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Simple Summary: Tissue heterogeneity is one of the major problems in cancer genomics. Thus,
we developed and conducted an RNA-Seq and ChIP-Seq integrative analysis of clinical lung tissue
samples with the isolation of specific cell populations using laser-microdissection microscopy (LMD).
The transcriptomic profile was successfully captured and somatically altered regions marked by
histone H3 lysine 4 trimethylation (H3K4me3) were identified in lung cancer. We also observed
the differential expressions of cancer-related genes near the altered proximal H3K4me3 regions,
while altered distal H3K4me3 regions were overlapped with enhancer activity annotations of cancer
regulatory genes. Additionally, proximal tumor-gained promoters were associated with the core
components of polycomb repressive complex 2. Our study demonstrates the practical workflow of
using LMD on clinical samples for integrative analyses, which improves the overall understanding
of genetic and epigenetic dysregulation of malignancy.

Abstract: Our previous integrative study in gastric cancer discovered cryptic promoter activation
events that drive the expression of important developmental genes. However, it was unclear if such
cancer-associated epigenetic changes occurred in cancer cells or other cell types in bulk tissue samples.
An integrative analysis consisting of RNA-Seq and H3K4me3 ChIP-Seq was used. This workflow was
applied to a set of matched normal lung tissues and non-small cell lung cancer (NSCLC) tissues, for
which the stroma and tumor cell parts could be isolated by laser-microdissection microscopy (LMD).
RNA-Seq analysis showed subtype-specific differential expressed genes and enriched pathways
in NSCLC. ChIP-Seq analysis results suggested that the proximal altered H3K4me3 regions were
located at differentially expressed genes involved in cancer-related pathways, while altered distal
H3K4me3 regions were annotated with enhancer activity of cancer regulatory genes. Interestingly,
integration with ENCODE data revealed that proximal tumor-gained promoters were associated
with EZH2 and SUZ12 occupancies, which are the core components of polycomb repressive complex
2 (PRC2). This study used LMD on clinical samples for an integrative analysis to overcome the tissue
heterogeneity problem in cancer research. The results also contribute to the overall understanding of
genetic and epigenetic dysregulation of lung malignancy.

Keywords: RNA-Seq; ChIP-Seq; NSCLC; H3K4me3; laser-microdissection; lung cancer; integrative
analysis; tissue heterogeneity; transcriptomic; epigenomic

1. Introduction

Gene expression abnormality is one of the main characteristics of cancer cells and is
regulated at multiple levels. At the genomic level, many studies have taken great efforts to
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understand changes in cancer gene expressions by identifying the genetic mutations. Some
of the well-characterized genes carrying mutations include TP53, RB1, EGFR, and KRAS,
which are frequently mutated in various cancer types, whereas others are rare and/or
restricted to one cancer [1]. Distinct from genetic mutations, epigenetic regulations refer to
modifying gene expression without permanent changes in the genomic sequence. They
are preferentially applied in cancer cells given that epigenetic alterations are reversible
and regulated faster compared to genomic evolution [2]. Advances in high-throughput
technologies have enabled integrative genomic and epigenomic analyses, which have un-
raveled many novel molecular aberrations and network alterations in cancer. In particular,
our previous integrative study in gastric cancer discovered cryptic promoter activation
events that drive the expression of important developmental genes [3]. However, it was
unclear if such cancer-associated epigenetic changes occurred in cancer cells or other cell
types in bulk tissue samples. The use of bulk tissue, which is not precisely characterized
in terms of histology, has long been the basis for molecular analysis. Undoubtedly, this
approach is insufficient for a detailed analysis of molecular alterations, which might be
restricted to a specific cell population such as tumor, normal, stroma, or epithelial cells.

In this study, we developed a workflow for an integrative RNA-sequencing (RNA-Seq)
and chromatin immunoprecipitation sequencing (ChIP-Seq) analysis of clinical tissue sam-
ples in combination with the isolation of specific cell populations by laser-microdissection
microscopy (LMD). A contamination-free and very exact selection is the main advantage
of LMD and the published use of microdissection has enormously increased in the last
decade [4]. As a pilot study, we applied this workflow to a set of lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) cases in which matched normal lung
tissue, stroma cell, and tumor cell parts can be isolated. LUAD and LUSC are the most
common subtypes of non-small cell lung cancer (NSCLC) [5]. Despite the recent advances
in NSCLC therapies, the high mortality of NSCLC patients has not significantly decreased
over the years [6]. Thus, it is important to precisely elucidate the mechanisms involved in
NSCLC at molecular levels to develop more effective and safe treatment strategies. How-
ever, most lung tumors have supporting stroma cells including infiltrating inflammatory
cells, neovascular cells, and fibroblasts [7]. These adjacent nonmalignant components
contribute to the lung tumor microenvironment, while certainly having a distinct gene
expression profile from the tumor cell part [8].

We hypothesized that our study could provide more precise gene expression and
histone modification profiles by enhanced cell selection using LMD for clinical NSCLC
tissue samples. Therefore, first, we performed RNA-Seq for gene expression profiling. As
expected, the transcriptomic profile of NSCLC was successfully captured, and confirmed
the well-known significant differential expressed genes (DEGs) and enriched pathways
of two subtypes of NSCLC, LUAD and LUSC. Moreover, comparison with the Cancer
Genome Atlas (TCGA) (https://tcgadata.nci.nih.gov/tcga, accessed on 20 July 2019) sug-
gested that our RNA-Seq results were not only representative for NSCLC, but also more
precise by enhanced cell selection using LMD. Next, we examined epigenetic alteration
in NSCLC by using ChIP-Seq on histone H3 lysine 4 trimethylation (H3K4me3) marks.
Altered H3K4me3 may represent abnormal epigenetic control that can cause changes in
cancer-associated gene expression and in the regulation of fundamental cancer-associated
functions including growth and metastasis [9,10]. By comparing the H3K4me3 profile of
lung tumor and normal tissues, we identified hundreds of somatically altered promoters.
Interestingly, we observed cancer-related DEGs located at proximal H3K4me3 regions,
while altered H3K4me3-marked promoters distant from transcription start sites (TSSs) were
annotated with enhancer activity of cancer regulatory genes. Moreover, integration with
ENCODE data revealed that proximal tumor-gained promoters were associated with EZH2
and SUZ12 occupancies, which are the core components of PRC2 (polycomb repressive
complex 2).

Taken together, this study demonstrates a practical workflow that uses LMD on clinical
samples for an integrative RNA-Seq and ChIP-Seq analysis, which highlights the gene
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and pathway signatures as well as the annotation of somatically altered H3K4me3 regions
in NSCLC. Our results contribute to the overall understanding of genetic and epigenetic
dysregulation of lung malignancy.

2. Materials and Methods
2.1. Tissue Samples and Laser-Microdissection Microscopy (LMD) Isolation

Post-surgical tissue specimens stored in the Pathology Department and Tsukuba
Human Tissue Biobank at the University of Tsukuba Hospital (Ibaraki, Japan) were used.
A normal tissue portion was collected at the same time as the lung cancer tissue portion
from each post-surgical material. The lung cancers examined were classified according
to the World Health Organization (WHO) classification (4th ed.) [11]. Age and gender
information of patients from whom the samples were collected are provided in Table S1
with the range and mean values for age.

2.2. RNA-Sequencing

Fresh-frozen tissue samples were partially thawed in 1% formaldehyde/PBS (Phosphate-
buffered saline) and continued to fix for 10 min at room temperature. Fixed tissue was
rinsed in PBS and embedded in OCT (optimal cutting temperature) compound (4583 Tissue-
Tek, Sakura Finetek, Tokyo, Japan). Tissue samples were sectioned (10 µm) and placed
on membrane slides (Pen-membrane, Leica, Tokyo Japan). Sections were stained with
hematoxylin and dehydrated by ethanol. Tissue parts were obtained by LMD (LMD6000,
Leica) [12]. For the isolation of total RNA, sections were processed with an RNAeasy FFPE
Kit (73504, Qiagen, Hilden, Germany). RNA yield and degradation status were monitored
by a Bioanalyzer RNA Pico Kit (5067–1513, Agilent Technologies, Santa Clara, CA, USA).
Total RNA samples (quantities in ng; Normal: range = 10.5–64.7, mean = 33.6; Tumor:
range = 2.2–98.2, mean = 42.7; Stroma: range = 4.2–110, mean = 28.5) were converted
into sequencing libraries using a SMARTer Stranded Total RNA Sample Prep Kit (635005,
Takara Bio, Shiga, Japan). Sequencing was performed with Illumina NextSeq500 (Illumina,
San Diego, CA, USA) to obtain 2 × 36-base reads.

2.3. RNA-Seq Analysis

As a pilot study, we first applied the LMD–RNA-Seq integrative approach to ten cases
of NSCLC including six LUAD and four LUSC. For each case, normal lung tissue, stroma
cell, and tumor cell parts were isolated by LMD. Typical scout slide images including rep-
resentative margins outlined for microdissection are shown in Figure 1a. After sequencing,
all RNA-Seq raw fastq data were mapped to the human reference genome (hg19, Genome
Reference Consortium GRCh37) using Burrows–Wheeler Aligner (BWA) software [13] (ver-
sion 0.7.12) and the ‘mem’ algorithm with the default settings (BWA-MEM). Annotation
data were downloaded from the UCSC website (http://genome.uscs.edu, accessed on
8 June 2019). Raw counts were generated using featureCounts [14] (version 2.0.0) with
‘stranded’ and ‘paired-end’ reads options. Genes with less than 10 raw counts in every
sample were eliminated from further analysis. Normalized counts were created, and sig-
nificant DEGs between the tumor and normal samples were identified using the ‘DESeq2’
package [15]. An absolute fold change ≥ 2 and false discovery rate (FDR) adjusted p-value
≤ 0.01 were used to classify the DEGs. Heatmaps were generated using the ‘Complex-
Heatmap’ package [16]. Pathway analysis was performed and plots were created using the
‘clusterProfiler’ package [17]. All packages were run on RStudio (https://rstudio.com/, ac-
cessed on 30 September 2018) with R version 3.6.3 (The R Project for Statistical Computing,
Vienna, Austria).

Due to the small sample size, we intended to compare our RNA-Seq results with a
bigger dataset from TCGA. Hence, LUAD and LUSC samples were downloaded from
TCGA Data Portal (https://gdc.cancer.gov/, accessed on 20 July 2019) in the form of
raw count files (file type: htseq.count.gz). At the time of conducting this analysis, there
were a total of 1104 files available and retrieved from TCGA (512 files for LUAD and 512
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files for LUSC). These files included ‘primary tumor’ and ‘solid tissue normal’ metadata
descriptions from 980 lung cancer cases, which means that there were some cases with
multiple tumor files as well as some cases without matched normal files. We then collected
one representative tumor file and one matched normal file from those cases that had
matched normal tissue files. Eventually, we had 101 TCGA cases (n = 52 for LUAD pairs
and n = 49 for LUSC pairs) for further analysis (Table S2). Normalization and DEGs analysis
of TCGA data were the same as our RNA-Seq analysis described above.

General workflow of RNA-Seq analysis is shown in Figure S1.

Figure 1. (a) Representative images of specimens undergoing laser microdissection (LMD). The
examples of target areas are outlined with red line marks. The two lung cancer subtypes are
adenocarcinoma (top row) and squamous cell carcinoma (bottom row). Scale Bar: 50 µm, 100 µm and
320 µm. (b) Representative view of RNA-Seq visualization captured using the UCSC genome browser.
Case 19 is shown including the normal sample (19N), tumor sample (19T), and stroma sample (19S).
The tumor-specific RNA-Seq signal is highlighted in the grey box. (c) PCA plot generated using
the normalized counts (DESeq2 Methods). Lung tumor subtypes were separately clustered (red
dotted circles).

2.4. Chromatin Immunoprecipitation Sequencing (ChIP-Seq)

LMD tissue parts from serial tissue sections were used for the Nano-ChIP assay after
RNA purification [18]. Dissociated tissues were lysed in 200 µL lysis buffers (50 mM Tris-
HCl pH8.0, 10 mM EDTA, 1% sodium dodecyl sulfate (SDS)) and sonicated (total 8 min,
30 s pulses with 30 s interval) using a Bioruptor (Diagenode, Toyama, Japan). Sonicated
samples were diluted with 10 × volume of dilution buffer (10 mM Tris-HCl pH8.0), 140 mM
NaCl, 1 mM EDTA, 1% Triton X-100, 0.01% SDS [18]) containing 0.1% SDS and precleared
with Dynal Magnetic beads (Invitrogen, Life Technologies, Carlsbad, CA, USA). Chromatin
solutions were centrifuged for 10 min at 10,000 r.p.m. and the supernatant was recovered.
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ChIP was performed overnight using K4me3 antibody (07–473, Millipore, 1 µL per ChIP)
at 0.1% SDS and 140 mM NaCl. ChIP beads were washed with dilution buffer, then once
with Tris-EDTA (TE) buffer and collected on a magnetic stand. Reverse crosslinking was
performed with Pronase (Roche, Basel, Switzerland) at 42 ◦C for 2 h, then 68 ◦C for 6 h.
After recovery of ChIP and input DNA by phenol–chloroform–isoamyl alcohol extraction
and ethanol precipitation, DNA was used for sequencing library construction with the
NEBNext Ultra II DNA Library Prep Kit for Illumina (E7645, New England Biolabs, Ipswich,
MA, USA). Sequencing was performed with Illumina NextSeq500 (Illumina, San Diego,
CA, USA) to obtain 2 × 36-base paired-end reads.

2.5. ChIP-Seq Read Mapping and Peaks Calling

For ChIP-Seq, we used tumor samples from six cases out of ten cases that were used in
RNA-Seq. These six cases included three cases from squamous cell carcinoma (sample IDs:
13, 14, and 15) and three cases from adenocarcinoma (sample IDs: 16, 18, and 19). Due to the
low number of cells in the normal samples collected from LMD (as shown in Figure S1b), we
could not obtain comparable ChIP-Seq data quality. Therefore, we generated a unified set
of H3K4me3 ChIP-Seq signals for this study by merging six normal lung tissue H3K4me3
ChIP-Seq samples collected from the ENCODE database (https://www.encodeproject.org,
accessed on 20 July 2019) with our six NSCLC samples. Information on these six cases
is shown in Table S3. ChIP-sequencing tags were mapped against the human reference
genome (hg19) using Burrows–Wheeler Aligner (bwa) software [12] (version 0.7.12) and
the ‘mem’ algorithm with the default settings. Uniquely mapped tags were used for peak
calling by CCAT [19] version 3.0. Peak regions were filtered by the minimum number of
read counts as 30 and the minimum score as 5. Peak regions from all tissue samples were
pooled, and overlapping peak regions were merged to create a total set of peak regions for
downstream analysis (representative views and descriptions of merging peaks are shown in
Figure S2). We used the ENCODE blacklist [20] to remove a comprehensive set of problem-
atic regions from the human genome. To quantify peak heights, we analyzed the ChIP-Seq
data using featureCounts [13] (version 2.0.0). Raw read count values were estimated for
our set of H3K4me3-marked promoter regions. Batch effects were adjusted, and significant
differential ChIP-Seq signals were identified using the ‘DESeq2’ package [14] after TPM
(Transcripts Per Kilobase Million) transformation of raw read counts. Heatmaps and plots
were generated using the ‘ComplexHeatmap’ and ‘clusterProfiler’ packages [15,16], respec-
tively. All packages were run on RStudio (rstudio.com) with R version 3.6.3. CAGE data of
adult human lung tissue samples (https://fantom.gsc.riken.jp/5/sstar/FF:10019-101D1)
were downloaded from the FANTOM5 database [21] for comparison. General workflow of
ChIP-Seq analysis is shown in Figure S3.

2.6. Transcription Factor Binding Sites (TFBSs) Analysis (ENCODE)

Transcription factor (TF) binding regions were extracted from the transcription factor
binding site (TFBS) cluster file (wgEncodeRegTfbsClusteredV3) downloaded from the
UCSC genome browser [22], which corresponded to peaks called from the ChIP-Seq
data for 338 TFs in 130 cell types performed by the ENCODE consortium [23]. We then
intersected the H3K4me3 regions with the TF binding regions and determined the number
of TFs found in each category of H3K4me3 sets (gained.TSS, loss.TSS, and altered.noTSS).
Each overlapping TF was counted only once, regardless of the number of different cell
types in which it was found. We then compared the number of occurrences of TFs between
each of the above categories of the H3K4me3 and all H3K4me3 regions by Fisher’s exact
test. The detailed workflow of this analysis is shown in Figure S4.

https://www.encodeproject.org
https://fantom.gsc.riken.jp/5/sstar/FF:10019-101D1


Cancers 2021, 13, 1719 6 of 20

3. Results
3.1. Transcriptomic Profiles of Non-Small Cell Lung Cancer (NSCLC) Were Successfully Captured
Using LMD-Isolated Samples

In total, more than 1 billion paired-end raw reads (36-bp in length) were generated
for 30 samples, ranging from 32.9 to 53.2 million reads per sample (Figure S5a). To align
the clean reads to the reference genome, we employed the state-of-the-art and widely
used aligner, BWA-MEM (see Section 2.3). On average, 91% of all the clean reads were
aligned to the reference genome (Figure S5b). As shown in Figure S6, the broad view of
our RNA-Seq data on the UCSC browser suggested that we successfully obtained the gene
expression signals for not only the tumor and normal samples, but also stroma samples.
This improved our confidence to identify additional tissue-specific signals. For example,
we observed that the HOOK2 gene in case 19 was highly expressed in the tumor sample
(19T), but not in its matched normal (19N) and stroma (19S) samples, while those genes
around HOOK2 (SNORD41, TRIR, and JUNB) had similar levels of expression in all three
samples (Figure 1b). A summary of the RNA-sequencing and mapping of the 30 samples
is presented in Table S4. Principle component analysis (PCA) was performed with the
normalized counts (based on the DESeq2 method) to investigate if samples from the same
tissue type clustered together. We found normalized data formed three distinct clusters
in the PCA-plot: normal, stroma, and tumor. As expected, tumor samples were correctly
divided into two groups as these two lung cancer subtypes are reported to have distinct
genomic profiles (Figure 1c). A total of 28,723 unique genes were detected after removing
genes with raw count ≤10 in each tissue sample from the analysis. Figure 2a shows the
heatmap that represents the 4118 DEGs between tumor versus normal tissues (see also
Table S5). For this analysis, we used both LUAD and LUSC in the tumor tissue group
versus the normal group. However, heatmap clusters still presented the separation of gene
expression patterns between these two NSCLC subtypes. On the other hand, the expression
of stroma samples on the heatmap showed a sample-wise inconsistency, suggesting that
these DEGs are significant for LMD-isolated tumor parts.
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Figure 2. (a) Heatmap representation of 4118 genes of 30 samples (10 tumor, T; 10 normal, N; and 10 stroma, S) from 10 
cases (Table S4), filtered by FDR-adjusted p-value < 0.01 and absolute fold change ≥ 2. Volcano plot of DEGs between 
LUAD vs. normal (b), and LUSC vs. normal (c). With log2 (Fold change) as the x-axis and log10 (adjusted p-value) as the 
y-axis, the volcano plot was made according to the gene expression level. The red dots indicate upregulated genes, the 
blue dots indicate downregulated genes, and the grey dots indicate non-significant genes. The top 15 up/downregulated 
genes (ranked by fold change) highlighted with their gene names. (d) KEGG pathway enrichment analysis of significant 
up/downregulated genes in LUAD and LUSC. The color and size of the dots represent the range of adjusted p-value and 
the number of DEGs mapped to the indicated pathways, respectively. The top 10 enriched pathways are shown in the 
figure. Boxplot of mean expression levels for four indicated genes COL1A1, COL1A2, IGLC3, and IGHG3 of: (e) this study’s 
normal samples (n = 10), stroma samples (n = 10), and tumor samples (n = 10); (f) TCGA data normal samples (n = 101), 
and tumor samples (n = 101). Individual values are presented as colored circles. Red circles indicate LUAD subtypes, light 
green circles indicate LUSC subtypes. 

3.2. RNA-Seq Analysis Showed Subtype-Specific Differential Expressed Genes (DEGs) and En-
riched Pathways in NSCLC 

Figure 2. (a) Heatmap representation of 4118 genes of 30 samples (10 tumor, T; 10 normal, N; and 10 stroma, S) from
10 cases (Table S4), filtered by FDR-adjusted p-value < 0.01 and absolute fold change ≥ 2. Volcano plot of DEGs between
LUAD vs. normal (b), and LUSC vs. normal (c). With log2 (Fold change) as the x-axis and log10 (adjusted p-value) as the
y-axis, the volcano plot was made according to the gene expression level. The red dots indicate upregulated genes, the
blue dots indicate downregulated genes, and the grey dots indicate non-significant genes. The top 15 up/downregulated
genes (ranked by fold change) highlighted with their gene names. (d) KEGG pathway enrichment analysis of significant
up/downregulated genes in LUAD and LUSC. The color and size of the dots represent the range of adjusted p-value and
the number of DEGs mapped to the indicated pathways, respectively. The top 10 enriched pathways are shown in the figure.
Boxplot of mean expression levels for four indicated genes COL1A1, COL1A2, IGLC3, and IGHG3 of: (e) this study’s normal
samples (n = 10), stroma samples (n = 10), and tumor samples (n = 10); (f) TCGA data normal samples (n = 101), and tumor
samples (n = 101). Individual values are presented as colored circles. Red circles indicate LUAD subtypes, light green circles
indicate LUSC subtypes.
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3.2. RNA-Seq Analysis Showed Subtype-Specific Differential Expressed Genes (DEGs) and
Enriched Pathways in NSCLC

High quality RNA-Seq from LMD showed clear separation between cell types and
NSCLC subtypes (Figure 2a). Therefore, we wanted to further investigate the differential
gene expression profiles of LUAD (n = 6) and LUSC (n = 4). After applying a stringent
filtering approach (see Section 2.3) that compared NSCLC subtypes with their matched
normal samples (T vs. N), we identified 3211 DEGs of LUAD and 2771 DEGs of LUSC.
Among the top highly expressed genes for each subtype (Figure 2b,c), claudin 2 (CLDN2),
secretoglobin 3A2 (SCGB3A2), and mucin 21 (MUC21) have been well reported in the lit-
erature as potential diagnostic biomarkers in lung adenocarcinoma [24–26]; meanwhile,
keratin family members (KRT6A, KRT6B, KRT6C, KRT14, KRT16) have also been reported
to be upregulated only in lung squamous cell carcinoma [27–30]. The details of the top 15
most up/downregulated genes of the two NSCLC subtypes ranked by fold change (FC)
are provided in Table S6. The KEGG pathway analysis on significant up-/downregulated
genes revealed the differences and similarities between LUAD and LUSC (Figure 2d). Both
NSCLC subtypes enriched for the biosynthesis of amino acids and carbon metabolism
in upregulated pathways and focal adhesion and cell adhesion molecules (CAMs) in
downregulated pathways. Other highly significant enriched pathways included mucin
type O-glycan biosynthesis (upregulated in LUAD), cell cycle (upregulated in LUSC),
cGMP-PKG signaling pathway (downregulated in LUAD), and viral myocarditis (down-
regulated in LUSC). The full results of the KEGG enriched pathway analysis including
gene sets are listed in Table S7. These results indicate that our RNA-Seq from 10 cases of
LMD-isolated samples were good representatives for capturing gene expression profiles of
NSCLC samples.

3.3. RNA-Seq Results from LMD-Isolated Tumor Samples Were Concordant with the Cancer
Genome Atlas (TCGA) Reference Dataset While Excluding Stroma Parts

We then compared our RNA-Seq findings with those derived from the TCGA (https:
//gdc.cancer.gov/) for LUAD and LUSC versus matched normal sample comparisons.
These RNA-Seq data were queried for tumor versus normal discrimination of individual
transcripts and yielded 9748 and 13,402 significant genes (FDR-adjusted p-value ≤ 0.01,
|fold change| ≥ 2) that were tumor discriminant in LUAD and LUSC, respectively. Almost
all (58/60) of the top 15 up/downregulated genes of NSCLC subtypes in the present
study (excluding pseudogenes) also exhibited nonzero readings in the TCGA RNA-Seq
batch 101 dataset. The concordance in the qualitative direction of fold-change (up- or
downregulated) between the present data (both LUAD and LUSC) and data from TCGA is
further highlighted by the finding that 53/58 (91.4%) of overlapping genes were altered in
the same direction (Table S6). The remaining five genes were found to have statistically
insignificant changes in the TCGA data. However, it is worth mentioning that the batch 101
TCGA data are all macroscopic (bulk) tissue samples, which include supporting stroma cells.
Therefore, we decided to check the mRNA expression profile of our LMD-isolated stroma
samples. We hypothesized that our LMD-isolated tumor samples were less contaminated
as they were well separated from the stroma parts.

Using similar transcript count quantification and normalization methods, we found
highly expressed genes in our stroma samples, some of which are typically used as marker
genes for stroma cell subtyping. For example, collagen type I alpha 1 (COL1A1) and collagen
type I alpha 2 (COL1A2) genes are commonly used as fibroblast and myofibroblast markers,
while immunoglobulin lambda constant 3 (IGLC3) and immunoglobulin heavy constant gamma
3 (IGHG3) are marker genes for B cells. Noticeably, these genes showed minimal or low
expression in our LMD-isolated tumor and normal samples, but their expressions in TCGA
tumor samples were relatively high (Figure 2e,f). These results suggest that our NSCLC
RNA-Seq data was not only representative of transcriptomic profiles, but also more precise
by enhanced cell selection using LMD.

https://gdc.cancer.gov/
https://gdc.cancer.gov/
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3.4. Somatically Altered H3K4me3-Marked Promoters in NSCLC Were Successfully Identified
Using LDM-Isolated Samples

Even though there are established and distinct molecular subtypes of NSCLC as we
described in the previous section, because of limited sample sizes, we elected in the current
study to identify promoter alterations present in multiple NSCLC tissues relative to normal
lung tissues irrespective of subtype. Focusing on recurrent alterations also had the benefit
of capturing the relevant variations with relatively small sample size. The ChIP-sequencing
produced an average of 56 million reads per sample for the six NSCLC cases of this study
and 23 million reads per sample for the six ENCODE normal lung samples. Furthermore,
over 93% of the reads were properly mapped to the human reference genome (range: 73–
99%), which surpassed the ENCODE recommended guidelines for ChIP-Seq quality [31]
(Table S8). We successfully obtained genome-wide chromatin profiles for both normal and
cancer tissues (Figure S2) and predicted 17,752 putative promoters marked by H3K4me3.

Comparison to FANTOM5 CAGE (Cap Analysis of Gene Expression)-defined promot-
ers of lung tissues (see Methods) supported a large proportion of our H3K4me3-marked
promoters (~88%). To identify somatically altered promoters in NSCLC, we quantified
ChIP-Seq reads for the merged peak regions and compared normalized read counts be-
tween NSCLC and ENCODE normal lung samples. We identified 645 promoters exhibiting
differential H3K4me3 modifications between NSCLCs and ENCODE normal lung tissues
(tumor-associated promoters), of which 351 were tumor-gained promoters (upregulated
H3K4me3 signal in tumor) (fold change ≥ 2 and FDR-adjusted p-value ≤ 0.05) and 294
were tumor-loss promoters (downregulated H3K4me3 signal in tumor) (fold change ≤ −2
and FDR-adjusted p-value ≤ 0.05) (Table S9). Figure 3a is an example of a tumor-gained
promoter (increased H3K4me3) at the EPPK1 gene, a component of EGF (epidermal growth
factor) signaling.
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Figure 3. (a) Example of a tumor-gained function promoter. The UCSC genome tracks of the EPPK1 TSS (grey shaded box)
highlight the gain of H3K4me3 signals in NSCLC samples (13T, 14T, 15T, 16T, 18T, 19T) compared with ENCODE normal
lung samples (EN1, EN2, EN3, EN4, EN5, EN6). (b) Determining overlaps between 645 tumor-altered H3K4me3 regions
with ENSEMBL TSS (+/− 1 kb) regions. A total of 444 (69%) tumor-altered H3K4me3 regions overlapped while 201 (31%)
were outside ENSEMBL TSS. (c) Heatmap of RNA-Seq read densities (row scaled) of 310 tumor vs. normal DEGs, whose
TSSs intersected with tumor-altered H3K4me3 regions. (d) Cnet-plot from the KEGG pathway enrichment analysis of these
310 DEGs. KEGG pathways are shown with beige dots. (e) A capture of the UCSC genome illustrating the tumor-gained
H3K4me3 signals (grey shaded boxes) at HMGA2’s TSS and potential enhancer regions defined by the GeneHancer database
(GeneHancer IDs: GH12J065821 for the promoter, GH12J065740 for the enhancer). The two RNA tracks are RNA-Seq signals
of tumor and normal samples of case 14. The two H3K4me3 tracks are ChIP-Seq signals of the case 14 tumor sample and
ENCODE normal sample EN5.
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3.5. Proximal Tumor-Altered H3K4me3 Regions Were Found at Cancer-Related DEGs

We further analyzed the H3K4me3-marked promoters (hereafter referred to as “pro-
moters”) with respect to the proximity to known genes and focused on the tumor-associated
promoters. Then, we defined proximal H3K4me3 regions as those that overlapped with
transcription start sites (TSSs) that mapped close (<1 kb) to TSS data retrieved from EN-
SEMBLE, one of the major transcript databases. About 70% (444/645) of tumor-associated
H3K4me3-marked regions overlapped with TSS annotation (Figure 3b). Previous literature
has reported that H3K4me3 mostly localized to the promoter-proximal region (1–2 kb
from the TSS) and was permissive for active transcription [32,33]. We then analyzed the
expression of genes that overlapped with tumor-associated promoters using RNA-Seq data
previously shown in this study. Nearly 50% (313/645) of altered H3K4me3 regions were
located at the 310 genes that were differentially expressed between tumor versus normal
samples (Table S10). Unsupervised clustering of the RNA-Seq data for these 310 genes
showed an interesting observation between tumor-altered H3K4me3 regions and gene
expression levels (Figure 3c). Particularly, most of the tumor-loss promoters (‘loss.TSS’),
meaning loss of H3K4me3 signals in tumor tissues, showed higher gene expression in
normal compared to tumor counterparts. In contrast, most genes with tumor-gained pro-
moters (‘gained.TSS’) were highly expressed in tumor samples (especially, regarding their
NSCLC subtypes). We next examined the pathways enriched by these DEGs associated
with tumor-altered H3K4me3 histone marks. There were four cancer-related pathways
significantly enriched by 24 genes (Figure 3d). These pathways consisted of the well-known
PI3K-Akt signaling pathway and three other pathways associated with cell matrix adhe-
sions in cancer: extracellular matrix (ECM) receptor interaction, cell adhesion molecules
(CAMs), and focal adhesion (Table S11). This pathway analysis result also highlights
several DEGs associated with tumor-altered H3K4me3 histone marks including downreg-
ulated (tumor vs. normal) tumor suppressor genes: Integrin alpha8 (ITGA8) [34], Fms-like
tyrosine kinase-1 (FLT1) [35], junctional adhesion molecule 2 (JAM2) [36], calcium voltage-gated
channel auxiliary subunit alpha2delta2 (CACNA2D2) [37], and dystrophin (DMD) [38]; and up-
regulated potential oncogenes: p-cadherin (CDH3) [39], claudin-1 (CLDN1) [40], desmoglein-2
(DSG2) [41], ephrin A3 (EFNA3) [42], integrin subunit beta 4 (ITGB4) [43], integrin subunit beta
8 (ITGB8) [44], and laminin gamma 2 (LAMC2) [45].

3.6. Altered H3K4me3-Marked Promoters Distant from TSSs Were Annotated with Enhancer
Activity of Cancer Regulatory Genes

Recent studies reported that intergenic H3K4me3 also marks enhancers [46]. We
speculated that about 31% (201/645) of tumor-altered H3K4me3 regions, which do not
overlap with TSSs (‘altered.noTSS’ promoters), may represent a subclass of enhancers in
tumor samples. GeneHancer was recently introduced as a comprehensive database of
human enhancers and their inferred target genes [47]. GeneHancer revealed that 152/201
(>75%) of ‘altered.noTSS’ promoters intersected with enhancers and then predicted the
corresponding targeted genes (Table S12). Comparison to our RNA-Seq data showed that
126 out of those targeted genes were differentially expressed (T vs. N). Gene ontology
(GO) analysis for these DEGs suggested the most significant molecular function term was
DNA-binding transcription activator activity (Figure S7; Table S13). Noticeably, the gene
list enriched for this GO term consisted of transcription factors, which were previously
reported to be related to cancer progression and development. This includes oncogenes
such as high mobility group A2 (HMGA2) [48], SRY-Box transcription factor 2 (SOX2) [49],
forkhead box A1 (FOXA1) [50]; and potential tumor suppressors such as zinc finger protein 750
(ZNF750) [51], GATA binding protein 2 (GATA2) [52], and grainyhead like transcription factor 1
(GRHL1) [53]. We took a capture on the UCSC browser at the genomic region featuring the
HMGA2 gene as a representative example (Figure 3e). HMGA2 is a transcription factor that
influences a variety of biological processes including the cell cycle process, DNA damage
repair process, apoptosis, senescence, epithelial–mesenchymal transition, and telomere
restoration. Overexpression of this gene has been observed in several cancers such as
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pancreas, gastric, lung, ovarian, breast, and other cancers [48]. In this study, HMGA2 gene
expression was significantly higher in the LUSC samples than matched normal samples,
and tumor-gained H3K4me3 signals were found at the promoter and enhancer regions of
this gene (Figure 3e). These results suggest that altered promoters distant from ENSEMBL
TSS could be associated with the enhancer activity of cancer regulatory genes. However,
further experiments are needed to test this hypothesis.

3.7. Proximal Tumor-Gained Promoters Associated with EZH2 and SUZ12 Occupancies and
Enriched for Developmental Genes

To identify potential oncogenic mechanisms driving these tumor-associated promoters,
we intersected the genomic locations of H3K4me3 marked promoters with transcription
factor binding sites (TFBS) of 338 transcription factors from the ENCODE consortium [23].
Proximal tumor-gained promoters (‘gained.TSS’ regions) significantly enriched with EZH2
(p-value < 1.6 × 10–16, Fisher’s exact test) and SUZ12 (p-value < 3.5 × 10–15, Fisher’s exact
test) binding sites (Figure 4a; Table S14). Both EZH2 and SUZ12 are the core components
of the polycomb repressor complex 2 (PRC2) epigenetic regulator complex [54]. This result
is concordant with previous studies in gastric cancer, suggesting that cancer-associated
promoters overlap with regions targeted by PRC2 epigenetic regulator complex and are
particularly sensitive to EZH2 inhibition [3,55]. Many studies have shown that PRC2 can
have both oncogenic and tumor-suppressive functions in a context-dependent manner [56].
Moreover, the core components, EZH2 and SUZ12, have been reported to have oncogenic
roles independent of PRC2 in several cancer types including NSCLC [57,58].

In this study, EZH2 gene expression was significantly upregulated in NSCLC samples
(Figure 4b). In addition, we wanted to obtain more insight by examining those genes
whose TSSs exhibited tumor-gained H3K4me3 signals and EZH2/SUZ12 TFBS. We then
performed GO enrichment analysis for that gene list. Interestingly, the results showed the
strong enrichment in many biological development processes (Figure 4c). Furthermore, the
protein–protein interaction networks analysis of the gene list by STRING [59] suggests EP-
CAM is the primary functional interacting node that has the highest number of connections
(Figure 4d). In this study, a H3K4me3-marked signal was found at the EPCAM promoter
and positively correlated with high RNA-Seq expression in the tumor samples (Figure 4d).
Additionally, EZH2 TFBS was also observed at EPCAM TSS (Figure 4e). Taken together,
these results highlight the association between proximal tumor-gained promoters with
EZH2 and SUZ12 occupancies, which potentially affects the expressions of developmental
regulatory genes such as EPCAM.
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Figure 4. (a) Binding enrichment of ReMap-defined transcription factor binding sites at genomic regions exhibit H3K4me3
signals. Transcription factors were sorted according to their percentage of occurrences at all H3K4me3 regions. Proximal
tumor-gained promoters (gained.TSS) significantly enriched with EZH2 and SUZ12 binding sites (p-value < 0.01, one-tailed
Fisher’s exact test). The complete TF list is presented in Table S14. (b) Boxplot of the median expression levels for EZH2 in
this study’s normal samples (n = 10), stroma samples (n = 10), and tumor samples (n = 10). Individual values are presented
as colored circles. Red circles indicate LUAD subtypes, light green circles indicate LUSC subtypes. Log2-fold change (L2FC)
and false-discovery rate (FDR) were calculated between tumor and normal samples. (c) Gene ontology (GO) terms for
biological process (BP) enrichment analysis and (d) protein–protein interaction analysis from STRING of all the nearby
genes of tumor-gained promoters exhibiting EZH2 and SUZ12 binding sites. (e) A capture of the UCSC genome illustrates
the tumor-gained H3K4me3 signals (grey shaded boxes) at the TSS of the EPCAM gene, which exhibits the binding sites of
EZH2 transcription factors. In this capture, samples from case 13 (normal, N; tumor, T) and ENCODE normal sample EN6
were used.
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4. Discussion

Our study demonstrated that we successfully applied LMD-isolated clinical samples
for integrative RNA-Seq and ChIP-Seq analysis. First, in the RNA-Seq results, we were
able to show the clear separation between the tumor, matched normal, and stroma cell
parts with our RNA-Seq results (Figure 1b,c). Indeed, we successfully captured the most
DEGs and their enriched pathways for NSCLC subtypes (Figure 2b–d). For instance,
one of the most upregulated DEGs in LUAD of this study was CLDN2, which has been
reported to be absent in normal lung epithelia, but highly expressed in human lung adeno-
carcinoma tissues and adenocarcinoma-derived cells including A549, RERF-LC-MS, and
PC-3 cells [60]. Previous studies showed that the knockdown of CLDN2 expression by
small interfering RNA (siRNA) suppresses proliferation and invasion in A549 cells [24,60].
Likewise, the most upregulated genes in LUSC included a set of keratin family members
(KRT6A, KRT6B, KRT6C, KRT14, KRT16). Several studies have provided evidence for ac-
tive keratin involvement in cancer cell invasion and metastasis as well as in treatment
responsiveness [61]. Additionally, KRT6A and KRT6B expression levels were previously
reported to be higher in LUSC than in LUAD and were used as biomarkers for differ-
entiating between these two subtypes [62]. Furthermore, our KEGG pathway analysis
results showed some concordances with previous findings; for example, biosynthesis of
amino acids and carbon metabolism have been proven to be important processes for cancer
diagnostic and therapeutic approaches [63,64], while focal adhesion and cell adhesion
molecules are crucial pathways for studying malignant transformation and metastasis,
especially in lung cancer [65]. In a NSCLC subtypes manner, we found that the mucin
type O-glycan biosynthesis pathway was only enriched for LUAD (and not for LUSC),
consistent with a previous report of different expression patterns in this pathway between
LUAD and LUSC [66]. Meanwhile, cell cycle related genes have been suggested as key
upregulated genes in LUSC [67]. The identification of such pathways and genes simply
emphasizes the principle that the precision of our RNA-Seq data comes from the precision
of our cell-selection efforts using LMD.

As a pilot study with a limited number of samples, comparison with a bigger platform
like TCGA gave us a better perspective on the correctness of our dataset. Our RNA-
Seq results showed high agreement among the top DEGs with TCGA NSCLC samples,
suggesting that our NSCLC gene expression profile was well-captured by LMD even with
our small sample size. However, lung tumors have a decent amount of supporting stroma
cells such as inflammatory cells, neovascular cells, and fibroblasts [8]. Since the LUAD
and LUSC from TCGA are macroscopic (bulk) tissue samples, they could be expected to
show a mixture of both subtypes in their DEGs, reflecting not only tumor but also stroma
parts. Indeed, as examples, the high expressions of fibroblasts, myofibroblast markers
(COL1A1, COL1A2), and B cell markers (IGLC3, IGHG3) were found in our LMD-isolated
stroma samples and TCGA tumor samples, but not in our LMD-isolated tumor parts
(Figure 2e,f). Noticeably, COL1A1 and COL1A2 are subtypes of Type I collagen, which is
widely known to be produced by stroma fibroblast [68–70]. A number of previous studies
have demonstrated that Type I collagen is important for cancer development [71–74].
Taken together, a major implication of these results is that published lung cancer-derived
transcriptomes likely contain the confounding factor of cellular heterogeneity; in this case,
the stroma cell part. Thus, our study demonstrates a possible solution for this issue by
using the LMD isolation method.

The vast majority of human cancers harbor both genetic and epigenetic abnormal-
ities, with fascinating interplay between the two [75]. Great effort has been devoted to
understanding the role of histone modifications in the development of cancer. In particular,
H3K4me3 is a histone modification with a well-documented association with gene activ-
ity. However, it remains an important challenge for locating and defining the biological
activity of this regulatory element in cancer. Here, although we had a limited number of
NSCLC samples profiled, we made several notable observations that improve our overall
understanding of lung tumorigenesis. We found that out of our 645 TSS-proximal altered
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H3K4me3 regions, 50% (313) mapped to the 310 DEGs (Figure 3c, Table S10). Previous
studies have shown that 80% of the genes containing promoter-proximal H3K4me3 are
actively transcribed in human stem cells [76], and genes with high levels of H3K4me3
tended to be highly expressed [77]. Interestingly, those DEGs associated with TSS-proximal
altered H3K4me3 regions are enriched for cancer-related pathways. Our KEGG pathway
enrichment analysis on the DEGs from our RNA-Seq results also included these pathways
(Figure 2d, Table S7) and we wanted to examine whether this result was significant or
whether random subsets of DEGs would have given similar results. To answer this ques-
tion, we conducted a simple test, in which we generated 1000 lists of 310 DEGs (same
number of DEGs in Section 3.5) that were each randomly subsetted from the 4118 DEGs
in Section 3.2 (Table S5). We then ran the same KEGG pathway enrichment analysis for
these 1000 gene lists as in Section 3.5. Figure S8a shows the number of pathways that were
outputted for each of the 1000 gene lists. We observed that 800 out of the 1000 gene lists
(80%) gave no pathway (0). From there, the number of gene lists monotonically decreased
as a function of increasing pathway count, beginning with 111 gene lists (11.1%) containing
one pathway and ending with one gene list (0.1%) containing 10 pathways. Given that
five pathways were discovered in Section 3.5, we can say that the chance of getting the
same or larger number of pathways by chance would be less than 2% (20 out of 1000 ran-
domized lists containing 310 DEGs). Figure S8b shows the bar plot, in which we counted
the percentage of occurrence of all 99 KEGG pathways that resulted in the enrichment
analysis of 1000 gene lists. Each pathway had less than 5% chance (red dotted line) of
occurrence in any given gene list. We also highlighted cancer-related pathways as blue
bars. We zoomed in on the pathways with the highest chance of occurrence in any given
gene list subset, and it contained two pathways that were similar to those in our Section 3.5
results. Even though these similar pathways were among the top-occurring ones in random
subsets of gene lists, we can still confirm that the chance of random subsets of the DEGs in
Section 3.2 being enriched in similar cancer-related pathways as seen in Section 3.5 was
very low. Therefore, our finding of enriched cancer-related pathways for the list of DEGs
in Section 3.5 was likely significant. Indeed, activation of the PI3K-Akt signaling pathway
(Figure 3d) has been linked to enhanced stemness in cancer models [78]. Additionally,
other pathways associated with the extracellular matrix (ECM) and adhesion in cancer
were also significantly enriched (Figure 3d). ECM components have been perceived as
important regulators in cancer progression. Abnormal ECM such as disrupted organization
and changes in essential composition or topography of the ECM has been implicated in
cancer initiation and metastasis by remodeling the behavior of stroma cells and promoting
tumor-associated angiogenesis and inflammation [79]. Therefore, tumor-derived ECM
components are important to help identify new prognostic or therapeutic targets. Indeed, a
29-gene ECM-related prognostic and predictive indicator has been introduced as a potential
genomic tool to improve patient selection in early-stage NSCLC [80]. With the advantage
of isolating tumor cells by LMD, these results from our study suggest a list of DEGs as
potential tumor-derived ECM components in NSCLC (Table S11).

Next, we noticed that only 31% (201/645) of tumor-associated promoters were outside
of ENSEMBLE TSSs (‘altered.noTSS’ promoters). This observation appears to be different
from our previous study in gastric cancer, which found a large proportion of cryptic cancer-
associated promoters [3]. One possible reason for this dissimilarity could be because the
genomic features were better annotated in lung tissue than in the gastric tissue samples.
At the time of this writing, Gene Expression Omnibus (GEO) datasets (https://www.ncbi.
nlm.nih.gov/gds) gave 78,780 results for the search of ‘human lung’ and only 22,335 for
‘human gastric’. For example, in this current study, which had better access to annotation,
using GeneHancer [47], we found that 152/201 (>75%) of ‘altered.noTSS’ H3K4me3 regions
intersected with enhancers and that these enhancers had 407 targeted genes (Table S12).
This finding is supported by recent studies, which reported that intergenic H3K4me3 also
marks enhancers [81,82]. Additionally, 126 out of the 407 targeted genes of GeneHancer-
predicted enhancers marked by our H3K4me3 were differentially expressed in tumor
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versus normal. These DEGs include several oncogenes and were significantly enriched
in GO terms as transcription factors (Table S13, Figures S7 and S9) such as HMGA2 [48],
SOX2 [49], FOXA1 [50], and tumor suppressors such as ZNF750 [51], GATA2 [52], and
GRHL1 [53]. These results are concordant with the finding of H3K4me3 super-enhancers in
breast cancer tissues, which were found to be associated with transcription activity and
cancer-related processes [46].

Furthermore, we observed the association between proximal tumor-gained promoters
with EZH2 and SUZ12 occupancies (Figure 4a). This observation agrees with previous
studies in gastric cancer [3,55], suggesting potential common roles of these PRC2 compo-
nents in multiple cancer types. Although the epigenetic role of PRC2 is reported to be
inhibited by the upregulated H3K4me3, the core components, EZH2 and SUZ12, have
been shown to have oncogenic roles independent of PRC2 in several cancer types includ-
ing NSCLC [57,58]. In our study, the expression of EZH2 is also upregulated in NSCLC
samples (Figure 4b). Since EZH2 can regulate gene transcription [83,84], we decided to
examine its potential target genes. Our Gene Ontology enrichment analysis suggests that
the tumor-gained H3K4me3 regions exhibiting EZH2 and SUZ12 are enriched with genes
related to development processes (Figure 4c). Among the top enriched genes, EPCAM
was highlighted as the hub node in the protein–protein interaction analysis (Figure 4d).
EPCAM was overexpressed in the majority of cancer tissues [85]. Aside from affecting
intercellular adhesion, EPCAM influences other important functions relevant to tumor
progression including cell proliferation and cancer stemness, which suggests an active role
of EPCAM in cancer metastasis [86]. Additionally, the gene expression of EPCAM can be
regulated by genetic, epigenetic, and transcriptional factors [87]. Even though the direct
link between EZH2 and EPCAM in cancer has not been reported, our results suggest a
possible interaction of these two genes associated with somatic H3K4me3 signals in NSCLC
(Figure 4e).

5. Conclusions

In summary, we integratively analyzed RNA-Seq and H3K4me3 ChIP-Seq data from
clinical NSCLC samples isolated by LMD and showed the potential of this workflow
through the perspective of human genome research. The sample size limited the power of
our study. In the future, the current study could be improved with a larger cohort and by
incorporating more types of omics data as well as different histone marks.
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10.3390/cancers13071719/s1, Figure S1: General workflow of RNA-Seq analysis and stained slides
of normal and cancer lung samples, Figure S2: H3K4me3 ChIP-Seq peak calling and peak merging,
Figure S3: General workflow of ChIP-Seq analysis, Figure S4: Process of calculating the percentage of
occurrence of individual transcription factors (TFs) in given H3K4me3 region set, Figure S5: Raw
read counts and percentage of mapped reads from 30 samples in RNA-Seq analysis, Figure S6:
Representative view of RNA-Seq visualization, Figure S7: Gene ontology (GO) analysis for significant
molecular functions, Figure S8: KEGG pathway enrichment analysis of 1000 randomly generated
gene lists from the 4118 DEGs that resulted in RNA-Seq analysis, Figure S9: Gene Ontology (GO)
Molecular Function (MF) terms enrichment analysis of 1000 randomly generated gene lists from the
4118 DEGs that resulted in RNA-Seq analysis, Table S1: Patient information; Table S2: Sources of
TCGA samples, Table S3: Sources of adult normal lung tissue ChIP-Seq data from ENCODE, Table S4:
RNA-Seq mapping quality, Table S5: Total of 4118 DEGs from RNA-Seq analysis, Table S6: Top 15
up-/downregulated genes in LUAD and LUSC, Table S7: KEGG pathway analysis results from DEGs
(tumor versus normal) of LUAD and LUSC, Table S8: ChIP-SSeq mapping quality, Table S9: Total of
645 tumor-altered H3K4me3 from ChIP-Seq analysis, Table S10: Altered H3K4me3 regions overlap
with DEGs, Table S11: Gene Ontology (GO) analysis and list of DEGs associated with somatically
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