficiency (below a value of 1.0). Instead, LCOS declines as

efficiency increases. The system’s benefit of storage grows, and yields higher optimal storage capacity. This

enables higher levels of unintended storage cycling (Figure 9B). A round-trip efficiency of 1.0, a strong (and

unrealistic) assumption for electricity storage, averts storage losses and unintended storage cycling altogether.

Increasing variable costs of storage use, attributed to each unit of charging and discharging, are another

driver of unintended storage cycling (Figure 9C). If these costs are zero, the economic trade-off between

curtailment of VRE surplus and unintended storage losses cannot be quantified. The optimization becomes

indifferent between the two options, and unintended storage cycling may occur at undetermined levels. As

variable cost for storage use rises, the cost advantage of removing VRE surplus via unintended storage

cycling declines. Above a certain threshold, which is substantially higher than the variable costs of current
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Figure 9. Sensitivity analysis of the annual energy of unintended storage cycling for different SLCR levels

A renewable share of 80% applies to all panels except panel 9a. Despite marginal discrepancies, results coincide across all constraint families.

(A) Different renewable penetration levels (no occurrence below 40%).

(B) Different levels of round-trip storage efficiency.

(C) Different levels of variable costs of storage use.

(D) Different levels of variable costs of renewable generation (no occurrence above 9000 EUR/MWh for zero SLCR).

(E) Different levels of variable costs of renewable curtailment.
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storage technologies (Lacal Arantegui et al., 2014), unintended storage cycling becomes an unfavorable

option in the cost minimization. In our stylized setting, this threshold is much lower for models with propor-

tionate SLCR than for models with zero SLCR.

The same holds true for increasing variable costs of VRE generation, which incentivize curtailment of

VRE surplus rather than feeding it into the grid. This makes unintended storage cycling less favorable, as

converting renewable surplus into additional storage losses increases the variable cost of renewable gen-

eration. Above a certain threshold, the costs of unintended storage cycling thus surpass its gains, and the

artifact disappears (Figure 9D). Yet, this threshold is beyond of what appears plausible for real-world VRE

technologies (Lacal Arantegui et al., 2014).

All results presented so far were generated under the assumption that VRE curtailment comes at no cost.

Rising variable costs of curtailment leads to decreasing curtailment levels. Instead, VRE generation at times
iScience 25, 104002, April 15, 2022 17
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Figure 10. Energy flows for a power sector based on the model (1a) using a renewable share constraint with zero SLCR

The height of each trace represents the energy amount. Light green traces represent intended power flows withdrawn from or fed back into the grid. Red

traces indicate unintended power flows due to unintended storage cycling. Unintended storage cycling and unintended storage losses grow with the

renewable share target. Note that the ratio trace height over represented energy varies across both illustrations due to scaling.

(A) Energy flows at a renewable share of 80%.

(B) Energy flows at a renewable share of 100%.
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of high VRE availability increases, which is then removed from the system via additional unintended storage

cycling (Figure 9E) in settings with incomplete SLCR. At very high curtailment costs, this becomes effective

even for model specifications with complete SLCR.
DISCUSSION

In this section, we first discuss pros and cons of different possible remedies for unintended storage cycling.

We then highlight potential wider implications of the phenomenon in the context of sector coupling and

transmission, and finally draw conclusions for modelers.
A remedy for unintended storage cycling using renewable energy constraints

We have shown that unintended storage cycling can cause significant disruptions of optimal dispatch and

investment patterns in models that include a constraint on annual renewable energy generation. To rem-

edy this artifact, the substitution of VRE curtailment with additional storage losses can be prohibited by fully

including storage losses to the renewable energy constraint. This is done in all model specifications with

complete SLCR, regardless of the constraint family.

Real-world renewable energy targets are often defined as the ratio of annual generation from renewable

energy sources over total electricity generation (or total demand) in the system. This implies that

storage losses should also be distributed among renewable and conventional generators according

to the targeted renewable share. Model specifications with proportionate SLCR conform with this

notion, thus appearing as most policy-relevant. In contrast, models with complete SLCR are overly

restrictive in the sense that they require additional renewable generation to completely cover storage

losses.
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Notwithstanding, we recommend applying a renewable energy constraint with complete SLCR, as this

remedies unintended storage cycling. In post-optimization, the achieved renewable share could

still be reported according to both complete and proportionate SLCR. The latter can then be

interpreted and communicated as the actual renewable share of the system, which is slightly higher

than the former. For example, in our model setting with complete SLCR and a renewable target of

80%, the actual renewable share reported according to the formulation with proportionate SLCR

is 81.16%. We consider such a slightly increased renewable share to be a reasonable price for energy

modelers to pay to avoid unintended storage cycling, especially as renewable shares are set to increase

anyway in light of ongoing ambitions to achieve carbon neutrality. Moreover, models with proportionate

and complete SLCR converge in a fully renewable setting, which, most likely, is required for carbon

neutrality.

Alternatively, modelers may attempt to slightly decrease the desired renewable target in models with com-

plete SLCR to achieve a system configuration that meets the desired target reported as per the proportion-

ate SLCR model. For example, we need to specify a renewable share of 79.3% in a model with complete

SLCR in order to achieve an actual renewable energy share of 80% reported according to a formulation

with proportionate SLCR. However, the identification of the required share as per complete SLCR would

require trial-and-error model runs that need to be done for each model parameterization individually. De-

pending on the scope of the model and its computational burden, this may be infeasible because of sig-

nificant modeling time and effort, as well as a high number of trails.

Based on the results shown in the section on the drivers of unintended storage cycling, one option to avoid

over-restricting energy models with complete SLCR would be to increase the variable costs of storage use

and renewable generation. This makes unintended storage cycling less favorable in the sense of the objective

function and may allow using a more intuitive constraint formulation with proportionate SLCR. However, this

strategy has to be taken with caution. In the real world, variable storage costs are generally low, irrespective of

the technology. A manipulation of these costs distorts the relative costs of the available technology portfolio,

and thus also optimal dispatch and investment decisions. The deployment of storagemay decline, potentially

causing far-reaching system-wide effects, such as a hindered integration of VRE. Moreover, identifying an

appropriate increase in variable storage costs that does not substantially affect optimal storage deployment

while preventing unintended storage cycling is not straightforward. Instead, it requires extensive testing, and

may even be infeasible, depending on the model parameterization. We thus advise against the deliberate

manipulation of storage cost assumptions to remedy unintended storage cycling when using renewable en-

ergy targets.
Potential remedies for unintended storage cycling using alternative renewable targets

There are two alternative options for avoiding unintended storage cycling while using renewable targets

with a basis other than annual energy. First, instead of using the actual renewable energy generation (af-

ter curtailment), the theoretical renewable generation potential (before curtailment) could serve as the

base element in the renewable energy constraint (see Equation 1) (Gils et al., 2017; Scholz et al., 2017;

Child et al., 2019; Bogdanov et al., 2019). Relaxing the renewable energy constraint via unintended stor-

age cycling is then impossible, because the substitution of curtailment with additional storage losses

cannot contribute useful energy to the renewable target. However, this approach changes the nature

of the renewable energy target. Models constrained this way optimize the system such that there is suf-

ficient VRE capacity to achieve some renewable energy generation potential relative to total demand or

total generation. Yet, actual renewable generation is not constrained and may be much lower. Modeling

scenarios that adhere to binding renewable energy policy targets in terms of actual renewable genera-

tion is thus impossible. Furthermore, the composition of the optimal technology portfolio may signifi-

cantly deviate from models with complete SLCR, as the role of conventional generators could be over-

estimated, while the need for renewable generation capacity and appropriate balancing options may be

underestimated.

Second, an exogenous expansion target for renewable capacity could be used (Hirth, 2013; Pfenninger and

Keirstead, 2015; Anke and Möst, 2021). This approach foresees a capacity mix with an exogenous renew-

able part, while the remaining part is determined endogenously. Because the actual generation of each

technology is not optimized to realize a certain share of renewable energy, the latter may be much lower

than desired. Owing to this uncertainty of actual renewable generation, binding renewable energy targets
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cannot be investigated. This could be resolved by a manual determination of exogenous renewable capac-

ity targets to achieve a desired renewable energy target. However, identifying concrete renewable capac-

ities a priori is not straightforward and may require a large number of trials. This becomes particularly rele-

vant for comprehensive model settings that include multiple sector coupling technologies, which puts the

feasibility of this approach into question.
Potential remedies for unintended storage cycling using emission constraints

Instead of including renewable targets, modelers may constrain or penalize carbon emissions to achieve

high renewable shares and, at the same time, avoid unintended storage cycling. Based on our literature

review, we discuss two options: a limitation of the allowable emission budget (carbon cap), and an explicit

carbon price.

Given es being the specific emissions per generator s and CB the available carbon budget, a constraint im-

plementing a carbon cap could be formulated as:

X
s;t

esGs;t%CB (Equation 6)

The dual variable of this constraint indicates how much total system costs change if the carbon

cap tightens by one marginal unit. We interpret this as the system costs for one unit of emission

reduction. In a long-term equilibrium, this implicit carbon price can be interpreted as a carbon price

paid by emitting generators (Brown and Reichenberg, 2021). Note that setting policy-relevant carbon

budgets in electricity models may be challenging, as political targets for the power sector often do

not exist.

In contrast, setting an explicit carbon price on each unit of emissions is more easy to implement, and it be-

comes directly effective as an additional variable cost component in the objective function.

In both settings, unintended storage cycling cannot occur because renewable energy generation is not

constrained. The conversion of VRE curtailment into additional storage losses thus never leads to lower-

cost solutions. Importantly, this only holds true if variable costs for storage use are greater zero. Otherwise,

the model may be indifferent between VRE curtailment and storage losses.

In general, outcomes of models with similar renewable shares may substantially differ, depending on what

drives this share, a carbon constraint, or a renewable constraint. The latter promotes additional renewable

generation or capacity beyond the unconstrained optimum. This is done by introducing an energy- or ca-

pacity-oriented subsidy for renewable generators, which increases their revenues. In contrast, carbon pol-

icy instruments impact the use of conventional generators by increasing their costs. This forces a decline

especially of those generators with the highest carbon emissions, which may be replaced by lower-emis-

sion technologies. The resulting capacity and energy mix may significantly differ from the solution based

on a binding renewable target. A binding carbon cap favors lower-emission technologies (e.g., gas-fired

plants) over higher-emission technologies (e.g., lignite-fired plants). As the former tend to have higher var-

iable and lower capital costs, this shift may decrease the optimal storage deployment and affect the overall

capacity mix.

Explicit carbon pricing affects the merit order of available generation technologies, increasing the variable

cost of emitting technologies. Neither renewable energy nor carbon emissions are constrained. The result-

ing optimal capacity and energy mix resembles the unconstrained optimum that reflects the economics of

the available technology portfolio. Depending on the costs and availability of flexibility options in the

model, substantial carbon prices may be required to achieve very high shares of renewables. Moreover,

the determination of appropriate price levels a priori may be difficult because not only economic but

also political, environmental, and social aspects may impact price formations on the electricity wholesale

market.

While model formulations that constrain or penalize carbon emissions can effectively avoid unintended

storage cycling, they generally lead to different outcomes than models with explicit renewable energy tar-

gets. Hence, they are not an adequate substitute for cases where the effects of explicit renewable targets

are of interest, e.g., in many countries that have set such renewable targets.
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Potential remedy for unintended storage cycling using binary variables

Another potential remedy for unintended storage cycling is to use binary variables that prevent a storage

unit to be both charged and discharged at the same time. This could readily be implemented in unit

commitment models, which already include binary variables for power plant operation (e.g., PLEXOS,

SpineOpt.jl, or Backbone in Table 1). For example, introducing a binary variable Ur;t with Ur;t = 0 in

times of storage charging and Ur;t = 1 in times of discharging would alter the storage constraint (10g)

as follows:

Gin
r ;t%Cin

r ð1� Ur ;tÞ cr ; t (Equation 7a)
out out
Gr;t %Cr Ur ;t cr ; t (Equation 7b)

This model formulation is used in Schill et al. (2017a) to avoid same-period storage cycling in a scenario where

renewable curtailment is penalized with a cost term in the objective function. In fact, it effectively prevents SPC.

Yet, this formulation still allows for APC. For instance, additional storage charging in period t combined with

additional storage discharging in period t + 1 could convert VRE surplus from t to unintended storage losses

arising in t + 1. Although we did not explore this question numerically, we expect that a substantial fraction of

SPC could be transformed to APC in such models. Hence, including binary variables may not only provide an

incomplete remedy for the artifact but may also make it even more difficult to detect its occurrence and energy

volume. At the same time, introducing additional binary variables generally makes solving numerical models

more challenging. We leave a further investigation of this aspect to future research.

Unintended energy losses in settings with sector coupling

The use of renewable electricity for mobility, heating, and industrial processes is considered a main strat-

egy for decarbonizing the energy system (de Coninck et al., 2018). This strategy is often referred to as sector

coupling. It also includes indirect electrification via green hydrogen, which may be used where direct elec-

trification is not viable (Jacobson et al., 2017; Hanley et al., 2018).

The mechanism of unintended storage cycling described here for electricity storage may also apply to

various sector coupling technologies, as these also come with inherent energy losses. Here, the model arti-

fact may materialize in the form of VRE surplus being converted into unintended energy losses.

There are three relevant types of such losses: First, losses inherent to sector coupling options that allow for re-

conversion to electricity, i.e., with an operation principle similar to electricity storage. These take up energy from

the power sector and convert it to some intermediate form. The energy is then either consumed for end energy

use in some other sector, or, if beneficial from the system perspective, partly fed back into the grid at a later

point in time. Examples are battery-electric vehicles with a vehicle-to-grid discharging option, power plants fu-

eledwith green hydrogen, or load-shifting activities that incur energy losses. To remedy unintended energy los-

ses, we recommend to adjust the loss term of the renewable energy constraint such that all relevant losses are

covered by renewable generators. Only losses related to processes enabling unintended energy cycling are

relevant in this context (e.g., losses related to discharging electricity back from an electric vehicle battery to

the grid). Losses from energy consumption without re-conversion option (e.g., losses related to actually driving

an electric vehicle) are not relevant here, if the respective demand of a sector coupling option is exogenous to

the model (see Section SI.8).

Second, there are standing losses through self-discharge. These may occur in various types of energy stor-

age, e.g., in different types of low- and high-temperature heat storage, in liquid hydrogen storage, or in

some long-duration electricity storage technologies. The model artifact may reoccur here in the form of

distorted storage use patterns that aim at increasing standing losses by stretching the storage period.

Again, properly accounting for standing losses in the loss term of the renewable energy constraint would

remedy the issue.

Third, theremay be unintended losses arising from sub-optimal technology choices. Suppose there are two

different sector coupling options available, one of themmore energy-efficient than the other one. Optimal

use and investment decisions may then skew away from the alternative with lower losses toward the one

with higher losses. This would allow more VRE surplus from the power sector to be converted into energy

losses that relax the renewable constraint. An example for such alternative technologies is different supply

chains of green hydrogen, such as liquid or gaseous hydrogen (Stöckl et al., 2021). We leave it to future

research to find a remedy for distortions related to this type of unintended energy losses.
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Unintended energy losses in multi-regional settings with transmission losses

Electricity trade facilitates spatial smoothing of VRE generation and electric load in multi-regional settings,

especially in the absence of other flexibility options (Brown et al., 2018b). This causes losses in the trans-

mission grid due to the resistance of power lines. Unintended and excessive shifts of energy across and be-

tween nodes or regions may arise to generate additional grid losses that remove VRE surplus from the sys-

tem instead of curtailing it at its place of origin. The additional VRE generation would then help to relax the

renewable energy constraint, which lowers the need for VRE capacity and renders a lower-cost solution

possible. However, the exported energy does not or only partly serves demand in the importing region,

and generation from other generators needs to serve demand. Unintended transmission losses may

thus affect optimal use and investment patterns of generation and transmission infrastructure as well as

their spatial allocation across regions.

A model specification with a system-wide renewable share referenced to either total demand or gener-

ation accumulated across all regions is particularly prone to unintended transmission losses. This is

because the spatial allocation of generation and transmission capacity is not constrained, but freely relo-

catable across all regions. Optimal VRE generation capacity may increase in regions that have low VRE

LCOE due to superior weather conditions. At least, some of the additional renewable surplus could be

converted into additional renewable generation here, and, subsequently, removed from the system in

form of unintended transmission losses. This decreases the need for VRE capacity installations in regions

with high LCOE related to inferior weather conditions. Instead, dispatchable technologies with lower

LCOE can serve demand here. This capacity shift across regions may lead to lower-cost solution than

settings without unintended transmission losses. To prevent the artifact from occurring, the renewable

energy constraint would have to require renewable generators to completely cover all transmission los-

ses arising across all regions.

Unintended transmission lossesmay also arise in settingswithdisaggregated renewable targets specific to each

region. A capacity and portfolio effect similar to the one caused by unintended storage cycling may arise here,

only that VRE surplus is exported and partly converted into unintended transmission losses instead of unin-

tended storage losses. Again, we recommend to add transmission losses to the loss term of the renewable en-

ergy constraint. Note that total domestic demand does not include the energy that is lost in the transmission

grid. Referenced to domestic demand, the loss term of the renewable energy constraint should thus include

total losses associatedwith imports required to supply domestic demand. In contrast, total domestic generation

includes the energy lost in the transmission grid when exporting to other countries. When referencing the do-

mestic renewable energy constraint to some fraction of domestic generation, only a fraction of the transmission

losses from exports to other regions are considered. The remainder should be added to the loss term of the

renewable energy constraint (cp. the treatment of unintended storage losses in the loss term of constraint

(2c) in Table 2). Again, this merits further investigation in future research.

Limitations of the study

Inherent to the design of the renewable energy share constraints are two overlapping effects. First, effects

directly related to unintended storage cycling, and, second, a lower ambition level of the renewable energy

constraints of models with zero or proportionate SLCR. Because storage losses can, at least partly, be

covered by conventional generators here, these models require lower renewable generation than a spec-

ification with complete SLCR by definition. Section SI.7 disentangles the impact of both factors. The factor

separation raises complementary insights, but also introduces new complexities. For practical model ap-

plications, only the combined effects of varying renewable ambition levels and unintended storage cycling

are relevant, which are shown in Figure 5.

Conclusion

In this paper, we describe and investigate the modeling artifact of unintended storage cycling, which

may arise in a wide range of cost-minimizing energy models that make use of binding renewable energy

constraints. In such models, it can be beneficial not to curtail renewable surplus energy, but to convert

excess electricity into additional storage losses. This artifact can be detected when there are periods

with simultaneous storage charging and discharging. The respective increase in renewable generation

can be realized without additional renewable capacity installations, thus helping to achieve the renew-

able energy target at lower costs. This may distort optimal dispatch and investment decisions of all

technologies.
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We specifically explore the impact of different constraint formulations for renewable energy targets on

model outcomes and unintended storage cycling. Using a parsimonious power sector model, we analyti-

cally derive intuition for the cause of unintended storage cycling from an energy modeler’s perspective. We

further investigate how including storage losses in the renewable energy constraint affects optimality con-

ditions for storage in the long-term equilibrium. Only if storage losses have to be completely covered by

renewable generation, unintended storage cycling can be prevented. Loosely parameterizing themodel to

the German power sector, we show that the artifact can substantially distort optimal dispatch and invest-

ment decisions as well as modeled market prices.

To prevent unintended storage cycling, we recommend to completely cover storage losses in the renew-

able energy constraint, if such a constraint is used in energy models. This comes at the expense of a

slight over-restriction of the model concerning the renewable target, but we argue that this is a reason-

able price to pay to avoid the artifact. Furthermore, this can be addressed by adjusted reporting and

target setting. Alternatively, other types of renewable constraints not based on energy could be used

to avoid the problem, but these come with other drawbacks. Likewise, the artifact can be resolved by

implementing carbon emission constraints or penalties. Yet, as these change overall power sector out-

comes, they may not be suitable for some types of policy-relevant analyses where binding renewable en-

ergy targets play a role.

Unintended storage cycling may be considered a special case of a more general phenomenon of unin-

tended energy losses. It may also occur in models with sector coupling technologies and transmission.

Here, various types of energy losses could be traded-off against renewable curtailment to relax

the renewable energy constraint in least-cost model solutions. In general, including such losses in the

renewable constraint may help in many cases. We leave it to future research to explore the feasibility

and the limits of this approach for complex models with many sector coupling technologies and

transmission.
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Helistö, N., Kiviluoma, J., Morales-España, G.,
and O’Dwyer, C. (2021). Impact of operational
details and temporal representations on
investment planning in energy systems
dominated by wind and solar. Appl. Energy 290,
116712. https://doi.org/10.1016/j.apenergy.2021.
116712.

Hilpert, S., Dettner, F., and Al-Salaymeh, A.
(2020). Analysis of cost-optimal renewable energy
expansion for the near-term Jordanian electricity
system. Sustainability 12, 9339. https://doi.org/
10.3390/su12229339.

Hirth, L. (2013). The market value of variable
renewables. Energy Econ. 38, 218–236. https://
doi.org/10.1016/j.eneco.2013.02.004.

Hobbie, H., Schmidt, M., and Möst, D. (2019).
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

DIETERpy_reduced Kittel and Schill (2021) https://doi.org/10.5281/zenodo.5761969

Software and algorithms

Python 3.6.13 Python Software Foundation https://www.python.org/

GAMS 35.2.0 GAMS Development Corp https://www.gams.com/

DIETERpy Gaete-Morales et al. (2021) https://doi.org/10.1016/j.softx.2021.100784

DIETERpy_reduced Kittel and Schill (2021) https://gitlab.com/diw-evu/dieter_public/

dieterpy_reduced
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Martin Kittel (mkittel@diw.de).

Materials availability

Not applicable.

Data and code availability

The input data and model used here are available Zenodo Kittel and Schill (2021) and will be updated and

maintained on GitLab: https://gitlab.com/diw-evu/dieter_public/dieterpy_reduced.

METHOD DETAILS

Formal definition of a parsimonious dispatch and investment model

Weuse a parsimonious power sector optimizationmodel to analytically show howdifferentminimum renewable

constraint formulations relate to costs and market values of storage. Adopting a long-run equilibrium perspec-

tive, the model minimizes total system costs of a full year. These include annualized investment and annual var-

iable costs of generation and storage technologies. The model covers a single region and abstracts from a

spatial resolution andgrid congestion.Weassume linear cost functions andprice-inelastic demand, perfect fore-

sight, and a perfect energy-only market. This set of assumptions renders a long-term market equilibrium with

zero profits for market participants. The solution coincides with the optimal allocation determined by a benev-

olent social planer. The model set-up and derivations are similar to Brown and Reichenberg (2021) and Biggar

andHesamzadeh (2014, Ch.4). Throughout the exposition, capital letters denoteendogenousdecision variables.

Small letters refer to sets and exogenous parameters.

We denote
P
t
dt as the total demand for electricity over all hours t of the year. The set of generators consists

of firm and variable renewable generators s˛R and firm conventional generators s˛C, while an unspecified

s applies to the set of all generators. Gs˛R;t represents hourly renewable energy generation net of curtail-

ment of renewable surplus CUs;t . Equivalently, Gs˛C;t is the hourly dispatch of conventional generators.

Total annual electricity generation is
P
s;t
Gs;t =

P
s˛R;t

Gs;t +
P
s˛C;t

Gs;t . The parameter gs;t˛½0; 1� renders a time-

variant availability of generator s. We denote a storage unit r, its charging from the grid Gin
r;t , and its dis-

charging back to the grid Gout
r;t . Total storage loss is

P
r;t
ðGin

r;t � Gout
r;t Þ, which has to be covered by either

renewable or conventional generators. We denote is and ir as technology-specific investment costs, os

and or as operation and maintenance costs accruing for hourly dispatch. Cs, C
in
r and Cout

r denote installed

capacity (power rating), and Cl
r storage energy capacity. The hourly storage energy level is Gl

r;t .
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For the sake of readability, we define += fl; in;outg and � = fin;outg, and use the following aggregate cost

terms for storage investment and usage in the objective function.

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Martin Kittel (mkittel@diw.de).

X
r;+

i+r C
+
r =

X
r

ilrC
l
r +

X
r

iinr C
in
r +

X
r

ioutr Cout
r (Equation 8)

X � � X
in in

X
out out
r ;t;�
orGr;t =

r;t

or Gr ;t +
r ;t

or Gr;t (Equation 9)

Investment costs (8) comprise annualized infrastructure cost of the storage (dis)charge unit, and storage

energy costs. Storage usage cost (9) are variable and accrue whenever a storage unit (dis)charges. We

formulate the optimization problem of the stylized power sector as follows:

minimize
Cs ;Gs;t ;
C+
r ;G

+
r ;t

X
s

isCs +
X
s;t

osGs;t +
X
r;+

i+r C
+
r +

X
r;t;�

o�
r G

�
r ;t (Equation 10a)

X X
out

X
in
subject to �dt +

s

Gs;t +
r

Gr;t �
r

Gr ;t = 0tlt ct (Equation 10b)

G R0tm cs; t (Equation 10c)
s;t s;t

CU
gstCs �Gs;t � CUs;t = 0tls;t cs˛R; t (Equation 10d)
Cs �Gs;tR0tms;t cs˛C; t (Equation 10e)
+ +
Gr;tR0tm

r;t
cr ; t (Equation 10f)

+ + +
Cr �Gr;tR0tmr;t cr ; t (Equation 10g)

l l in in
�

out
��1 out l
Gr ;t �Gr;t�1 � hr Gr ;t + hr Gr ;t = 0tlr ;t cr ; t (Equation 10h)X
s˛R;t

Gs;t �QR0tmq (Equation 10i)

X

U�

s˛C;t
Gs;tR0tmu (Equation 10j)

The objective function (10a) minimizes total fixed and variable costs of all technologies. Themarket clearing

condition (10b) balances supply and demand for electricity at all times. Constraints (10c) and (10f) impose

non-negativity. Variable renewable generation is limited by VRE availability, and curtailment of VRE surplus

(10days), which comes at no costs. Generation of conventional generators may not exceed installed capac-

ity (10e). Storage (dis)charge and levels may be no larger than installed capacities (10g). Constraint (10h)

ensures inter-temporal consistency of storage filling and withdrawal. As storage incurs conversion losses,

storage (dis)charge effects on the storage level are corrected by the efficiency rates hinr <1 and houtr < 1 (10h).

To avoid free lunch, we further demand that the storage level in the first and last hour of the year need to be

equal Gl
r;0 = Gl

r;T . Constraint (10i) imposes a minimum renewable share, requiring total renewable gener-

ation aggregated overall s˛R to achieve at leastQ. In contrast, constraint (10j) imposes amaximum shareU

on total conventional generation aggregated over all s˛C. Constraints (10j) and (10i) are mutually exclusive

substitutes. Only one is considered by the optimization problem. Table S1 in the supplemental information

provides unequivocal constraint formulations for our 12 model specifications aligned with the notation

above. A constraint’s dual variable indicates how much the objective value changes if the constraint

relaxed, also called shadow price. lt represents the system’s marginal cost of meeting an additional unit

of demand for electricity. lCUs;t represents the change in total cost when marginally changing CUs;t . In the

optimum, it takes the value of zero. The dual variables m
s;t
R0, ms;tR0 and m +

r;t
R0, m+

r;tR0, llr;t are the shadow

prices of the capacity and generation constraints of generators and storages, respectively. mq=uR 0 indicate

howmuch total system cost would increase, if the boundary of the binding constraint was relaxed. That is, if

one more (less) unit of electricity from renewables (fossil fuels) had to be supplied. Loosely speaking, it is

the marginal cost of tightening the VRE policy.

Numerical implementation

In the section on the numerical results for unintended storage cycling, we use a numerical implementation

of our power sector model to derive optimal dispatch and capacity expansion decisions. It is a stylized

version of the larger Dispatch and Investment Evaluation Tool with Endogenous Renewables (DIETER) ca-

pacity expansion model (Zerrahn and Schill, 2017). A similar model set-up has been previously used for

analyzing electricity storage needs for renewable energy integration (Zerrahn et al., 2018), for reflections
28 iScience 25, 104002, April 15, 2022
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on the changing role of electricity storage in the renewable energy transition (Schill, 2020), and for an illus-

tration of the economics of renewables and electricity storage (López-Prol and Schill, 2021). The implemen-

tation used here is integrated in a Python-GAMS interface, which enables Python-based data pre- and

post-processing, scenario analysis, and visualization (Gaete-Morales et al., 2021). For transparency and

reproducibility, we provide the model code, all input data, and a manual in public repositories under

permissive licenses (https://gitlab.com/diw-evu/dieter_development/dieterpy_reduced). We apply the

model to a stylized setting loosely parameterized to the German power sector. Annual electricity demand

is 520 TWh, which can be supplied by a mix of two renewable technologies (solar PV and wind power) and

two conventional generation technologies (hard coal and open-cycle gas turbines). Assumptions on fixed

and variable costs can be found in Table S2 in the supplemental information. We further include a generic

electricity storage technology that is parameterized to resemble pumped hydro storage with a round-trip

efficiency of 80%. The energy- and power-related costs of this technology make its application most plau-

sible for medium-duration storage, which suits the cases studied here well. All individual generation units

of a technology are modeled as one technology aggregate. This parsimonious model setup allows to focus

on the effects of unintended storage cycling for different levels of renewable penetration. Unless stated

otherwise, we use a minimum renewable penetration level of 80%.
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