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Abstract

The incidence of limb bone fracture and subsequent morbidity and mortality due to excessive bone loss is increasing in the
progressively ageing populations of both men and women. In contrast to bone loss in the weight-bearing limb, bone mass
in the protective skull vault is maintained. One explanation for this could be anatomically diverse bone matrix characteristics
generated by heterogeneous osteoblast populations. We have tested the hypothesis that adult bones demonstrate site-
specific characteristics, and report differences at the organ, cell and transcriptome levels. Limb bones contain greater
amounts of polysulphated glycosaminoglycan stained with Alcian Blue and have significantly higher osteocyte densities
than skull bone. Site-specific patterns persist in cultured adult bone-derived cells both phenotypically (proliferation rate,
response to estrogen and cell volumes), and at the level of specific gene expression (collagen triple helix repeat containing
1, reelin and ras-like and estrogen-regulated growth inhibitor). Based on genome-wide mRNA expression and cluster
analysis, we demonstrate that bones and cultured adult bone-derived cells segregate according to site of derivation. We
also find the differential expression of genes associated with embryological development (Skull: Zic, Dlx, Irx, Twist1 and
Cart1; Limb: Hox, Shox2, and Tbx genes) in both adult bones and isolated adult bone-derived cells. Together, these site-
specific differences support the view that, analogous to different muscle types (cardiac, smooth and skeletal), skull and limb
bones represent separate classes of bone. We assign these differences, not to mode of primary ossification, but to the
embryological cell lineage; the basis and implications of this division are discussed.

Citation: Rawlinson SCF, McKay IJ, Ghuman M, Wellmann C, Ryan P, et al. (2009) Adult Rat Bones Maintain Distinct Regionalized Expression of Markers Associated
with Their Development. PLoS ONE 4(12): e8358. doi:10.1371/journal.pone.0008358

Editor: Vincent Laudet, Ecole Normale Supérieure de Lyon, France

Received June 5, 2009; Accepted November 21, 2009; Published December 21, 2009

Copyright: � 2009 Rawlinson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by a NIHR Clinician Scientist Fellowship awarded to VJK. MG is a MRC Clinical Research Training Fellow. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: s.c.f.rawlinson@qmul.ac.uk

Introduction

In weight-bearing bones, a mechanically-driven homeostatic

feedback mechanism is used to achieve a ‘target strain’ level and

ensures that bone strength is maintained to resist fracture [1,2].

This mechano-adaptive mechanism can fail, and when bone mass

no longer matches mechanical demands, fractures are likely to

ensue. Questions generally address ‘why is bone mass lost from weight-

bearing limb bones despite continued usage?’ However, in parietal bones

of the skull the levels of strain are low (low enough to induce

‘disuse’ bone loss in the limb) yet paradoxically, skull bones attain

mechanical competence and resist potentially catastrophic levels

of osteopenia despite this dramatic difference in the local

mechanical environment [3,4]. Therefore, it might be better to

instead frame the question in a different manner and ask ‘how is

bone mass and mechanical competence achieved in low weight-bearing skull

bones despite continued ‘disuse’?’ Addressing the latter question leads to

a conceptually novel approach to understand the attainment of

mechanical competence in limb bones.

Several lines of evidence have suggested persistent differences in

the adult bones derived from the distinct primary ossification

processes. In humans and rodents, the mineral density and

calcium concentration is greater in the skull than in the post

cranial skeleton [5–9]. Osteocytes of mouse skull vault calvarial

bones have a rounded appearance compared with the more

elongated osteocytes of long bone fibulae [10]. Matrix composition

differences have been described [11] and demineralised powder

from skull bone does not induce bone formation by an

endochondral ossification mode as limb bone derived powders

[12]. Mechanical strain (e) is the ratio of the change in length (new

length (L9) minus original length (L)) divided by L, is defined as:

(L9–L)/L and thus, has no units. A positive strain represents

stretching, whilst compression is represented by a negative figure.

Direct experimental measurements in a human showed that the

strain levels in the parietal bone of the skull are 10 fold lower

compared with the tibia [4]. We have previously demonstrated

peak surface strains on the rat parietal bone of only 30 me [3] –

and that such bones are not mechanically responsive [3,13]. If

limb bones, that normally experience habitual functional strains

ranging between 1800–3200 me [14], were subject to such low

mechanical strain levels, significant bone loss would ensue.

Intriguingly, parietal bones of the skull vault do not appear to
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be subject to such ‘disuse’ bone loss [15–17]. The skull bones are

also resistant to post-menopausal hormonal changes or glucocor-

ticoid treatment-induced osteoporosis. Clinically, autogenous bone

grafting using blocks of intramembranous bone resorb less than

bone derived from endochondral sites [18–20].

These differences may be a consequence of the site-specific

differences in osteoclast activities [21–23], however the observations

also imply that the mechanisms regulating site-specific osteoblast

behaviour/matrix production are autonomous. The basis of this

independence, and especially the intrinsic characteristics of skull

and limb osteoblasts, has not, to our knowledge, been fully assessed.

We suggest that cell lineage, where limbs develop from lateral plate

mesoderm and the skull from cranial neural crest [24], may in part

contribute to such autonomy. The existence of lineage based

differences in the skeleton is supported by specific developmental

defects that are restricted to different skeletal compartments.

Disruption of the TBX family of mesoderm transcription factors

affects limb development (TBX5; Holt-Oram syndrome, TBX3;

Ulnar-mammary syndrome [25,26]) whereas Cart1 knockout mice

are born without a cranium [27], Dlx52/2 mice are born with

abnormal osteogenesis of the skull vault and delayed cranial

ossification, whilst the limbs show no obvious defects [28].

We postulated that skull (S) and limb (L) bones of the adult, and

the bone-derived cells (Bdc) isolated from them (S-Bdc and L-Bdc)

would have distinct transcriptomes reflecting specific origins. We

have, therefore, investigated basal gene expression patterns by

genome-wide microarray analysis. The consequence of any such

transcriptome differences may be manifest as characteristic local

osteoblast behaviour; therefore, we have studied bone matrix

composition and the effect of ovariectomy on osteocyte number in

vivo. We have also compared the in vitro characteristics of isolated S-

Bdc and L-Bdc, testing whether they differ with respect to

proliferation rates and cell volume. We show site-specific differences

in the cellular and material composition of bone organs, and

patterns of basal gene expression in skull and limb bones and adult

bone-derived cells. In culture, the differential gene expression

continues to reflect their site of origin, and the phenotypes of S-Bdc

and L-Bdc differ. Surprisingly, we also note the persistent expression

of site-specific markers associated with development of the skeleton

in both bone organ and isolated adult bone-derived cells.

Results

mRNA expression in bone organs
1236 genes (approximately 4% of the genome) were found to be

significantly and, at least two-fold differentially expressed between

ulnar limb and parietal skull bone. Cluster analysis segregated the

two sites into distinct populations (Figure 1).

We selectively searched for those differentially expressed genes

previously associated with the ossification process, Wnt signalling,

developmental patterning and osteoporosis. Polymorphisms of a

number of genes differentially expressed in our rat bone array

have been associated with susceptibility to human osteoporosis

[29–31]: Opg (skull:limb, fold increase 3.1), Vdr (4.8), Pthr1 (2.9),

Calcr (4.6), Lrp5 (2.2), and Ctsk (2.7), Alox12 (0.2), Table 1.

Cathepsin K, is generally considered as a marker for osteoclasts.

Therefore, the increased expression detected in the skull samples

may reflect a difference in osteoclast numbers at this site. This

difference, however, is lost in the osteoblast cultures (see below).

The differential expression of transcription factors (Table 2)

between distinct anatomical bone locations may account for

the site-specific mineralization levels, underlie their differential

susceptibility to pathological osteopenic changes, and also be

central to specification.

Markers for homeobox genes associated with embryological

development and body patterning are expressed site specifically in

adult bones (Table 3. In addition, our preliminary data using adult

mice bones are also presented in this table, and demonstrates

positional identity marker expression, at least, appears to be

conserved between these two species).

In work published by Xing et al., in vivo mechanical loading

induced significant changes in the expression levels of genes in

loaded limbs compared with control (unloaded) limbs [32]. We

have compared their published set of mechanically responsive

genes with our set of basal, site-specific differentially expressed

genes. The common genes from these two data sets are presented

in Table 4. It is apparent that some of the genes whose expression

is stimulated by osteogenic mechanical loading are also constitu-

tively expressed more highly in skull bone.

mRNA expression in primary adult bone-derived cells
Even in attempts to generate monocultures, cultures of isolated

osteoblasts from bone tissues will contain other cell types. The cells

used in these experiments are from third collagenase digests of

adult bone and may thus contain osteoblasts along with osteocyte,

osteoclast, endothelial, neuronal and adipocyte cells. As a

precaution, genetic markers indicative of contamination with

another tissue type were assessed. Markers selective for osteoclast,

adipocyte, neurofilament, monocyte, muscle and endothelial cell

were expressed, if at all, at low levels in the cultures. There was no

significant difference in the expression of these markers between

the S-Bdc and L-Bdc cultures (data not shown). The level of gene

expression of osteocalcin was low.

249 genes were significantly and differentially expressed in

S-Bdc and L-Bdc. This represents approximately 1% of the

genome, and cluster analysis segregates these samples by their site

of origin (Figure 2A). Again, markers for regional development

Figure 1. Bones from functionally different skeletal sites
represent biologically distinct populations. Dendrogram gener-
ated by gene tree clustering analysis in GeneSpring 6.1 comparing basal
expression of all filtered genes in skull and limb bone organs. Colours
represent those genes (1236 of the genome) having expression levels
with at least a significant, two-fold difference.
doi:10.1371/journal.pone.0008358.g001

Site-Specific Bone Identity
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and bone metabolism are differentially expressed site-specifically

(Figure 2A, B). The absolute level of expression of markers

associated with regional identity is low compared with bone

differentiation markers, but the differential expression between

sites is relatively large (3x–260x). Conversely, expression levels of

bone differentiation markers are high, but differential expression

differences are relatively small (3x–6x).

Expression of Hoxa cluster genes in S-Bdc and L-Bdc were

determined by qRT-PCR. Levels of all Hoxa genes are around

detection threshold in S-Bdc compared with consistently higher

levels of expression in L-Bdc. There was no significant difference

between in the expression of Hoxa2, whereas significance levels

were p,0.01 for all other comparisons (Figure 3).

To distinguish whether this distinct pattern of Hoxa expression is

seen in other endochondral bones, we compared Hoxa expression

in osteoblasts isolated from other limb and axial (rib) bones

(Figure 4). Compared with the appendicular bones, the relative

expression of genes in the Hoxa cluster were lower in the rib,

except for Hoxa2 and Hoxa5. Evidence for posterior prevalence in

the adult is apparent; Hoxa13 is not expressed in the femur samples

whilst Hoxa13 is expressed in tibial and ulnar bones which are the

more distal skeletal elements.

Table 5 presents validation of the gene array techniques with

qRT-PCR, and illustrates the close comparison of fold differences

between gene array and qRT-PCR in a range of significant and

differentially expressed transcription factors, receptors and matrix

proteins.

The difference in the number of differentially expressed genes in

bone (1236) and isolated cell (249) cultures may reflect the

populations that comprise the two models. Whilst we have

provided culture conditions that favour osteoblasts over other cell

types, we accept other cell types may be present. However, in the

bone organ we know there are more cell populations present

within the samples (for instance, osteocytes, adipocytes, endothe-

lial, neuronal-like hematopoietic cells). Notwithstanding, in either

case, cluster analysis segregates skull and limb bone and isolated

osteoblasts into separate populations.

Skull and limb bone matrix phenotype
Clearly the gross anatomy of skull and limb bones is distinct, but

so too is the finer structure (Figure 5A and B). The concentration of

polysulphated glycosaminoglycans in the osteoblast-derived bone

matrix is significantly greater (36%) in limb bone compared with skull

bone (Figure 5C, D and E). The number of osteocytes per unit volume

Table 1. Differentially expressed genes in skull and limb bone associated with developmental patterning, Wnt signalling,
osteoporosis and ossification.

High expression in skull Gene Symbol S:L ratio Gene Symbol S:L ratio High expression in limb Gene Symbol S:L ratio

Sfrp2 13.51 Alcam 2.58 Btg2 0.49

Cart1 10.76 Eln 2.57 Grpca 0.49

Sost 5.36 Prelp 2.54 Svil 0.48

Amelx 5.12 Twist1 2.51 Lect2 0.43

Vdr 4.81 Sema5a 2.49 Best5 0.38

Calcr 4.66 Bmpr2 2.48 Comp 0.38

Ambn 4.23 Sp7 2.42 Mmp8 0.29

Wif1 4.17 Ank 2.37 Pdlim7 0.24

Gpnmb 3.81 Lrp4 2.35 Bmp5 0.22

Cd276 3.74 Mmp13 2.32 Ctnnb1 0.20

Igfbp5 3.68 Nab2 2.26 Wnt16 0.06

Tcf7 3.51 Dlx5 2.22 Hoxa5 0.05

Bmp3 3.43 Ptprv 2.20 Shox2 0.05

Bmp6 3.29 Enpp1 2.19 Cacna1s 0.04

Acp5 3.28 Tpp1 2.19 Csrp3 0.04

Nog 3.24 Cdh15 2.17

Frzb 3.14 Dlx3 2.16

Cyp26b1 3.04 Lrp5 2.15

Tnfrsf11b 2.93 Ptn 2.13

Calca 2.92 Cpz 2.09

Pthr1 2.91 Ibsp 2.09

Csf1r 2.89 Omd 2.08

Cthrc1 2.83 Fgfr1 2.06

Csf1 2.82 Tcf3 2.04

Plau 2.81 Mitf 2.01

Mmp9 2.78 Igf2bp2 2.00

Ctsk 2.70

S:L ratio = Skull:Limb ratio.
doi:10.1371/journal.pone.0008358.t001
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of skull and limb bone differ significantly (40% greater in the limb,

p,0.001, n = 5 matched pairs). A change in bone cellular composition

was measured after 7 months of growth following ovariectomy.

Osteoblast incorporation as osteocytes into bone matrix was reduced

in limb bone, but remained unaltered in the skull vault (Figure 5F).

S-Bdc and L-Bdc phenotype
Adult bone-derived cells in culture were assessed for differences

in proliferation rates and cell size. Direct cell measurements

showed that mean cell volume and diameter measurements were

greater (26%, p,0.02 and 8.5%, p,0.02 respectively, n = 5

matched pairs) for S-Bdc compared with L-Bdc (Table 6). Cells

were plated at identical starting densities and showed significant

differences in number (as judged by MTS assay) after 3 days in

culture (S-Bdc . L-Bdc, p,0.004, n = 5 matched pairs), L-Bdc

were still proliferating at day 4 (Figure 6). The effects of

osteotrophic agents on alkaline phosphatase (ALP) activity were

assessed in both S-Bdc and L-Bdc. Data was normalised to DNA

content. Estrogen (1028 M) decreased ALP activity in S-Bdc, but

increased activity in L-Bdc (Figure 7). The number of mineralized

nodule generation in culture was low (data not shown), and

probably reflects the low levels of osteocalcin expression.

Discussion

Our analysis reveals that the matrices of these functionally

distinct bones show measurable differences in composition.

Glycosaminoglycan (Gag) concentrations are higher in limb bone.

Osteocyte density in the limb bone was decreased in OVX

animals, which is consistent with OVX-induced decreases in other

non-cranial skeletal sites [33]. However, the osteocyte density in

skull bone was unaffected during growth in an ovarian estrogen-

depleted animal. This is consistent with differential responses of

regional skull and limb osteoblasts and the pattern of bone loss

induced by menopausal hormonal changes. However, we can not

preclude that any decrease is partly in response to ageing [34].

Although we do not have direct evidence that the local patterns

of gene expression in individual bones of the skeleton would

determine site-specific characteristics [35] it is a distinct possibility.

Differential expression of genes linked to osteoporosis in skull and

limb bones is a powerful argument to mis-express these genes in

limb bone in future studies. However, those genes differentially

expressed in both bone organ and osteoblast cultures are more

likely to establish these genes as potential therapeutic targets. Two

such genes are detailed here, namely collagen triple helix repeat

containing 1, (cthrc1) and reelin (reln).

Table 2. Differentially expressed transcription factors in skull and limb bone.

Gene Symbol S:L ratio Gene Symbol S:L ratio Gene Symbol S:L ratio Gene Symbol S:L ratio

Meis2 31.07 Nfib 2.52 Kpna1 0.50 Sox6 0.32

Nr2f1 11.02 Sox17 2.51 Solt 0.50 Tal1 0.32

Cart1 10.76 Twist1 2.51 Btg2 0.49 Gfi1b 0.31

Zic3 10.15 Lztr2 2.49 Rab8b 0.49 Trib3 0.31

Rfx4 8.56 Rai14 2.47 Chd4 0.48 Hoxc5 0.30

Zic4 8.13 Maf 2.40 E2f8 0.48 Gata1 0.29

RGD1311558 4.98 Tbx2 2.39 Gata3 0.48 Klf1 0.28

Wnk4 4.84 Satb2 2.35 Mafg 0.47 Padi4 0.28

Vdr 4.81 Kcnh2 2.27 Mafk 0.47 Ppp1r12b 0.27

Zic1 4.26 Nab2 2.26 Trak2 0.47 Trim29 0.27

Pax8 4.06 RGD1565031 2.25 Abtb1 0.46 Unr 0.27

Fbxl22 3.73 Dlx5 2.22 Cebpe 0.45 Ankrd1 0.26

Tcf7 3.51 LOC685277 2.20 Klf5 0.45 Hand2 0.26

Hdac10 3.40 Nr2f2 2.18 Tcfdp2 0.45 Fhdc1 0.25

Cdkn2a 3.31 Dlx3 2.16 Ybx2 0.45 Hoxb8 0.25

Prdm1 3.04 Mxd4 2.15 Creg 0.44 Thrsp 0.23

C2ta 2.92 Nfatc4 2.13 Tbx15 0.44 Bach1 0.22

Creb3l1 2.92 Rai14 2.12 Cited4 0.42 Dmrt2 0.21

Jundp2 2.89 Zfhx3 2.11 Sec14l2 0.42 Smyd1 0.21

Zfhx4 2.78 RGD1305899 2.05 Mlf1ip 0.41 Ctnnb1 0.20

Flywch1 2.68 Tcf3 2.04 R1b 0.41 Hoxa7 0.19

Pde8a 2.68 Epas1 2.03 Zfp278 0.40 RGD1561431 0.15

Fos 2.67 Hes1 2.01 Hipk3 0.37 RGD1566402 0.12

Maged1 2.63 Mitf 2.01 Asb1 0.34 Shox2 0.11

Armc9 2.57 Zfp98 2.01 Centg3 0.34 Tbx5 0.08

Supt3h 2.56 Nfe2 0.34 Hoxa10 0.06

Npas3 2.54 Zfp207 0.34 Hoxa5 0.05

Uncx4.1 2.54 Phox2a 0.32

S:L ratio = Skull:Limb ratio.
doi:10.1371/journal.pone.0008358.t002
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cthrc1 has been implicated in increased osteoblast proliferation

and higher bone mass; in isolated osteoblasts from cthrc1-null mice,

alkaline phosphatase, collagen type 1a1 and osteocalcin expression

levels were reduced [36]. Further, cthrc1 impacts on responsive-

ness to TGF-b and subsequently TGF-b target genes including

collagens type I, a1 and a2 in PAC1 cells [37]. The canonical Wnt

pathway is involved in the regulation of limb bone mass [38] but

not development of the skull [39] and cthrc1 has been shown to

suppress the canonical pathway and activate the planar cell

polarity (PCP) pathway [40]. cthrc1 expression was significantly

greater in bone organ (2.8) and adult bone-derived cell (3.73)

samples derived from the skull (2.83 and 3.73 times, respectively),

suggesting Wnt/PCP-based signalling maybe more important in

osteoblasts in the skull. We are unable, however, to detect any

differential expression in the potential downstream osteotrophic

targets in these adults.

Differential expression of several neurogenic markers was

identified in bone samples. In particular, there was elevated

expression of reln in limb bone (2–3 fold) and L-Bdc (7.7 fold,

Table 5). Reln expression has recently been associated with

abnormal bone remodelling of the otic capsule in the pathogenesis

of otosclerosis [41]. The extracellular protein reelin is associated

with axonal guidance and the basis of learning and memory via

synaptic plasticity [42]. The significance of the neuronal-like

appearance of the osteocyte network has been previously noted

[43] and osteocytes have been proposed as mechano-sensors

[43,44] that communicate to maintain target strain with brain-like

glutamate-based mechanisms [45–47]. Hypermethylation of the

reln promoter is often seen during ageing and is associated with its

reduced expression [48]. In the brain, reduced reln expression or

reelin signalling activity is implicated in the generation of

Alzheimer’s disease [42]. It is tempting to speculate a role for

osteocytic reelin [49] in the loss of mechanically-regulated limb

bone remodelling and target strain maintenance in the aged.

Measurement of the osteogenic response to applied mechanical

loading of the reln knockout, reeler, mouse [50] would test the

importance of reelin in limb bone biology. Interestingly, reln

expression in skull bone and S-Bdc is significantly lower compared

with limb bone and L-Bdc. This is consistent with skull bones

possessing a distinct pathway independent of the mechano-

adaptive system of the limb.

A third differentially expressed gene, with increased expression

in skull bone (skull:limb ratio 2.9) and S-Bdc (8.3), is rerg - a ras-like

and estrogen-regulated growth inhibitor [51]. In manipulated

HEK293 cells, rerg is a target gene of the estrogen receptor-b [52],

there are as yet, however, no defined roles for rerg in bone cell

biology. Whether the differential effects of estrogen on ALP

activity (Figure 7) are modified by rerg has not been assessed.

Table 3. Differentially expressed genes in rat and mouse
bone associated with embryological development and body
patterning.

Skull:Limb
ratio GENE RAT MOUSE RAT MOUSE

Hoxa3 2.33 Skull only Hoxa2 Phox2a

Hoxa5 0.05 0.12 Hoxd3 Tbx18

Hoxa7 0.19 0.17 Irx1 Tbx19

Hoxa10 0.06 0.14 Irx2

Hoxa11 0.15 Irx4

Hoxa11s 0.04 Twist2

Hoxb7 0.41 Msx2

Hoxb8 0.25 Tbx1

Hoxc5 0.30 Tbx3

Hoxc6 0.30 Runx1

Hoxd8 0.27 Limb only Hoxc9 Tcfe3

Cart1 10.76 4.55/3.65 Tcfe3

Dlx1 2.21/0.31

Dlx3 2.16 2.38

Dlx5 2.22 2.60

Msx1 3.19/0.44

Msx2 2.96

Phox2a 0.31

Shox2 0.08/0.14 0.06/0.18

Tbx2 2.36/2.4 2.75

Tbx3 0.32

Tbx5 0.07

Tbx14 0.06

Tbx15 0.44 0.36

Tcf3 2.04 2.07

Tcf4 0.20

Tcf7 3.51

Tcfcp212 2.91

Twist1 2.31/2.70 11.49

Twist2 0.34

Zic1 4.26 25.80

Zic2 12.53

Zic3 8.66 24/4.79

Zic4 8.13 5.20/4.34

Zic5 9.32/6.65

Some genes are represented with more than one probe set on the array,
therefore some genes have two values.
doi:10.1371/journal.pone.0008358.t003

Table 4. Genes induced by loading in the limb (*) and
differentially expressed basally between skull and limb bone.
(*) Xing et al. JCB 96:1049–1060 (2005).

Gene symbol Skull v Limb

Ankrd1 0.26

Emp1 2.15

Ephb2 3.49

Fkbp9 2.19

Fkbp11 2.12

Lepre1 2.55

Maged1 2.63

Mkrn1 0.33

Ogn 2.01

PCDH19 2.33

Ptn 2.13

Rcn 2.74

Rhced 0.32

Serpinh1 2.09

Timp1 3.04

doi:10.1371/journal.pone.0008358.t004
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Positional identity along the anterior-posterior body and

proximal-distal axis of the limbs relies on the pattern of homeobox

gene expression. Hox genes act in a hierarchical manner based on

‘posterior prevalence’ whereby the most posterior expressed Hox

gene determines positional identity [53,54]. This mode of

patterning is reinforced by Hox gene/microRNA clusters that

promote suppression of the anterior characteristics [54]. Expres-

sion of Hox genes could therefore be part of the mechanism that

directs osteoblasts to function appropriately for their skeletal

location [55].

To confirm that regional gene expression profiles are an

inherent property, and not dependent upon the local mechanical

environments, we investigated Hoxa gene expression profiles in

adult bone-derived cells in a range of long bones and from the rib.

Differential Hoxa expression profiles (Hoxa2, Hoxa5, Hoxa7 and

Hoxa10) are clearly evident in these endochondral/mesoderm

bones. Investigations have not yet disclosed whether such regional

gene expression differences underscore the differential responses to

systemic anti-osteoporotic bisphosphonate treatment [56]. Con-

cordant with posterior prevalence, Hoxa13 is present only in the

ulna and femur samples. Our observations agree with studies

showing that cultured human skin fibroblasts express a specific

HOX gene profile depending on the region of the body from

Figure 2. Genotypic differences between 5 matched pairs of skull and limb adult bone-derived cells. (A) Dendrogram signifying
populations are distinct in isolated S-Bdc and L-Bdc. (B) Heat map for markers for regional development: cultured S-Bdc – (S1–S5) preferentially
express genes associated with the craniofacial development of neural crest derived cells (red), whilst genes for limb development and patterning are
preferentially expressed by L-Bdc (L1–L5). Differential expression of bone-associated markers are also depicted; Alcam, activated leukocyte cell
adhesion molecule; Sfrp2, secreted frizzled-related protein 2; Apo-E, apolipoprotein E; Smoc2, SPARC related modular calcium binding 2; Spp1,
osteopontin; Fst, follistatin.
doi:10.1371/journal.pone.0008358.g002

Figure 3. Site-specific Hoxa cluster gene expression of cultured
adult bone-derived cells. Isolated osteoblasts derived from the skull
and limb of adult rats maintain a specific patterning of Hoxa gene
expression in culture.
doi:10.1371/journal.pone.0008358.g003

Figure 4. Site-specific Hoxa cluster gene expression profiles of
cultured adult bone-derived cells. Continued expression of
developmental patterning Hoxa genes demonstrate posterior preva-
lence in adult limbs; the more distal the skeletal element, the greater
the Hoxa number expression. For instance, Hoxa13 is expressed in the
more distal ulnar and tibial bones, but not in the more proximal femur.
doi:10.1371/journal.pone.0008358.g004
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where they are derived [57,58].

Although HOXA10 has been shown to regulate the expression of

RUNX2, ALP and osteocalcin [59], attributing a direct function to

the differential expression of Hoxa genes is difficult; site-specific cell

behaviour and local Hox gene expression profiles may simply be

correlated. However, in the adult, intramembranous-derived

mandibular periosteal cells (Hoxa11 negative) can fill wound defects

drilled into jaw and tibial limb bones. In contrast, periosteal cells

from the endochondral-derived tibia (Hoxa11 positive) fail to repair

the defect in the jaw; the transplanted cells differentiate into

chondroblasts rather than osteoblasts [60]. These experiments

suggest appropriate (source-dependent) function is correlated with

Hoxa11 expression. Phenotypic stability of osteoblasts is required

for the replacement of the appropriate bone tissue following

trauma and the remodelling process and increased expression of

Hox genes have been described at fracture sites [61,62]. Our data

suggests that phenotypic stability is maintained in osteoblasts but

that the appropriate site-specific behaviour may be more complex

than being simply positive or negative for expression of Hoxa11.

The persistence of homeobox gene expression profiles in the

adult mirror positional specification during embryogenesis and

suggests that cells maintain a ‘memory’ of their origin and/or body

positioning – an ‘epigenetic postcode’. These observations suggest

a basis by which autonomous regulation of osteoblast behaviour at

different sites and could explain in part how systemic hormonal

changes differentially affect the skeleton. These findings support

our contention that skull and limb bones form and are maintained

by distinct cell (osteoblast) populations. Whether there is any

correlation between the site-specific differences in osteoclasts

[21,22] and their homeobox expression profiles has yet to be

investigated.

There is still controversy regarding the embryonic lineage of the

parietal bone – whether it is mesoderm or cranial neural crest.

Grafting and fate mapping experiments show distinct lineages

compared with the use of Wnt-cre lineage tracing experiments. A

report by Yoshida, clearly shows the lack of neural crest cell

marker, X-gal staining in the parietal bones of Wnt1-cre/R26R

mice [63]. This may reflect the discontinuity of Wnt1 expression

along the neural tube, which shows a distinct gap in expression

around the hindbrain/midbrain junction [64]. This gap in

expression is approximately where neural crest that could

contribute to the parietal bone would be expected to arise.

Therefore it seems possible that at least some of the cranial neural

crest may remain unlabelled which and could account for the lack

of X-gal staining between the interparietal and frontal bones.

Cart1 expression in skull bone is surprising since cart1 is

predominately expressed in the chondrocyte lineage (Table 2).

However, cart1 is known to be essential for normal skull bone

development, null mice develop with normal limbs and trunk, but

the interpatietal and majority of the parietal and frontal bones are

absent [65]. It appears that during skull bone development a

unique cell type, the ‘chondrocyte-like osteoblast’ is present [66].

Whether cart1 is expressed by chondrocyte-like osteoblasts, and

whether this determines the nature and characteristics of skull

bone matrix has yet to be determined.

It has not been established whether the neural crest contribution

to bone tissues has any clinical relevance – however, the clavicle

may provide some useful insights to the development of skeletal

disorders. Unusually, this bone develops by both intramembra-

nous ossification (laterally) and endochondral ossification (medial-

ly) [67], and studies have demonstrated that only the medial aspect

contains cells derived from the cranial neural crest [68]. The

lateral aspect of the clavicle is prone to osteoporosis and is

consistent with other bones containing a neural crest component

(skull vault) being resistant to osteoporosis.

In conclusion, this study shows that genes associated with bone

mass and mineral density are differentially expressed in function-

ally distinct skeletal sites. Our observations also demonstrate

developmental gene expression-based ‘‘positional identity’’ in the

adult skeleton. If positional identity is significant for bone then

more favourable clinical outcomes would be expected with site

matching of bone source to recipient site in grafts and tissue

engineering/regeneration protocols. It may also be possible to

exploit differential positional identity markers to develop site-

directed pharmacological treatments. We propose that osteoblasts,

and the matrix they produce, differ according to their location and

that these differences are established, at least in part, by the

developmental origin of the cells that contribute to the site-specific

osteoblast lineage.

Materials and Methods

Ethics statement
All animal procedures were carried out in accordance with the

UK Home Office Scientific Procedures Act (1986). All animals

were purchased from Charles Rivers, housed, and fed ad libitum in

accordance with local Queen Mary University of London, School

of Medicine and Dentistry rules.

Animals
Male rats were housed until they reached weights that matched

those used in previous mechanical loading experiments [3].

Females were ovariectomised pre-pubertal (by the supplier) and

maintained until 7 months of age prior to assessment of osteocyte

number. The pilot studies used ten male skeletally mature Black

CD57 (24–26 grams) mice divided into two groups to test for the

feasibility of gene array in bone organs.

Adult bone-derived cell isolation and culture
Five male CD rats (100–110 grams) were rendered unconscious

with CO2 and killed by cervical dislocation. Skull and the cortex of

Table 5. Validation of gene array with qRT-PCR (Skull/Limb
ratio).

Sample Method Gene Array qRT-PCR

Bone organ Affymetrix CyclinD 3.92 2.97

Shox2 0.08 0.09

Ibsp 2.03 4.61

Cdh1 0.40 0.32

Lepre1 2.53 2.29

Cnr2 0.42 0.19

Cells Illumina Hoxa7 0.02 0.04

Irx5 16.10 6.95

Msx2 13.10 11.40

Reln 0.01 0.12

Spp1 0.30 0.08

Alpl 1.28 3.18

Expi 0.21 0.13

Bglap2 1.16 1.05

Tbx3 0.13 0.41

Tgfbi 0.20 0.11

doi:10.1371/journal.pone.0008358.t005
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ulnar bones were dissected and cleared of attendant soft tissues,

epiphyses and marrow. Individual samples were minced and bone

cells isolated by enzymatic digestion. Third digest cell populations

were used in the experiments. 5 matched pairs of adult bone-

derived cultures were thus isolated. Cells were cultured in aMEM

(Gibco), 10% newborn calf serum (First Link), 1x penicillin/

streptomycin and 1x fungizone) at 37uC, in a 5% CO2

atmosphere. Cells were fed every 2 days. Following passage,

osteoblast numbers, cell volumes and size were determined using a

CASYH (Model TTC) Cell counter and analyzer system. For

proliferation assessment, matched pairs were grown in a series of

6-well plates. Plates were removed from the experiment on a daily

basis and proliferation assessed using the PromegaH CellTiter 96

Aqueous Non-radioactive Cell proliferation assay system. The

MTS reaction product, formazan, was measured using a BMG

Labtech FLUOstar OPTIMA plate reader at 490 nm. To assess

ALP activity cells were washed in PBS and incubated with

12.5 mg p-nitro-phenylphosphate per ml of Sigma alkaline buffer

No. 221 at 37uC for 20 minutes. The reaction was stopped using

0.5 M NaOH solution and the yellow reaction product read on a

Figure 5. Phenotypic differences between skull and limb bone. Low power photomicrographs of (A) skull and (B) limb stained with Toluidine
blue for histology and higher power (C) skull and (D) limb bone stained with Alcian Blue 8GX. Regions of acellular bone matrix were masked in the
microdensitometer and measured. This ensured that the heavily stained osteocytes did not interfere with the readings. (E) Quantitative assessment
by microdensitometry of polysulphated glycosaminoglycan levels in bone matrix stained with Alcian Blue 8GX. (F) Ovariectomy alters osteoblast
incorporation into bone matrix as osteocytes in limb bone, but not skull bone, during growth.
doi:10.1371/journal.pone.0008358.g005

Table 6. Physical characteristics of S-Bdc and L-Bdc.

Parameter p-value Site Mean Std. Dev.

Diameter (mm) ,0.02 S-Bdc 19.49 0.55

L-Bdc 17.96 0.77

Volume (fl) ,0.02 S-Bdc 4692 375

L-Bdc 3719 473

doi:10.1371/journal.pone.0008358.t006
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plate reader at 405 nm. DNA content was assessed according

to methods determined by Rago [69]. Water-soluble 17b-estadiol

(E4389, estrogen), Prostaglandin E2 (P5640) and sodium pyro-

phosphate (P8010) were obtained from Sigma.

RNA extraction
Total RNA from skull and limb bones cleared of attendant soft

tissues and epiphyses or sutures was extracted from five groups of

four male CD rats (100–110 grams) using an RNeasy Fibrous

Tissue Mini Kit (Qiagen) as per protocol. For isolated S-Bdc and

L-Bdc, RNA was extracted from near confluent third passage cells

collected from the ten populations using the RNeasy Mini Kit

(Qiagen) as per protocol. RNA was extracted from osteoblasts

isolated from other long bones using the RNeasy Mini Kit from

first passage near confluent cultures.

Microarray analysis
The Affymetrix Mouse Genome 430 2.0 GeneChip and Rat

Genome 230 2.0 GeneChip were used to detail basal gene

expression profiles in the bone organ samples. Biotinylated targets

suitable for hybridization to the GeneChip probe arrays were

prepared from the RNA samples as per ‘One-Cycle Target

Labeling’ protocol (Affymetrix). Briefly, double-stranded cDNA

was synthesised from total RNA followed by in vitro transcription

reaction to produce biotin-labelled cRNA from the cDNA. The

cRNA was then fragmented prior to hybridization to the

GeneChip arrays. Analysis of data was performed using Gene-

Spring 6.1 (Silicon Genetics, Redwood City, USA) software. The

‘per chip’ and ‘per gene’ normalization procedures, as recom-

mended, were used. Statistically significant (ANOVA, p,0.05,

Benjamini and Hochberg false discovery rate) gene lists repre-

senting differentially expressed genes, and expression tree were

generated. The Illumina RatRef-12 Expression BeadChip was

used to detail basal gene expression profiles in the primary

cultured skull vault and ulnar osteoblasts. BeadStudio software was

used to analysis the data. A ‘Diff score’ of ,65 and .65 for gene

expression for 5 matched pairs are considered as significantly

different (p,0.05).

Gene array data is available on the NCBI Gene expression

omnibus, accession number: GSE12966.

qRT-PCR analysis
Gene array data was validated by qRT-PCR using Taqman

Assay-On-Demand oligonucleotides for the following genes

(Table 6). cDNA was prepared from 1 mg total RNA isolated

from each the 10 bones or primary cell lines using oligo dT

primers (Promega) and Promega reagents. The reaction conditions

were 70uC for 5 mins (denaturation), 60 mins 40uC for 60 mins

(extension), 70uC for 15 mins (inactivation), and then stored at

220uC. Each TaqMan assay was run in four replicates for each

RNA sample. 50 ng total cDNA (as total input RNA) in a 10 ml

final volume was used for each replicate assay. Assays were run

with 2xAbsolute qPCR ROX Master Mix (Abgene) on Applied

Biosystems 7900 Fast Real-Time PCR System using universal

cycling conditions (10 min at 95uC; 15 s at 95uC, 1 min 60uC, 60

cycles). The assays and samples were analyzed on 384 well plates.

Data normalization: in qRT-PCR an endogenous control gene is

used to normalize data and control for variability between samples

as well as plate, instrument and pipetting differences. Eif4a2 and

ATP5b were chosen as the reference genes because their CT values

showed the least variation across the samples (data not shown).

Each replicate CT was normalized to the average CT of Eif4a2 and

ATP5b on a per plate basis by subtracting the average CT of

Eif4a2 and ATP5b from each replicate to give the DCT which is

equivalent to the log2 difference between endogenous control and

target gene. When TaqMan gene expression assays are run on a

7900HT system in a 10 ml reaction volume, a raw CT value of 34

represents approximately ten transcript molecules (assuming 100%

amplification efficiency). At a copy number less than five,

stochastic effects dominate and data generated are less reliable.

Thus, a raw CT of 35 was set as the limit of detection in this study:

individual replicates which gave CT values .35 were considered

not detected. A CT .32 and ,35 (,5–40 transcript molecules)

was considered a low expressing gene. Differential expression of

selected genes in both gene arrays and qRT-PCR are presented in

Table 6.

Histological preparations
Decalcified bone sections (10 mm) were cut on a microtome

housed in a cryostat at 225uC (Bright’s) and flash dried onto glass

slides. Sections were stained overnight in 0.05% alcian blue 8GX

solution in 0.025 M acetate buffer (Sigma), containing 0.025 M

MgCl2 (Sigma) at a final pH of 5.8. A Vickers M85A scanning and

integrating microdensitometer was used to quantify the intensity of

Alcian Blue staining [70]. Osteocyte density was determined in

similarly prepared sections. 10 images of equal and known area of

Figure 6. Adult bone-derived cell proliferation. Assessment of
cell proliferation using MTS. Bone-derived cell populations from the
skull proliferates more rapidly than limb bone derived cells.
doi:10.1371/journal.pone.0008358.g006

Figure 7. Effect of osteotrophic agents on ALP activity of adult
bone-derived cells. Isolated adult bone-derived cells were seeded at
equal densities and treated with either b-estrogen (1028 M), Prosta-
glandin E2 (1026 M) or inorganic pyrophosphate (0.5 mM) for four days.
Data is presented as percent differences from control. Estrogen
differentially regulates normalised ALP activity in S-Bdc and L-Bdc.
doi:10.1371/journal.pone.0008358.g007
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bone per section were captured (Olympus BHS microscope linked

to a Kontron image analysis system). Osteocyte number was

counted in two sections per bone and presented as number per

area.

Statistics
Data is presented as means and significance tested using paired

t-test, unless otherwise stated and p,0.05 was considered

significant.
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