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A B S T R A C T   

Photoacoustic tomography (PAT) regularly operates in limited-view cases owing to data acquisition limitations. 
The results using traditional methods in limited-view PAT exhibit distortions and numerous artifacts. Here, a 
novel limited-view PAT reconstruction strategy that combines model-based iteration with score-based generative 
model was proposed. By incrementally adding noise to the training samples, prior knowledge can be learned 
from the complex probability distribution. The acquired prior is then utilized as constraint in model-based 
iteration. The information of missing views can be gradually compensated by cyclic iteration to achieve high- 
quality reconstruction. The performance of the proposed method was evaluated with the circular phantom 
and in vivo experimental data. Experimental results demonstrate the outstanding effectiveness of the proposed 
method in limited-view cases. Notably, the proposed method exhibits excellent performance in limited-view case 
of 70◦ compared with traditional method. It achieves a remarkable improvement of 203% in PSNR and 48% in 
SSIM for the circular phantom experimental data, and an enhancement of 81% in PSNR and 65% in SSIM for in 
vivo experimental data, respectively. The proposed method has capability of reconstructing PAT images in 
extremely limited-view cases, which will further expand the application in clinical scenarios.   

1. Introduction 

Photoacoustic tomography (PAT) is an innovative hybrid medical 
imaging technology characterized by high penetration and rich contrast, 
and can achieve precise imaging of biological tissue structures at 
different spatial scales [1,2]. PAT has excellent application prospects in 
the fields of brain imaging [3], tumor detection [4], trauma assessment 
[5] and vascular structure imaging [6]. In PAT, biological tissue is 
irradiated with pulsed laser light. After biological tissue absorbs light 
energy, the thermoelastic expansion occurs, resulting in the emission of 
photoacoustic waves. Then, photoacoustic waves are detected by the 
ultrasonic transducers which is for the reconstruction of the biological 
tissue image [7,8]. The traditional reconstruction methods in PAT 
comprise delay-and-sum (DAS) [9], time-reversal [10] and filtered 
back-projection algorithms [11]. In PAT, the accurate reconstruction of 
biological tissue images theoretically requires meeting the conditions for 
full-view signal acquisition [12,13]. However, due to limitations in de-
tector layout and sampling density, ultrasonic transducers can only 

collect photoacoustic signals within limited-view cases in practice [14, 
15]. The traditional methods are unable to recover the anticipated 
boundary information of the target biological tissues, the images 
reconstructed by these methods display severe artifacts and a noticeable 
decline in image quality. Therefore, how to use limited-view detection 
data to achieve high-quality reconstruction of biological tissue images 
has always been an urgent problem for PAT. 

A series of studies have been conducted to solve this problem. 
Several iterative reconstruction algorithms have been proposed to 
improve image quality and reduce artifacts within limited-view cases 
[16–20]. These methods commonly require obtaining prior information 
regarding the acoustically inhomogeneous properties of biological tis-
sues [19]. Yet, precise prior information in experiments is difficult to 
acquire due to the complexity and accuracy of calculations. In the field 
of biomedical imaging, post-processing methods based on deep learning 
stand out as the most prevalent approach recently [21–25]. In the image 
post-processing reconstruction, the convolutional neural network (CNN) 
is typically applied to eliminate artifacts and improve image quality. 
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Guan et al. designed a novel network called Pixel-DL to improve the 
quality and reduce artifacts [22]. Tong et al. proposed a deep learning 
approach named FPnet that integrates training strategy and data 
pre-processing to further enhance the quality of image [23]. Neverthe-
less, post-processing reconstruction demands extensive paired datasets 
for training. The acquisition of the intricate paired datasets in practice is 
challenging. 

In recent years, new generative models such as variational autoen-
coder (VAE) [26], generative adversarial network (GAN) [27] and 
denoising diffusion probabilistic model (DDPM) [28] have attracted 
great attention in the biomedical field because of their powerful 
generative capabilities. Lu et al. put forwarded a novel hybrid 
data-driven deep learning method, denoted as LV-GAN, leveraging GAN 
to improve the quality of the limited-view PAT images [29]. GANs 
generate high-quality images by optimizing both the generator and 
discriminator. However, the training process of GANs is typically more 
unstable, requiring a large amount of data, and demanding high quality 
and diversity of data [30]. The diffusion model learns the data distri-
bution and acquire valuable prior information directly through 
maximum likelihood estimation, enabling more effective utilization of 
limited data for training [31,32]. Chung et al. designed a network 
framework based on diffusion model to address inverse problems in the 
field of MRI imaging [33]. In preliminary work [34], a sparse-view 
reconstruction approach for PAT based on the diffusion model was 
proposed to reduce the image artifacts, achieving high-quality recon-
struction under the 32 projections. 

Inspired by this, this work proposes a limited-view photoacoustic 
image reconstruction scheme that combines model-based iterative 
reconstruction algorithm and score-based diffusion model. The prior 
information for image reconstruction is acquired through diffusion 
model, serving as a constraint on the data fidelity term within iterative 
reconstruction methods, contributing to improve reconstruction out-
comes. In previous work [35], the reconstruction experiments were 
conducted on blood vessel simulation data, achieving successful recon-
struction in limited-view case of 90◦. Nevertheless, the previous work 
lacked validation with experimental data and comparisons with other 
mainstream methods. To address this issue, the effectiveness of this 
method was further verified in this paper. The performance of the pro-
posed method was verified on circular phantom and in vivo experimental 
data, with comparisons made against other methods. Experimental re-
sults show that the method has outstanding performance within 
extremely limited-view cases. The impacts of this work are summarized 
as follows:  

• A limited-view PAT reconstruction method integrating diffusion 
model and model-based iteration was proposed, achieving high- 
quality reconstruction in extremely limited-view cases.  

• The employed score-based diffusion model is an unsupervised 
network, which can be trained on a minimal and unpaired dataset, 
without the need for repetitive training in different limited-view 
cases.  

• Breast cancer detection [36] and brain imaging [37] often require 
photoacoustic signals acquisition in limited-view cases [38], and the 
proposed method can ameliorate the imaging quality degradation 
caused by limited-view data. 

2. Principles and methods 

2.1. The model-based iterative method of PAT 

In PAT, the initial sound pressure distribution of the biological tissue 
is reconstructed by the detected photoacoustic signal, so as to obtain the 
information on the structure and function of the biological tissue. 
Employing the Green’s function method, the relationship between the 
sound pressure distribution of target biological tissue and the propaga-
tion of photoacoustic signals can be described as Eq. (1): 
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wherep(r, t)is the sound pressure distribution at position r and time t, c 
signifies the speed of sound andp0represents the initial pressure distri-
bution of the biological tissue. Eq. (1) can be equivalently transformed 
into the linear procedure shown in Eq. (2) [39]: 

y = Ax (2)  

where y is the limited-view photoacoustic signal, which is detected by 
the ultrasonic transducer. x signifies the initial sound pressure p0 of the 
biological tissue. And the linear operator A is the propagation process of 
the photoacoustic signal. The limited-view PAT is to use the limited- 
view photoacoustic signal y to calculate the initial sound pressure x. 
This problem is also called the inverse problem of acoustics, which can 
be solved by the least-square method, as shown in Eq. (3): 

x = argmin
x

‖Ax − y‖2
2 (3)  

where ‖Ax − y‖2
2is the data fidelity term. Owing to the existence of noise 

and the incomplete collection of data, this inverse acoustic problem is 
ill-posed, and the reconstructed photoacoustic image has serious arti-
facts and distortions [40]. Therefore, it is necessary to add a regulari-
zation term or constraint term to reduce the ill-posedness and improve 
the reconstruction quality of the image. These constraints originate from 
the inherent features of the image, termed as prior information. The 
prior information can be introduced into Eq. (3) as a regularization term, 
thereby converting the optimization problem into Eq. (4). 

x = argmin
x

‖Ax − y‖2
2 + λR(x) (4)  

where R(x) represents the regularization term, andλ represents the 
regularization parameter. The regularization term can solve the problem 
of non-uniqueness and instability of the inverse reconstruction process 
to a certain extent [41]. Universal regularization methods include total 
variational regularization [42] and Tikhonov regularization [43]. Con-
ventional regularization terms solely grasp basic structural information 
within the image, rendering the acquisition of specific feature details 
challenging. Diffusion model can learn abundant prior knowledge as 
regularization terms to constrain the solution of optimization problems, 
thereby enhancing the quality of the images. 

2.2. Diffusion model 

The diffusion model fits given samples by utilizing probability dis-
tributions. Probability distribution is generally represented applying a 
score function (the gradient of the logarithmic probability density). 
Diffusion model can learn the score function ∇x log pt(x) to generate 
new high-quality samples from noise. Fig. 1 illustrates two processes of 
the diffusion model: the forward diffusion (stochastic differential 
equation, SDE) and reverse diffusion. During the forward diffusion, the 
model slowly adds Gaussian noise into the training samples. This process 
can smoothly transform the complex probability distribution of the 
training samples into known prior information. The diffusion process 
can be represented as {xt}

T
t=0, where t ∈ [0,T] is a variable of time. 

x0 ∼ pdata, pdata represents the initial probability distribution of the 
training sample without noise perturbation. xT ∼ pT, pTsignifies the 
probability distribution of the training sample after undergoing noise 
perturbation for a duration of T time. The forward diffusion process can 
be modeled as shown in Eq. (5): 

dx = f(x, t)dt+ g(t)dw (5)  

where w is a standard Brownian motion,f(x, t) ∈ ℝ represents the drift 
coefficient and g(t) ∈ ℝ is the diffusion coefficient. The reverse SDE is 
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defined as a process that acquires samples from the noise, and its solu-
tion can be determined using the score function. The reverse SDE is 
illustrated in Eq. (6): 

dx =
[
f
(

x, t
)
− g(t)2

∇x log pt(x)
]
dt + g(t)dw (6)  

where∇x log pt(x) signifies the score function of the data and wis the 
reverse Brownian motion. Utilizing different f(x, t) and g(t) can 
construct distinct categories of SDE. Empirically, using variance ex-
ploding (VE) SDE can yields higher-quality samples. Hence, this study 
focuses on diffusion model based on VE-SDE, with thef(x, t) and g(t)
functions as shown in Eq. (7): 
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(7)  

where σ(t) > 0 represents a monotonically increasing Gaussian noise 
function. The reverse diffusion process of VE-SDE can be described as 
Eq. (8): 

dx = − d

[

σ2(t)

]

∇x log pt(x) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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√

dw (8) 

However, the score function ∇x log pt(x) of given data cannot be 
directly obtained. The estimation of score function can be achieved by 
training a time-dependent score network Sθ(xt , t). The unknown 
∇x log pt(x)can be substituted with ∇xt log pt(xt |x0)utilizing the 
denoising score matching. The ∇xt log pt(xt |x0)represents the Gaussian 
perturbation kernel centered on x0. The score network architecture 
mainly consists of convolutional blocks, residual blocks and self- 
attention blocks, as shown in Fig. 1. The basic architecture of the 
score network is based on the U-Net [44], featuring an encoder-decoder 
framework. The encoder part is responsible for feature extraction, and 
the decoder part is involved in image resolution restoration. 
Self-attention blocks are incorporated at the junction between the 
encoder and decoder to enhance the ability of network to perceive 
crucial features [45,46]. The purpose is to enable the network to capture 
rich feature information during the encoder stage and effectively convey 
this information to generate results during the decoder stage. This aims 
to enhance the performance of network in various image processing 

tasks. The residual blocks of the network are identical to those of Big-
GAN [47]. 

The training procedure of the score network is depicted in the upper 
half part of Fig. 2. The objective function for training the score network 
can be represented as Eq. (9): 

θ∗ = arg min
θ

Et

{
λ(t)Ex0 Ext |x0

[
‖Sθ(xt , t) − ∇xt log pt(xt |x0)‖

2
2

]}
(9)  

where E is the expectation,Et

{
λ(t)Ex0 Ext |x0

[
‖Sθ(xt , t) − ∇xt log pt 

(xt |x0)‖
2
2

]}
can be considered as the loss function, and λ(t) is a time- 

related weight function. The trained score network Sθ(xt , t) ≃
∇x log pt(xt) can be substituted into the reverse SDE for a solution. As 
shown in Eq. (10): 

dx = − d
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dw (10)  

2.3. The PAT reconstruction based on diffusion model 

The classical approach to PAT reconstruction is the solution of Eq. 
(4). The data fidelity term in Eq. (4) can be solved using the gradient 
descent (GD) method, as shown in Eq. (11): 

xi− 1 = xi − αA∗(Axi − y) (11)  

where α signifies the iteration step size, A∗ represents the adjoint 
operator of A, and A∗(Axi − y) is the gradient of the data fidelity term. 
Provided that the regularization term is differentiable, the iterative so-
lution of Eq. (4) can be further expressed as Eq. (12): 

xi− 1 = xi − α
[

A∗

(

Axi − y
)

+ λ
∂R(xi)

∂x

]

(12) 

In the reconstruction process, as shown in the lower half part of 
Fig. 2, the data fidelity term and the regularization term in Eq. (4) are 
decoupled. Following the rotational solving principle [48,49], the 
optimal solution is achieved through alternating updates of two 
sub-problems. This process can be expressed as Eq. (13). 

Fig. 1. The score network architecture.  
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x̂i = xi + β
∂R(xi)

∂x
= G(xi)

xi− 1 = x̂i − αA∗(Ax̂i − y)
(13)  

where G(xi) represents the output of network containing prior infor-
mation in the first equation. xi represents the input of diffusion model, 
β ∂R(xi)

∂x signifies the gradient of the regularization term, β is a parameter 
associated with the regularization term. x̂i is an intermediary variable, 
essentially representing the output of the diffusion model, and serving as 
the input to the gradient descent. The second equation symbolizes the 
iteration solution to the data fidelity using the GD method. For the first 
equation, it can be resolved by the reverse SDE of Eq. (10). The Euler 
discretization method can be used to predict the numerically solve of the 
reverse SDE. With the aim to correct the error in the discretization 
evolution of the reverse SDE, the Langevin dynamics Markov chain 
Monte Carlo method [50] is employed as a corrector. This process is 
termed as prediction-correction (PC) sampling. After settling the reverse 
SDE and performing correction algorithm, a fidelity operation is applied 
as shown in the second equation of Eq. (13). Thus, the algorithm of the 
limited-view PAT reconstruction based on diffusion model can be 
divided into two components: the PC sampling and the fidelity 

operation. In the PC sampling component, the objective is to generate 
the image containing prior information from the learned probability 
distribution. It can be addressed by Eq. (14) and Eq. (15): 

x̃i = xi +

(

σ2
i+1 − σ2

i

)

Sθ

(

xi, σi+1

)

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
i+1 − σ2

i

√

z (14)  

where σi represents the noise scale, i denotes the count of iteration, and z 
is zero-mean Gaussian white noise. After the prediction phase, the 
correction algorithm is employed to correct the error in the discretiza-
tion evolution, as shown in Eq. (15): 

x̂i = x̃i + εiSθ

(
x̃i, σi+1

)
+

̅̅̅̅̅̅
2εi

√
z (15) 

After the PC sampling, fidelity operation is enforced on the results as 
shown in Eq. (16), which can effectively constrain the generated 
samples. 

xi− 1 = x̂i − αA∗(Ax̂i − y) (16) 

The pseudocode of the proposed reconstruction algorithm is pre-
sented in Process 1. This process comprises two processes: the training 
process and the reconstruction process. In the training process, the 
network learns the data distribution of the given samples. The 

Fig. 2. The forward and reverse diffusion process of the diffusion model.  
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reconstruction process consists of two nested loops. In the outer loop, 
the model attains a forecast of samples using the learned data distribu-
tion from training. In the inner loop, the prediction is corrected using the 
correction method. After each correction, fidelity operation is enforced 
on the reconstructed results to achieve an optimal solution. 

2.4. Experimental parameter setting and dataset acquisition 

To accurately simulate the forward propagation process of photo-
acoustic signals in heterogeneous media, the virtual PAT based on k- 
Wave [51] was constructed. Fig. 3 shows the virtual PAT. The virtual 
PAT region has a size of 50 mm×50 mm. This region is divided into the 
grid of 440×440 pixels to discretize the medium. The ultrasonic trans-
ducer array is placed in an arc with a radius of 21.6 mm around the 
imaging object. 70, 90, 120 and 180 ultrasonic transducer array ele-
ments cover 70◦, 90◦,120◦ and 180◦ around the target issue, respec-
tively. The bandwidth of the ultrasonic transducers is 66%, and the 
center frequency is 2.25 MHz. The speed of sound for the photoacoustic 
signal propagation is taken as 1500 m/s, and the medium surrounding 
the imaging object is water with a density of 1000 kg/m3. 

The datasets used for training the network consists of a circular 
phantom dataset and an in vivo experimental dataset of mice’s abdo-
mens. The circular phantom dataset is derived from 469 full-view scan 
results (512 detectors) of a circular phantom dataset [25]. 1600 images 
with a size of 256×256 are collected through data augmentation with 
rotation and cropping. The training and test sets are allocated at a ratio 
of 8:1, comprising 1422 images for training and 178 images for testing. 
The in vivo experimental dataset is obtained from [25], and it is sourced 
from 274 full-view (512 detectors) scan images. These images are sub-
jected to rotation enhancement, culminating in a collection of 800 im-
ages with a size of 256×256. There are 711 images for training and 89 
images for testing. During the training phase, the diffusion model learns 
the data distribution of the full-view (512 detectors) PAT images by 
gradually adding Gaussian noise. During the reconstruction phase, the 
detected time series is employed in the model-based iterative solution. 

The Adaptive Moment Estimation (Adam) optimizer is used in the 
training of the diffusion model to minimize the loss function, with a 
learning rate of 2×10⁻⁴. The noise scale in the SDE process ranges from 
0.01 to 300. The training batch size is set to 1. One checkpoint is saved 
every 10,000 epochs completed, and twenty checkpoints are obtained in 

the training. The number of iterations of the model is taken as 900, and 
the size of the input and output images is set to 256×256. The network is 
implemented in Python version 3.8.15 and the PyTorch framework 
version 1.7.1. The experiments are executed on a workstation computer 
equipped with GeForce RTX 3060Ti. 

2.5. Baseline methods 

The DAS, GAN, Tikhonov, and U-Net methods are selected for 
comparison with the proposed method in this study. The GAN method is 
derived from Cycle-GAN [52]. Cycle-GAN can achieve mutual trans-
formation between two different types of images with unpaired training 
set, and its outstanding performance has been validated in PAT images 
[53]. The Tikhonov method is the GD method with Tikhonov regulari-
zation. The U-Net network employed in this work was derived from 
[25]. There are two main components in the U-Net network: encoder 
and decoder. The encoder module is responsible for extracting features 
from input data, while the decoder generates corresponding outputs 
based on the features extracted by the encoder. Both parts consist of 
consecutive convolutional layers, with the channel range of convolu-
tional layers varying from 64 to 1024. 

For the training and test sets of U-Net, a distribution scheme 
consistent with the diffusion model was adopted. During the training 
phase, limited-view PAT images are fed into the network, while full- 
view PAT images serve as the gold standard. The Adam optimization 
algorithm is utilized to minimize the loss, with an initial learning rate set 
to 0.005. The epoch was set to 200. The U-Net training loss function was 
characterized by the average L1 norm between the predicted image and 
the reference full-view image. 

3. Results 

3.1. Results on circular phantom experimental data 

The feasibility of the proposed method is evaluated on circular 
phantom data. Figs. 5(a), 5(b) and 5(c) illustrate the iterative recon-
struction process of circular phantom using the proposed method, GD 
method and Tikhonov method (GD method with Tikhonov regulariza-
tion) in limited-view case of 70◦, respectively. The white number at the 
lower-right corner of the figure is peak signal to noise ratio (PSNR), and 

Fig. 3. Reconstruction flow chart of the limited-view PAT based on diffusion model. GD: gradient descent.  
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the yellow number is similarity index (SSIM). The iterative reconstruc-
tion starts with the same Gaussian noise. Following 10 iterations, all 
methods restore relatively rough contour of the circular phantom. 
However, the contour of the circular phantom still exhibits conspicuous 
elongation and severe noise is still present at this stage (indicated by the 
white arrows in Figs. 5(a), 5(b) and 5(c)). After 100 iterations, the cir-
cular phantom reconstructed by the proposed method becomes visibly 
clearer. At the 900th iteration, the proposed method has essentially 
completed the reconstruction of the circular phantom, leading to a 
further improvement in image quality (indicated by yellow arrows in 
Fig. 5(a)). The reconstruction results of the GD method and Tikhonov 
method manifest significant noise, and the circular phantom is elon-
gated and distorted (indicated by yellow arrows in Figs. 5(b) and 5(c)). 
Fig. 5(a1), 5(b1) and 5(c1) are the Fourier spectra corresponding to 
Figs. 5(a), 5(b) and 5(c), respectively. As the number of iterations in-
creases, the information in Fourier space recovered by the proposed 
method also grows, suggesting an augmentation in details and more 
distinct delineations. The lower-left corner of Figs. 5(a), 5(b) and 5(c) 
show the corresponding error maps for the reconstruction results. Figs. 5 
(d) and 5(e) display the variations of PSNR and SSIM during the iterative 
process of all methods. For the proposed method, the PSNR and SSIM of 
the results rapidly increase before the 700th iteration. At the 700th 
iteration, the PSNR and SSIM of the results reach 28.26 dB and 0.95, 
respectively. With further iterations, the variation of PSNR and SSIM 
stabilize (additional information on the iteration process is available in 
Visualization 1). The experimental results demonstrate that the pro-
posed method can effectively accelerate the iterative process and 
enhance image quality. 

Fig. 6 presents the reconstruction results of circular phantom 
applying different methods in limited-view cases of 180◦, 120◦, 90◦ and 
70◦, respectively. Fig. 6(a1)-6(a4), 6(b1)-6(b4), 6(c1)-6(c4), 6(d1)-6 
(d4), 6(e1)-6(e4) and 6(f1)-6(f4) showcase the results using the DAS, 
GD, Tikhonov, U-Net, GAN and proposed method in limited-view cases 
of 180◦, 120◦, 90◦ and 70◦, respectively. The white number at the lower- 
left corner of the figure is PSNR, and the yellow number is SSIM. Fig. 6 
(a5)-6(f5) are the same ground truth, which is the PAT image recon-
structed by DAS in full-view case (512 detectors). It can be noticed that 
the DAS method fails to reconstruct the complete contour of the circular 
phantom, resulting in significant distortion of the results. For the GD 
method, reconstructing high-quality images is quite challenging. As the 
detection angle decreases, the image quality deteriorates. The recon-
struction results of the Tikhonov method show slight improvement 
compared to the GD method. However, in extremely limited-view cases, 
the reconstructed results still present significant distortions. In general, 
the results reconstructed by the U-Net and GAN method exhibit more 
complete contour of the circular phantom compared to the DAS, GD and 
Tikhonov method. However, distortions and artifacts persist in the result 
using the U-Net and GAN in limited-view cases of 90◦ and 70◦. The re-
sults using the proposed method display a superior quality and clearer 
delineation in different limited-view cases. Even in exceedingly 

constrained limited-view cases (e.g., 70◦-view), the results utilizing the 
proposed method have adequate details of the circular phantom. 

Figs. 7(a) and 7(b) represent close-up images indicated by the red 
rectangles 1 and 2, respectively. Similarly, close-up images highlight the 
superiority of the proposed method. The reconstruction results of the 
proposed method display reduced artifacts and increased fidelity in 
details (as pointed out by the white arrows in Figs. 7(a) and 7(b)) 
compared to other methods. Figs. 7(c) and 7(d) depict intensity profiles 
along the dashed lines, revealing that the intensity profiles of the images 
reconstructed by the proposed method exhibit closer proximity to the 
ground truth. Fig. 8 shows the error maps between the reconstruction 
results and the ground truth, which indicate that the results using the 
proposed method exhibit smaller errors to the ground truth. In terms of 
quantitative image comparison, the proposed method attains a PSNR of 
31.57 dB and an SSIM of 0.95 in limited-view cases of 70◦, demon-
strating enhancements of 21.16 dB (~203%) and 0.31 (~48%) over the 
DAS method, respectively. The proposed method achieved improve-
ments of 3.33 dB and 0.03 over the U-Net method and 10.17 dB and 0.10 
over the GAN method, respectively. This further validates the excellence 
and effectiveness of the proposed method in limited-view PAT 
reconstruction. 

Fig. 9 illustrates the Fourier spectra transformed from the recon-
structed results through the Fourier transform. Fig. 9(a1)-9(a4), 9(b1)-9 
(b4), 9(c1)-9(c4), 9(d1)-9(d4), 9(e1)-9(e4) and 9(f1)-9(f4) depict the 
Fourier spectra corresponding to the reconstruction results of the DAS, 
GD, Tikhonov, U-Net, GAN and proposed method in limited-view cases 
of 180◦, 120◦, 90◦ and 70◦, respectively. It can be spotted that the 
Fourier spectra of the ground truth (Fig. 9(a5)-9(f5)) is uniformly 
distributed in the Fourier space in full-view case. The Fourier spectra 
corresponding to the results of the DAS, GD and Tikhonov method only 
contain information at angles covered by the ultrasonic transducer, with 
missing information at other angles (as pointed out by the white arrows 
in Fig. 9(a2), 9(a3) and 9(a4)) which leads to distorted contours and 
blurred backgrounds. Although the U-Net method can supplement some 
information, there is still great information loss compared to the ground 
truth. The GAN method demonstrates the ability to augment more high- 
frequency information in contrast to the U-Net method. The most in-
formation in the Fourier space can be recovered by the proposed method 
in different limited-view cases compared with other methods, suggesting 
that the quality of the reconstruction results can be greatly improved. 

To better showcase the superiority of the proposed method, five 
images from the circular phantom test set are selected for the recon-
struction experiments. Table 1 shows the mean and standard deviation 
for PSNR, SSIM, feature similarity index measure (FSIM) [54] and mean 
squared error (MSE) of the reconstruction results. The FSIM employs 
feature similarity for quality assessment, with a predominant emphasis 
on the structural and textural characteristics of images. In limited-view 
case of 70◦, the proposed method attains an average PSNR of 31.33 dB 
and an average SSIM of 0.94, with an improvement of 20.43 dB (~ 
186%) and 0.31 (~ 49%) compared with the DAS method, respectively. 

Fig. 4. Reconstruction of the PAT images using virtual PAT.  
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Fig. 5. The reconstruction process of the circular phantom in limited-view case of 70◦. (a) displays the reconstruction results using the proposed method, with white 
numbers indicating PSNR and yellow numbers indicating SSIM. (a1) is the Fourier spectra corresponding to (a). (b) shows the reconstruction results using the GD 
method. (b1) is the Fourier spectra corresponding to (b). (c) displays the reconstruction results using the Tikhonov method. (c1) is the Fourier spectra corresponding 
to (c). The lower-left corner of (a), (b) and (c) show the corresponding error maps for the reconstruction results. (d) and (e) depict the variations in PSNR and SSIM 
during the iterations. The white arrows in (a), (b) and (c) denote the circular phantom which is not completely reconstructed. The yellow arrows in (a), (b) and (c) 
indicate the circular phantom contours reconstructed by the DM, GD and Tikhonov method at the 100th, 700th and 900th iterations, respectively. DM, diffusion 
model. GD, gradient descent. Tik, the Tikhonov method. 
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Fig. 6. The reconstruction results of circular phantom. (a1)-(a4) represent the results of the DAS method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, 
respectively. The white number at the lower-left corner of the figure is PSNR, and the yellow number is SSIM. (b1)-(b4) are the results applying the GD method in 
limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (c1)-(c4) show the results applying the Tikhonov method in limited-view cases of 180◦, 120◦, 90◦ and 
70◦, respectively. (d1)-(d4) display the results using the U-Net method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (e1)-(e4) are the results 
applying the GAN method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (f1)-(f4) represent the results of the proposed method in limited-view cases 
of 180◦, 120◦, 90◦ and 70◦, respectively. (a5)-(f5) are the same ground truth. DM, diffusion model. GD, gradient descent. GT, ground truth. 
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In limited-view case of 90◦, the reconstructed results of the proposed 
method exhibit average improvement of 5.37 dB and 0.04 compared to 
the U-Net method, respectively. This further demonstrates the superior 
and valid performance of the proposed method in PAT reconstruction 
within limited-view cases. 

3.2. Results on in vivo experimental data 

To further confirm the application potential of the proposed method 
in the limited-view PAT, experiments were subsequently conducted on 
in vivo experimental data of mice’s abdomens. Fig. 10 shows the 
reconstruction result using the DAS method, U-Net method and the 
proposed method, respectively. Figs. 10(a)-10(d) display the results of 
the DAS method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, 
respectively. It can be observed that the reconstruction results using the 
DAS method have severe artifacts, low image contrast and the physio-
logical structure of the mice’s abdomens is significantly distorted. 
Figs. 10(e), 10(j) and 10(o) are the same ground truth, which is the PAT 
image reconstructed by DAS within full-view case (512 detectors). 
Figs. 10(f)-10(i) demonstrate the results of the U-Net method in limited- 
view cases of 180◦, 120◦, 90◦ and 70◦, respectively. The U-Net method 
improves the image contrast to some extent. However, there is con-
spicuous detail loss in the results obtained by the U-Net method. Figs. 10 
(k)-10(n) show the results of the proposed method in limited-view cases 

of 180◦, 120◦, 90◦ and 70◦, respectively. The results employing the 
proposed method reveal a substantial enhancement in quality compared 
with DAS and U-Net method in different limited-view cases. The visi-
bility of the structure is remarkably improved employing the proposed 
method, especially in extremely confined limited-view cases (e.g., 70◦- 
view, additional information on the iteration process is available in 
Visualization 1). Figs. 10(p) and 10(q) represent the close-up images 
indicated by the red rectangles 1 and 2, respectively. It is evident that 
the proposed method can precisely reconstruct the details of the mice’s 
abdomens compared with the U-Net method (as pointed out by the white 
arrows). Intensity profiles in Figs. 10(r) and 10(s) also indicate that the 
intensity profiles of the results reconstructed by the proposed method 
closely resemble the ground truth. 

Figs. 11(a)-11(o) illustrate the error maps between the results and 
the ground truth. The error maps demonstrate that the reconstruction 
images using the proposed method have smaller discrepancies and more 
proximate resemblance from the ground truth. Table 2 shows the PSNR, 
SSIM, FSIM and MSE of the results. Quantitative comparison further 
supports the superiority of the proposed method. In limited-view case of 
180◦, the proposed method provides higher PSNR and SSIM ability. 
There is an enhancement of 1.22 dB in PSNR and 0.15 of SSIM compared 
with the U-Net method, respectively. In limited-view case of 90◦, the 
proposed method presents the PSNR of 29.18 dB and the SSIM of 0.80, 
with an improvement of 11.37 dB (~64%) and 0.26 (~48%) compared 

Fig. 7. The close-up images and intensity profiles along the dashed lines of the circular phantom. (a) and (b) represent the close-up images indicated by the red 
rectangles 1 and 2, respectively. (c)-(d) show the intensity profiles along the dashed lines in (a) and (b), respectively. The white arrows indicate a reduction in 
artifacts and an improvement in detail fidelity compared to other methods in the reconstruction results of the proposed method. DM, diffusion model. GD, gradient 
descent. GT, ground truth. 
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with the DAS method, respectively. The experimental results indicate 
the proposed method possesses exceptional performance on boosting 
image contrast and eradicating artifacts in extremely restrict limited- 
view cases. 

4. Conclusion and discussion 

In summary, to alleviate the influence of artifacts and distortions in 

the reconstruction of the limited-view PAT, this manuscript introduces a 
high-quality reconstruction method based on the score-based diffusion 
model. Within the training phase, the model learns the data distribution 
of samples by gradually adding noise into existing samples. During the 
reconstruction phase, the learned prior knowledge of the diffusion 
model serves as the regularization term of the traditional iterative 
reconstruction method, enabling to facilitate the generation of high- 
quality PAT images. The performance of the proposed method was 

Fig. 8. Error maps obtained from the reconstruction results of the circular phantom data. (a1)-(a4) represent the error maps of the DAS method in limited-view cases 
of 180◦, 120◦, 90◦ and 70◦, respectively. (b1)-(b4) are the error maps applying the GD method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (c1)-(c4) 
show the error maps applying the Tikhonov method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (d1)-(d4) display the error maps using the U-Net 
method in limited-view casas of 180◦, 120◦, 90◦ and 70◦, respectively. (e1)-(e4) are the error maps applying the GAN method in limited-view cases of 180◦, 120◦, 90◦

and 70◦, respectively. (f1)-(f4) represent the error maps of the proposed method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (a5)-(f5) are the same 
ground truth. DM, diffusion model. GD, gradient descent. GT, ground truth. 

K. Guo et al.                                                                                                                                                                                                                                     



Photoacoustics 38 (2024) 100623

11

evaluated using circular phantom and in vivo experimental data and was 
compared with the U-Net and DAS methods. The experimental results 
demonstrate that the proposed method can effectively remove artifact 
and accurately restore the detailed information of the PAT images in 
different limited-view cases. Specifically, the proposed method sur-
passes the U-Net method even in exceedingly constrained limited-view 
cases (e.g., 70◦ -view). In limited-view case of 70◦, the proposed 

method attains the PSNR of 31.57 dB and the SSIM of 0.95 for the cir-
cular phantom, exhibiting improvements of 21.16 dB (~203%) and 0.31 
(~48%) over the DAS method, respectively. For in vivo experimental 
data, in limited-view case of 70◦, the proposed method presents the 
PSNR of 27.12 dB and the SSIM of 0.76, with an improvement of 
12.12 dB (~81%) and 0.30 (~65%) compared with the DAS method, 
respectively. This study illustrates the splendid performance of the 

Fig. 9. The Fourier spectra of the results through Fourier transform. (a1)-(a4) depict the Fourier spectra corresponding to the reconstruction results of the DAS 
method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (b1)-(b4) represent the Fourier spectra corresponding to the reconstruction results of the GD 
method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (c1)-(c4) are the Fourier spectra corresponding to the reconstruction results of the Tikhonov 
method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (d1)-(d4) represent the Fourier spectra corresponding to the reconstruction results of the U-Net 
method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (e1)-(e4) show the Fourier spectra corresponding to the reconstruction results of the GAN 
method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (f1)-(f4) illustrate the Fourier spectra corresponding to the reconstruction results of the 
proposed method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (a5)-(f5) are the same Fourier spectra corresponding to the same ground truth. DM, 
diffusion model. GD, gradient descent. GT, ground truth. 
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proposed method in the limited-view PAT, further extending the appli-
cation scope of PAT in the biomedical field. 

The proposed method can significantly accelerate the iterative 
reconstruction speed while maintaining high reconstruction quality. In 
the traditional model-based methods, the forward operator A and the 
adjoint operator A* require to be computed at each iteration by utilizing 
k-Wave toolbox. The calculation of two operators takes lots of time [55, 
56]. In the current dataset, the GD method takes ~ 5 s per iteration for 
reconstruction. After 900 iterations, the output PSNR/SSIM of the GD 
method reaches 19.00 dB/0.22, with a reconstruction time of ~ 4500 s 
(~75 min). In the reconstruction process of the proposed method, each 
iteration comprises two steps: the data generation based on reverse SDE 
(including PC sampling) and the computation of gradient descent. The 
time required for one iteration is ~ 6 s. As shown in Figs. 5(d) and 5(e), 
the SSIM and PSNR subsequently stabilize at about the 700th iteration. 
Therefore, it takes ~ 4200 s (~70 min) to stabilize using the proposed 
method. Considering the outperformance of the proposed method, 
measures can be taken to accelerate the reconstruction process. On the 
one hand, utilizing better-performing graphics cards (e.g., NVIDIA 
GeForce RTX 4090) can further shorten the processing time. On the 
other hand, considering that the PSNR of the proposed method at the 
30th iteration surpasses that of the GD method at the 900th iteration, the 
PSNR reaches 24.01 dB and the structural information of the image has 
been reconstructed quite satisfactorily at the 100th iteration. If the im-
ages are output at the 100th iteration, the reconstruction time of the 
proposed method would be significantly shortened to ~ 10 minutes, 
making it ~ 7.5 times faster than the GD method. 

The diversity and scale of the dataset can impact the generalization 
of the proposed method. In this study, the training set was obtained from 
photoacoustic images reconstructed by DAS method under 512 pro-
jections (approximate to full-view), which still exhibit a few artifacts, as 
shown in Fig. 6(a5)-6(f5). Consequently, the photoacoustic images with 
slight artifacts as the gold standard images is feasible. However, when 
trained with images with significant artifacts (e.g., limited-view case of 
180◦), the reconstructed images would also have more artifacts. 
Therefore, to achieve superior reconstruction performance, it is sug-
gested to use artifact-free PAT reconstruction images for training. 
Furthermore, all experimental datasets in this study originate from the 
same PAT system and the same kinds of imaging subjects. Hence, it is 
imperative to further enhance and validate the generalization of the 
proposed method, particularly when dealing with limited-view data 
from different PAT systems or diverse kinds of imaging subjects. By 
augmenting the datasets, the generalization of the proposed method can 
be improved. The augmented datasets should include full-view images 
from diverse samples obtained from different PAT systems. Due to the 
lack of original limited-view data from real systems, the limited-view 
data is obtained via the virtual PAT. This process results in lower 
image quality using the U-Net method of the in vivo data results 
compared to those reported in [25]. For limited-view data obtained from 

real systems, the forward operator A and the adjoint operator A* for 
model-based iteration need to be determined using parameters (such as 
the scanning angle, number of transducers, the bandwidth of the 
transducer, the center frequency and scanning radius) from the real 
system [57,58]. Additionally, the proposed method can be extended to 
other array geometries and human data, contingent upon obtaining the 
forward operator A of the system. 

The score-based diffusion model can estimate the probability dis-
tribution of given data through score network, without ample paired 
datasets for training. Possessing a flexible network structure capable of 
adapting to various types of data and application scenarios, the score- 
based diffusion model exhibits strong robustness and generalization 
performance. However, there are still areas for improvement in this 
study. Regarding the reconstruction speed, the iterative reconstruction 
starts from Gaussian noise and reaches stability at about the 700th 
iteration. In future work, the current model will be replaced by diffusion 
models require fewer iterations. For example, Luo et al. proposed an IR- 
SDE (Image Restoration Stochastic Differential Equation) diffusion 
model [59]. The iterative reconstruction starts with the degraded images 
and yields satisfactory results within 100 iterations. In terms of model 
performance, this work only utilizes a single model to learn data prior 
information. Yet, the prior information learned by a single model is 
limited, whereas multiple models offer inherent complementarity in 
data generation. For instance, Li et al. proposed a multi-modal collabo-
rative diffusion federated learning framework called FedDiff [60]. A 
dual-branch diffusion model was constructed to extract data features, 
with two model data inputted into distinct branches of the encoder. 
Inspired by this, we will attempt to embed multiple models within a 
single reconstruction task to learn prior information from different 
limited-view cases and enhance model performance and reconstruction 
quality. Furthermore, various types of noise interference may occur in 
practical PAT imaging scenarios, such as the thermal acoustic noise 
(Gaussian noise) and the noise that originates from the ultrasonic 
transducers (Johnson noise) [61–63]. The noise used in the score-based 
diffusion model is Gaussian noise. For other noise that does not follow 
Gaussian distribution, it can be achieved by other kinds of diffusion 
models [64]. For example, Bansal et al. proposed a cold diffusion model 
[64], which can be diffused with arbitrary noise. Consequently, the cold 
diffusion model can be applied to a wider range of scenarios, aug-
menting the clinical applicability of diffusion models in PAT. 
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Table 1 
The mean and standard deviation for the quantitative metrics of circular phantom data.  

Limited-view Method PSNR (dB) SSIM FSIM MSE 

mean standard mean standard mean standard mean standard 

70◦ DAS  10.95  0.4268  0.63  0.0343  0.72  0.0022  0.0794  0.0086 
U-Net  26.85  1.0029  0.91  0.0196  0.86  0.0162  0.0157  0.0045 
DM  31.33  1.1761  0.94  0.0122  0.87  0.0377  0.0008  0.0002 

90◦ DAS  11.97  0.6656  0.67  0.0279  0.72  0.0053  0.0633  0.0112 
U-Net  28.03  0.8413  0.91  0.0253  0.86  0.0128  0.0120  0.0057 
DM  33.40  0.6945  0.95  0.0112  0.89  0.0309  0.0004  0.0001 

120◦ DAS  12.39  0.9885  0.67  0.0338  0.73  0.0048  0.0585  0.0160 
U-Net  28.50  0.5123  0.91  0.0279  0.86  0.0176  0.0112  0.0037 
DM  33.60  1.5296  0.96  0.0130  0.91  0.0302  0.0004  0.0002 

180◦ DAS  14.18  0.7457  0.69  0.0306  0.74  0.0082  0.0396  0.0081 
U-Net  28.61  0.2248  0.91  0.0280  0.87  0.0130  0.0100  0.0036 
DM  33.72  1.0390  0.96  0.0080  0.94  0.0076  0.0004  0.0001  
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Fig. 10. The reconstruction results of the in vivo experimental data. (a)-(d) represent the results of the DAS method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, 
respectively. (f)-(i) are the results of the U-Net method in limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (k)-(n) are the results of the proposed method in 
limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (e), (j) and (o) are the same ground truth. (p) and (q) represent the close-up images indicated by red 
rectangles 1 and 2. (r)-(s) show the intensity profiles along the dashed lines in (p) and (q). 
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Fig. 11. (a)-(o) are the error maps of the reconstruction results. (a)-(d) depict the error maps corresponding to the reconstruction results of the DAS method in 
limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (f)-(i) represent the error maps corresponding to the reconstruction results of the U-Net method in 
limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (k)-(n) illustrate the error maps corresponding to the reconstruction results of the proposed method in 
limited-view cases of 180◦, 120◦, 90◦ and 70◦, respectively. (e), (j) and (o) are the error maps corresponding to the same ground truth. 

Table 2 
The quantitative metrics for the reconstruction results of in vivo experimental 
data.  

Limited-view Method PSNR (dB) SSIM FSIM MSE 

70◦ DAS  15.00  0.46  0.70  0.0342 
U-Net  26.32  0.68  0.72  0.0187 
DM  27.12  0.76  0.80  0.0022 

90◦ DAS  17.81  0.54  0.74  0.0182 
U-Net  26.65  0.68  0.72  0.0051 
DM  29.18  0.80  0.83  0.0014 

120◦ DAS  16.43  0.56  0.75  0.0247 
U-Net  27.13  0.71  0.77  0.0047 
DM  27.19  0.83  0.87  0.0017 

180◦ DAS  16.04  0.57  0.74  0.0269 
U-Net  27.33  0.76  0.81  0.0033 
DM  28.55  0.91  0.93  0.0011  
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