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Abstract: Lung transplantation is an increasingly common lifesaving therapy for patients with fatal
lung diseases, but this intervention has a critical limitation as median survival after LT is merely
5.5 years. Despite the profound impact of place-based factors on lung health, this has not been
rigorously investigated in LT recipients—a vulnerable population due to the lifelong need for daily
life-sustaining immunosuppression medications. There have also been longstanding methodological
gaps in transplant medicine where both time and place have not been measured; gaps which could be
filled by the geospatial sciences. As part of an exploratory analysis, we studied recipients transplanted
at our center over a two-year period. The main outcome was at least one episode of rejection within
the first year after transplant. We found recipients averaged 1.7 unique residential addresses, a modest
relocation rate. Lung rejection was associated with census tracts of predominantly underrepresented
minorities or where English was not the primary language as measured by the social vulnerability
index. Census tracts likely play an important role in measuring and addressing geographic disparities
in transplantation. In a future paradigm, patient spatial data could become an integrated part of real
time clinical care to aid in personalized risk stratification and personalized delivery of healthcare.
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1. Introduction

There has been growing interest in looking beyond the walls of hospitals and clinics
to leverage non-clinical health determinants to improve our understanding of individual
patient outcomes. To do so, however, requires translational collaboration across multiple
disciplines, including between the spatial sciences and clinical medicine. In the case of lung
transplantation [LT], given this patient population’s unique risk factors, investigating the
link between health and place at a granular level could lead to interventions to help our
most vulnerable patients.

Lung diseases are now among the leading causes of death in the United States due
to a 30% rise in respiratory morbidity and mortality over the past two decades [1,2].
In response, LT has become the fastest growing segment of organ transplant with an
annual volume in the U.S. more than doubling between 2004 and 2017 [3]. LT serves as
the definitive intervention for chronic diseases such as COPD, cystic fibrosis, pulmonary
fibrosis, pulmonary hypertension [4–6], and for end stage lung disease caused by COVID-19
[7–10]. However, there remains a key limitation: worldwide median patient survival after
LT remains only 5.5 years, which has remained stagnant since the beginnings of modern
transplantation in the 1980s and is merely half the survival seen in heart, kidney, or liver
transplantation [11].

While many factors play a role in survival after LT, we know our lungs are especially
vulnerable organs due to being directly and continuously exposed to our surroundings
through inhalation of air particulate matter, dust, mold, and susceptible to infection. In
addition, this vulnerability is exacerbated by immunosuppression medications transplant
recipients must take daily for life to prevent the immune system’s rejection of the donor

Int. J. Environ. Res. Public Health 2022, 19, 7355. https://doi.org/10.3390/ijerph19127355 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19127355
https://doi.org/10.3390/ijerph19127355
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0001-7375-3845
https://orcid.org/0000-0002-0232-3263
https://doi.org/10.3390/ijerph19127355
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19127355?type=check_update&version=2


Int. J. Environ. Res. Public Health 2022, 19, 7355 2 of 9

lungs. Lung function after LT can be impacted by social vulnerabilities as well such as
through low adherence to transplant medications, missed healthcare visits, or loss of
health insurance [12–14].

A gap in knowledge exists on the role of place—namely on the role of environmental
and social vulnerabilities. This gap is due to a missing framework within transplant
medicine from which to rigorously study place. The Geographic Information Sciences (GISc)
provides one approach to study place—which we define broadly as an area, neighborhood,
or community with meaning to a person. Place can be quantified at multiple levels —
ranging from zip-codes to smaller units such as census tracts. While familiar to the spatial
sciences and public health, census tracts remain comparatively unfamiliar and unutilized
in clinical medicine.

1.1. Lung Transplantation and Geography

In lung transplant, national data have shown there are wide geographic differences in
outcomes. The median LT survival in the U.S. can range from a low of 4.6 years to a high of
6.4 years depending on which one of 11 geographic regions in the U.S. a patient was from;
resulting in a geography dependent relative risk of survival of 39% (p < 0.001) [15]. There
is a need to understand place-based contextual factors exacerbating the geographically
disparate and short survival of LT recipients in order to more precisely risk stratify patients
and identify opportunities for intervention.

Traditionally, clinical medicine has relied on zip codes as a longstanding form of geolocation
as they are easily drawn from the patient records of a health system or collected for large clinical
disease registries. Examples include the registries of the American Heart Association, Cystic
Fibrosis Foundation, or the United Network for Organ Sharing [16–18]. As a result, zip code
has been frequently used to assess the socioeconomic position of an area.

Figure 1 is an example that demonstrates the differences in size between Zip Code Tab-
ulation Areas (ZCTAs), which are a U.S. Census geographic unit designed to approximate a
zip code, and census tracts in the east region of Cleveland, Ohio. The census tracts display
the Center for Disease Control and Prevention’s publicly available Social Vulnerability
Index (SVI). The map is centered on zip code 44106, the location of Case Western Reserve
University. There are no zip codes with homogeneous social vulnerability within their
boundaries, providing visual evidence that the ZCTA unit of aggregation is suboptimal
for detecting geographically granular health-place relationships. As a result, reliance on
zip-code level socioeconomic status or disparity data may not adequately capture the
individual patient environment. Census tracts, on the other hand, provide more rigor and
granularity and serve as a link to a wide range of publicly available datasets representing
multiple areas such poverty levels or environmental exposures. In this exploratory analysis
we leverage the utility of the census tract.
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1.2. Solving Methodologic Gaps

Addressing the knowledge gap between place and health requires us to solve two
troublesome methodologic gaps. First, most existing investigations of social-environment
relationships measure exposures based on only one place: the patient’s home address at
the time of a certain event (e.g., at diagnosis of a disease or at the time of a procedure).
This approach assumes that the home address is stable, and that the most meaningful
exposures for health outcomes occur at this location. Second, these investigations also
assume neighborhood conditions surrounding this home address are stable and are often
measured at only one scale (e.g., a zip code). However, these are both problematic assump-
tions. People’s mobility is dynamic, spanning timeframes from each day to over the life
course and the environment to which people are exposed is also dynamic (e.g., exposure to
airborne particulate matter can vary daily, seasonally, etc.,). Despite the serious implications
these measurement errors have for scientific knowledge and clinical translation, they have
received little attention. Thus, can methods used to measure patient context and mobility
be improved and translated to predict clinical outcomes more precisely? Answering this
question requires an approach addressing place and time.

Studying place attempts to address the question—where is the patient? Census tracts
can be a valuable tool in this process, allowing linkage to important data we refer to as
“geomarkers”, as previously described by Beck et al. [19–21]. Similar to how biomarkers
(e.g., vital signs or blood tests) inform clinical decisions, geomarkers are quantitative data
at the census tract level that more precisely stratify risk and exposure within a patient’s
community. This information can be utilized to inform changes in clinical care. Similarly,
when considering patient place, we also need to consider duration of residence—“how long
has the patient lived at a location”. Long time residence in a location may be associated
with a higher risk of location-specific exposure—but may also result in a stronger sense
of community, and a better understanding of the resources present within that location.
Similar to how biomarkers are collected and stored in biobanks, the collection of patient
geomarkers over time enables the creation of a “geobank”. We define a geobank as an
accounting of individual residential address history with the inclusion of time at each
address. This answers a problematic assumption of prior GISc work that patient location
is static and allows for more precise discrimination of environmental and community
level vulnerabilities.

1.3. Electronic Health Records: A Data Source for Spatial Research

Electronic Health Records (EHRs) are ubiquitous in the U.S. healthcare system and
have streamlined record keeping and enabled real time measurement of a wide range of
metrics. A key application for the spatial sciences is the recording of residential addresses
and address history. As part of the regular patient registration process for any outpatient
or inpatient visit, basic identifiers are used such as patient name and birthdate, as well
as verification of home address. Accurate addresses are important to hospitals so that
appointment reminders, test results, or medical bills can be mailed to the correct address.
As a result, many EHRs may have a rich database of patient reported residential address
history and changes in address can indicate the time lived at each address. The collection
of address history has the potential to reduce misclassification bias when assigning an
exposure to a location, as the most recent address on record may not be the address where
the patient spent the longest amount of time.

A limitation of the EHR is that address history is only captured when patients interface
with the health system. For example, a patient new to a community and new to a health
system may not have a longitudinal record of address history. Moreover, EHRs are unique
and often customized to a specific hospital system which are protected by cybersecurity
firewalls. A patient seen and treated at two different health systems within the same city
could have two separate electronic medical charts. Despite these limitations, there are
growing EHR linkages among separate health systems to more easily facilitate the secure
sharing of patient medical information. We hypothesized that spatial methods used to
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understand time and place could be applied to EHR data in order to better risk stratify our
patient population.

2. Materials and Methods

In this exploratory analysis, we identified recipients of LT at our center between
1 January 2016 and 31 December 2017. Clinical data were extracted from the institu-
tional electronic health record. Native lung disease was defined using definitions from
the United Network for Organ Sharing (UNOS)-the national organization charged with
organ allocation policy in the United States and categorized as: group A—obstructive
disease (primarily emphysema/COPD), group B—vascular disease (primarily pulmonary
hypertension), group C—cystic disease (primarily cystic fibrosis), or group D—fibrotic
disease (primarily pulmonary fibrosis) [22]. Patients < 18 years at time of transplant, un-
derwent multi-organ transplant, or had invalid address were excluded. We also excluded
recipients who moved from outside the U.S. solely for transplant or used P.O. Box ad-
dresses. Geobanking: Residence was defined as a self-reported recipient address used
to register in the electronic health record which was updated or verified at any clinical
encounter. The number of unique addresses per recipient were recorded. Geomarking:
We identified the latitude and longitude of the residential address of each patient in order
to geocode the census tract. The tract was then linked to the Center for Disease Control
and Prevention’s Social Vulnerability Index (SVI), which scores all U.S. census tracts in
four domains: Socioeconomic status, Household composition, Race/ethnicity/language,
and Housing/transportation. The SVI ranges from 0 to 1, with higher values indicating
greater vulnerability [23].

Our primary outcome was whether recipients experienced ≥1 episode of moderate
grade biopsy-proven acute lung rejection (grade ≥ A2) [24]. The diagnosis of lung rejection
is made by a specialized pathologist reviewing a lung biopsy and applying diagnostic
criteria established by the International Society of Heart and Lung Transplantation (ISHLT)
(25). Episodes of acute rejection can occur in up to 40% of patients within the first year
after transplant, and are a leading risk factor for chronic rejection—often referred to as
the Achilles’ heel of LT as it is the leading cause for LT mortality [25]. We focused on
episodes > 3 months after transplant where lung rejection was likely from place-based
factors and less likely peri-operative related issues. Patients do not necessarily require
hospitalization for the treatment of rejection.

An ANOVA was used to test for differences between SVI categories using R (R Core
Team, 2020). Geocoding was through ArcGIS 10.7.1 (Redmond, WA, USA). This study was
approved by the Cleveland Clinic Institutional Review Board (#20-804).

3. Results

There were 232 LTs who met inclusion criteria. From this cohort 65 (28.0%) had COPD,
5 (2.2%) had pulmonary hypertension, 22 (9.5%) had cystic fibrosis/bronchiectasis, and
140 (60.3%) had pulmonary fibrosis (Table 1). The most common indication for trans-
plant was pulmonary fibrosis (60.3%), and 31.9% were female. We identified 389 unique
addresses through the health system electronic health record. Unique addresses per re-
cipient ranged from 1 to 11, with an average 1.7 addresses per recipient and a median
of 1. Among recipients with biopsy-proven moderate grade early rejection, there was an
average of 1.84 addresses (possibly more mobility), while those without rejection averaged
1.59 addresses (possibly less mobility), though this difference was not significant. A total
of 45 patients experienced moderate grade rejection. About 31 were within 3 months of
transplant and 14 were >3 months. Among patients with >3 months rejection, a one-way
ANOVA revealed that there was a statistically significant difference in mean score between
at least two groups (F(3, 48) = [4.5669], p = 0.007) where census tracts predominantly of
underrepresented minorities or where English is not the predominant language (SVI: 0.64)
when compared to socioeconomic status (SVI: 0.31), household composition (SVI: 0.36), or
housing/transportation (SVI: 0.37) (p = 0.007) (Table 2).
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Table 1. Demographics.

Category n (%) or Average

n = 232

Female 74 (31.9)

Average age in years at transplant 59

Race

White 202 (87)

Black 13 (6.9)

Other 17 (7.3)

Reason for transplant

COPD 65 (28)

Cystic fibrosis 22 (9.5)

Pulmonary hypertension 5 (2.2)

Pulmonary fibrosis 140 (60.3)

Average Body Mass Index (kg/m2) 25.8

Average height (centimeters) 170.3

Table 2. Centers for Disease Control Social Vulnerability Index.

Socioeconomic
Status

Household
Composition

Underrepresented
Minorities

Housing/
Transportation p F-Stat

Early lung rejection 0.36 0.38 0.47 0.42 0.48 0.83

Late lung rejection 0.31 0.36 0.64 0.37 0.007 4.57

4. Discussion

For this exploratory analysis, we successfully merged recipient residential history with
clinical data, and found that recipients of LT have a modest relocation rate. The relocation
rate of other organ transplant types is unknown. Frequent re-location may signify housing
and economic instability, and portend worse health outcomes through the unintended
fracturing of continuous healthcare. This information is essential for place-based studies to
address geographic disparities and reduce misclassification bias. While our preliminary
analysis did not identify a difference by risk for early rejection and may have been limited
by sample size, other clinical outcomes warrant investigation. Further studies can also
assess the implications of relocation toward a census tract with higher SVI or lower SVI.
Further qualitative studies may consider asking patients the reasons for relocation and if
they felt relocation impacted their health.

We also successfully leveraged U.S. census tracts to enable linkage to an important
non-clinical SVI dataset. We found that a census tract-based geomarker representing under-
represented minorities or where English was not the predominant language was associated
with the risk for biopsy-proven acute cellular lung rejection—a serious but mutable risk
factor for lung function loss and early mortality. The reasons for this require further in-
vestigation but could be related to frequency of healthcare visits, access to transplant and
non-transplant healthcare, and in communities where English is not the dominant lan-
guage fully accessing transplant-related education material which guides patients through
lifestyles recommendations. Because acute lung rejection is a mutable risk factor, and a pa-
tient’s SVI is readily identifiable, this approach could be quickly translated to individualized
clinical care through shortened outpatient follow-up intervals or augmented immunosup-
pression to improve outcomes for at-risk patients. Census tracts likely play a promising
role in identifying and addressing geographic disparities in clinical transplantation.
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4.1. Limitations and Considerations

There were limitations to our approach. In creating a geobank of address history,
the reasons for relocation were unknown, patient home addresses were self-reported,
and residential history prior to becoming a patient at our health system was unknown.
Additionally, two key conceptual issues must be considered with geocoded data. The
first is the Modifiable Area Unit Problem (MAUP) which refers to when point-based
measures of spatial phenomena are aggregated into districts. The resulting summary
statistics (e.g., rates, densities) are influenced by both the shape and scale of the spatial
unit and could be a source of statistical bias [26]. As an example, in Figure 2, displayed
are the concentration of toxic release inventory facilities by Ohio census tract (left) as
compared to Ohio zip code tabulation area (right) by quartile (red = high concentration
and yellow = low concentration). The spatial unit used suggests differing distributions [27].
Alternative approaches are to use spatial sensitivity analysis with a variety of areal units to
estimate the uncertainty of correlation, or to use the most granular spatial unit available
as we did by leveraging the census tract. The second is the ecological fallacy, which is the
inference about the nature of individuals deduced from groups or surroundings [28]. An
example is attempting to deduce an individual patient’s blood pressure from the average
blood pressure of a county population, where group level findings may not be present at
the individual level. Acknowledging and applying these limitations to the interpretation of
geocoded data adds to the rigor of the research.
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4.2. Privacy

The analysis of geocoded patient data should be accompanied by strict data safeguards.
Though the geographic mapping of clinical patient data is powerful, it should be done in
a way to prevent the unintentional loss of patient anonymity. With the electronic media
and the Internet providing instant access to personal information, the risk for reverse
engineering a map to identify an individual patient is very real [29]. There are approaches
to geo-masking patient data while still producing an impactful map, if one is needed at all.

4.3. Clinical Applications

Address history and census tract level vulnerability raise several potential translational
applications through risk stratification and cluster identification. For example: (a) At risk
patients could be followed up in outpatient clinic at shorter time intervals to ensure closer
attention by a clinical team; (b) clinicians could personalize medication use through more
proactive use of antibiotics or antivirals to prevent pneumonias; (c) if a clinician knew
a patient resided next to a major highway or large factory where air pollution levels
were elevated, this could lead to earlier interventions such as screening for lung diseases,
counseling the patient on how to reduce exposure to air pollution, or helping the patient
obtain a home air filtration system; (d) cluster identification: there is an additional need
for real time chronic disease monitoring in the community which could be met through
GISc [30,31]. Chronic disease detection in a community may take months or years to
observe, which pales in comparison to the pace of detection in more acute settings. For
example, hospitals frequently track the number of nosocomial infections within a hospital
on a week to week basis. An uptick in cases in a specific ward would lead to rapid responses
and interventions to reduce the infection rate. Similarly, serious epidemic infections in the
community, such as COVID-19, have been closely tracked, mapped, and reported at a near
daily pace to inform communities on risk levels and hospital preparedness. However, less
acute diseases such as diabetes, hypertension, pneumonias, or lung diseases have not been
surveilled as closely. Imagine if an EHR could track the number of cases of COPD within a
census tract that an individual patient is from and display this in real time on a computer
screen during the outpatient visit. Then, when reviewing clinical data, the physician
also sees the spatial information which immediately informs her pre-test probability and
decision-making on the screening, testing, and counseling for potential COPD in this
individual patient. This workflow still requires a framework for implementation and use,
but would be a major advancement for both the clinical and spatial sciences. Perhaps in
the future we may have a whole new field unto itself, which transforms the Geographic
Information Sciences into the Geographic Translational Sciences. In this new paradigm,
geomarkers and geobanks would become an integrated part of real time clinical care and
an essential vital sign to aid in the personalization of lung transplant healthcare.

5. Conclusions

Our long-term goal is to improve the suboptimal survival of LT recipients, and to
ensure this improvement occurs regardless of place. We explored the possibility of creating
a geobank where residential history was codified as both current and previous home ad-
dresses and employing geomarkers to understand clinical outcomes. Understanding both
the location and duration of residence in a place is a necessary link to understanding socioe-
conomic, geographic, and environmental disparities which can influence health outcomes.
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