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Abstract

Symbiont occurrence is influenced by host occurrence and vice versa, which leads to cor-

relations in host-symbiont distributions at multiple levels. Interactions between co-infect-

ing symbionts within host individuals can cause correlations in the abundance of two

symbiont species across individual hosts. Similarly, interactions between symbiont trans-

mission and host population dynamics can drive correlations between symbiont and host

abundance across habitat patches. If ignored, these interactions can confound estimated

responses of hosts and symbionts to other factors. Here, we present a general hierarchi-

cal modeling framework for distributions of hosts and symbionts, estimating correlations

in host-symbiont distributions at the among-site, within-site, among-species, and among-

individual levels. We present an empirical example from a multi-host multi-parasite sys-

tem involving amphibians and their micro- and macroparasites. Amphibian hosts and

their parasites were correlated at multiple levels of organization. Macroparasites often

co-infected individual hosts, but rarely co-infected with the amphibian chytrid fungus.

Such correlations may result from interactions among parasites and hosts, joint

responses to environmental factors, or sampling bias. Joint host-symbiont models

account for environmental constraints and species interactions while partitioning variance

and dependence in abundance at multiple levels. This framework can be adapted to a

wide variety of study systems and sampling designs.

Introduction

Symbiotic organisms—those that live with, in, or on free living hosts—play important roles in

disease dynamics, food production, and host health [1, 2]. However, host-symbiont interac-

tions complicate efforts to explain symbiont occurrence and abundance for several reasons.

First, symbiont distributions depend on host distributions. In the extreme, obligate symbionts

cannot exist without hosts [3]. Symbionts also influence host distributions through effects on

fitness and population dynamics [4, 5]. Further complexity arises in systems with multi-host

symbionts, and host individuals infected with multiple co-infecting symbionts. Symbionts

occupying the same host individual can interact, such that one symbiont may directly affect

the distribution of another symbiont at the individual level [6]. Useful models of symbiont
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occurrence and abundance should accommodate these bidirectional influences and the hierar-

chical nature of host-symbiont interactions [7].

Multilevel modeling provides a promising avenue to understand patterns in host and sym-

biont abundance at different levels of biological organization [8]. A general host-symbiont

modeling framework must be multivariate: any interaction between a host and a symbiont

involves at least two species. Further, useful methods should make use of observable host and

symbiont data which often consist of discrete counts, but may also include binary measure-

ments of habitat use or continuous measures of density. Continuous and discrete multivariate

observations can be modeled by combining univariate distributions with multivariate linear

predictors, leading to a multivariate probit for binary data, multivariate Poisson for counts,

and multivariate lognormal for continuous positive observations [9–11]. Such models are

increasingly being used to model distributions of free-living species while accounting for spe-

cies interactions [12–15].

While ecologists often seek to estimate the effects of one species on another species, this

requires strong causal assumptions when working with observational data [16]. Instead,

correlations in species abundance and occurrence—potentially resulting from species inter-

actions—can be modeled as a proxy, helping to generate hypotheses about interactions that

ideally can be pursued experimentally [17]. Due to the hierarchical nature of host-symbiont

interactions, these correlations can occur at multiple levels [18]. Symbionts may be corre-

lated at the level of host individuals, positively if two symbiont species often co-infect hosts

[19]. Symbionts may also be correlated at the level of host species, positively if two symbi-

onts tend to infect the same species [20]. Hosts and symbionts might also be correlated

within and among spatial locations (hereafter “sites”). While such correlations can arise

through species interactions, they can also emerge from simultaneous responses to extrinsic

factors or sampling bias. These alternative drivers of correlations are not guaranteed to be

identifiable from observational data alone [16, 21], emphasizing the importance of methods

that limit causal assumptions.

Here we expand upon existing methods to develop a hierarchical, multivariate framework

for modeling host and symbiont distributions that accounts for multiple levels of correlation,

level-specific covariates, and flexible likelihood specifications. We begin by outlining the gen-

eral features and logic of this approach. We then present an empirical case study of amphibian

hosts and their parasites, revealing correlation among species at multiple levels and demon-

strating the types of insights gained in practice. We conclude by discussing limitations and

potential extensions.

Methods

We consider a landscape with discrete habitat patches (sites) containing multiple species of

hosts and symbionts. At each site, replicate surveys are conducted to measure host density,

and symbiont abundance is observed by sampling individual hosts. We assume each host

species h = 1, . . ., H is present or absent at each site i = 1, . . ., N, with occurrence constant

across surveys. If they are present, they have some non-zero site-level average density μih.

The probability of occurrence ψih and expected density within a site if present are assumed

to be proportional [22]. Hosts may be present at a site but unobserved due to sampling

error [23]. Conditional on occurrence, the probability of detection increases with density

[24]. In other words, sites that would favor high density are commonly occupied, and abun-

dant hosts are easier to detect than rare hosts. At site i, Ji > 1 repeat surveys are conducted,

leading to the following likelihood or sampling distribution for host abundance
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observations:

yih �

cih

YJi

j¼1

f ðyihjjyihjÞ;
XJi

j¼1

yihj > 0

cih

YJi

j¼1

f ð0jyihjÞ þ 1 � cih; otherwise

ð1Þ

8
>>>>>><

>>>>>>:

Where yih is a vector of length Ji with elements consisting of abundance measurements

(e.g., counts) of species h at site i in each survey. This is a mixture model with components rep-

resenting cases in which species h is present or absent from site i with probabilities ψih and 1 −
ψih, respectively. Further, f(y|θihj) is a probability density or mass function with parameter(s)

θihj potentially varying across sites, species, and surveys [25]. If species h is not observed at site

i, then it was absent with probability 1 − ψih or present but unobserved with probability

ψih∏Ji f(0|θihj). False absences are more likely for species with low densities and those highly

aggregated within sites. For simplicity we assume that detection implies species presence, but a

likelihood could be specified to account for false positives [26].

We assume that the occupancy probability of species h at site i increases with the expected

density μih as follows [27]:

logitðcihÞ ¼ g0h þ g1h log ðmihÞ ð2Þ

Here, γ0h is the probability of host species h occurring at site i on a logit scale when the

mean density is one individual per unit area of habitat (e.g. per square meter), and γ1h is a

parameter that describes the scaling between expected density and the probability of occu-

pancy, which we expect to be positive. This occupancy submodel could also include covariates

such as habitat area.

Symbiont species s = 1, . . ., S are present or absent at each site. At site i, Ki host individuals

are sampled and their infections quantified. Non-detection of symbiont s at site i can result

from true absence or failure to sample an infected host, and sites that would favor high symbi-

ont abundance are more likely to be occupied, leading to the following likelihood for symbiont

abundance observations, where yis is a vector of length Ki containing the observed infection

intensities for all hosts sampled for symbiont species s at site i:

yis �

cis

YKi

k¼1

f ðyiskjyiskÞ;
XKi

k¼1

yisk > 0

cis

YKi

k¼1

f ð0jyiskÞ þ 1 � cis; otherwise

ð3Þ

8
>>>>><

>>>>>:

Similar to the host occurrence model component, the probability of occupancy ψis is a func-

tion of the expected infection intensity across all hosts at site i for symbiont s:

logitðcisÞ ¼ g0s þ g1s log ðmisÞ ð4Þ

Every host and symbiont species has a site-level mean density, and these densities may be

correlated e.g., if an abundant reservoir host increases infection in other hosts [28]. Species

have some among-site variance in their abundances, and these variance parameters may differ

across species. Species that are always at low or high abundance will have low variance, and

species that are abundant in some sites, and absent from others will have higher variance.

These correlation and variance parameters are used to construct a covariance matrix Ssite with
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elements ρmnσmσn in the mth row, nth column, where ρmn is the correlation between species m
and n, and σm is the among site standard deviation for species m. Each site has a random effect

vector αi of length H + S: αi * NH+S(0,Ssite), where Nd(0,S) represents a multivariate normal

distribution with dimension d, mean vector 0, and covariance matrix S.

Within sites, hosts and symbiont density can vary among survey locations. Uniformly dis-

tributed species have low variance, and spatially aggregated species have high variance. Species

are correlated within sites if they tend to be observed together in the same surveys more or less

often then expected by chance, for example. We can represent these survey level correlations

and variance parameters in a covariance matrix Ssurvey, which gives rise to to Jtot ¼
P

i
ji survey

level random effect vectors αj, each with length H + S: αj * NH+S(0,Ssurvey). Random effects

may be adapted to alternative sampling designs. For instance, if hosts are sampled for symbi-

onts independently from host density surveys, then symbionts are not associated with particu-

lar surveys and the survey-level random effects may instead have dimension H.

Differences in overall mean abundance are represented with a host species specific random

effect α0h which is univariate normally distributed around a community mean, with among spe-

cies variance. Together, these random effects contribute to the expected number of individual

hosts of species h detected in a survey j at site i when the species is present, here with a log-link:

log ðmihjÞ ¼ a0h þ ajh þ aih ð5Þ

Depending on survey design, this expectation might include an offset that accounts for

among-survey variation in sampling time intervals or area [8].

The expected density of symbionts also includes an intercept α0s and elements from the

site-level and survey-level random effects. However, because of the nature of host-symbiont

interactions, symbionts have the potential for correlation at additional levels. Specifically, sym-

bionts may be correlated at the individual host level, e.g., if two symbionts commonly co-infect

host individuals. We represent these host individual differences with Ktot = ∑i Ki multivariate

normal random effects with mean zero and covariance matrix Sindiv including correlation

terms and symbiont species specific variance terms representing how variable host individuals

are in their infection abundances: αk * NS(0,Sindiv).

Finally, hosts may vary in their symbiont infection abundances at the species level. This var-

iation may be correlated if two host species are functionally alike, e.g., they tend to be similarly

susceptible to infection across a range of symbiont species. To allow for species level variation

we consider h = 1, . . ., H multivariate normal random vectors, each with S elements:

αh * NS(0,Sspecies).

Together, these random effects contribute to the expected infection load of symbiont s pres-

ent at site i in host individual k of species h sampled in survey j:

log ðmiskÞ ¼ a0s þ ais þ aj½k�s þ ahks
þ aks ð6Þ

If host sampling for symbionts occurs separately from host abundance surveys, then sam-

pled hosts are not associated with surveys, simplifying the random effects:

log ðmiskÞ ¼ a0s þ ais þ ahks
þ aks ð7Þ

Case study: amphibian communities and their parasites

Amphibians in the San Francisco Bay Area of California are infected with a diverse suite of

parasites, including macroparasitic helminth worms (Ribeiroia ondatrae Looss, 1907, Echinos-
toma sp., Cephalogonimus sp., Alaria sp.), and microparasites such as Ranavirus sp. and the
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amphibian chytrid fungus Batrachochytrium dendrobatidis, Longcore, Pessier & D.K. Nichols

(1999), hereafter referred to as Bd.

Five amphibian hosts comprise the majority of non-threatened (available for sampling)

amphibian species: the Pacific chorus frog Pseudacris regilla (Baird & Girard, 1852), California

newt Taricha torosa (Rathke, in Eschscholtz, 1833), rough-skinned newt Taricha granulosa
(Skilton, 1849), western toad Anaxyrus boreas (Baird & Girard, 1852), and the non-native

American bullfrog Lithobates catesbeianus (Shaw, 1802) [29]. Previous studies in this system

have revealed correlations between parasites at the host individual and site levels [30, 31].

In 2013, field crews visited 87 wetland sites in Contra Costa, Alameda, and Santa Clara

counties. At each site, crews conducted dip net sweep surveys (�Ji ¼ 10:5, standard deviation

(sJi) = 2.65, range = [2, 20], Jtot = 914) to quantify amphibian density, recording the numbers

and species identities of all amphibians observed. Crews collected hosts at each site to quantify

parasite infections ( �Ki ¼ 17:8, sKi
= 12.7, range = [1, 82], Ktot = 1550), and these collection

events were separate from the sweep surveys. Collected hosts were larval or recently metamor-

phosed. We assessed macroparasite infection abundance via dissection [29] following euthana-

sia via immersion in MS-222 (1g/500 mL dose), and infection loads of Bd and Ranavirus using

quantitative polymerase chain reaction of skin swabs and organ tissue [32, 33]. This work was

approved by the University of Colorado Boulder IACUC, protocol number 1302.02. Access to

the study sites and organisms was permitted by the California Department of Fish and Game,

the Santa Clara County Parks and Recreation Department, the East Bay Regional Park District,

the State of California Department of Parks and Recreation, and the East Bay Municipal Utility

District.

Prior distributions

Our prior distributions were chosen to be vague but within reasonable values given the link

functions used (logit for occurrence probabilities, and log for expected abundance). Random

effect covariance matrices (Ssite, Ssurvey, Sindiv, Sspecies) received prior distributions specified

in terms of correlation matrices and a vector of standard deviations. For example at the site

level, Ssite = diag(σsite)Rsite diag(σsite)), where diag(σsite) is a diagonal matrix with a vector of

species specific standard deviations that represents the amount of variation in abundance

among sites for each species, and Rsite is a correlation matrix that represents correlation

among species abundance among sites.

At each level for the random effects (site, survey, individual, and species), we specified log

normal prior distributions for the species specific standard deviation vectors with hyperpara-

meters to allow for partial pooling, e.g., σsite,i * log-Normal(μσsite
, τσsite

) independently for each

species i = 1, 2, . . ., H + S, where the hyperparameters μσsite
and στ represent the average

among-site standard deviation across species, and the standard deviation among species in the

among site standard deviations. Biologically, this allows for species to be more or less variable

in abundance among sites, rather than assuming that the variability among sites is the same

for all species. We assumed that στ applied at the site, survey, individual, and species levels, but

allowed the hyperparameter mean to vary at each of these levels, implying that there may be

more or less variation in abundance at these levels, but that the among-species variation at

each level would be constant. Future applications of this method may benefit from a more flex-

ible specification that allows for στ to vary among model levels, particularly if there are many

species, and thus more information about this hyperparameter.

Hyperparameter priors for the means (μσsite
, μσsurvey

, μσindividual
, μσspecies

) and standard deviations

(στ) of these log-Normal priors were specified as unit Normal and unit half-Normal (Nor-

mal+(0, 1)), respectively. Random effect correlation matrices (Rsite, Rsurvey, Rindividual, Rspecies)

Joint Host-Symbiont Distribution Models
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received LKJ(η = 2) prior distributions which place slightly more prior weight around correla-

tions near 0 [34]. Last, the hyperparameters for the species-specific intercepts received the fol-

lowing priors: μα * Normal(0, 1), σα * Normal+(0, 1). These prior specifications can be

readily changed by modifying mod.stan in S1 Code.

Parameter estimation

We used a Bayesian approach to estimate parameters, combining prior information with a

Poisson likelihood to generate a posterior distribution for unknown quantities. We simulated

samples from the posterior using Markov chain Monte Carlo (MCMC) sampling in the proba-

bilistic programming language Stan [35, 36]. We ran four chains with the No-U-Turn Sampler

for 1000 iterations each, discarding the first 500 iterations as burn-in [37]. Convergence was

assessed visually and by verifying that all of the R̂ statistics were less than 1.1 [38]. All data and

code required to reproduce the analysis are available in S1 Code.

Results

We uncovered correlations between hosts and parasites at every level in the model, with the

exception of among-parasite species correlations at the host-species level. At the site level, we

detected multiple correlations between hosts and parasites (Fig 1). Sites with high densities of

Pacific chorus frogs (Psre) had high densities of California newts (Tato) and western toads

(Anbo), possibly due to similar habitat requirements [39]. Sites with high densities of chorus

frogs (Psre) had higher Bd infection loads, consistent with this species’ role as a reservoir host

[40]. Sites with high levels of infection of Cephalogonimus (Cephalo) tended to have lower lev-

els of infection with Bd. Macroparasites were positively correlated across sites, probably due to

availability of planorbid snails that release macroparasite infective stages (cercariae), and depo-

sition of parasite eggs in feces of carnivorous definitive hosts.

Within sites at the survey level, California newts (Tato) correlated positively with Pacific

chorus frogs (Psre) (Fig 2). These correlations imply that these species tend to be co-aggregated

within sites, potentially due to similar microhabitat preferences.

At the host species level, among-parasite correlations were estimated with low precision as

we would expect when trying to estimate a correlation with five points (host species). However,

some posteriors leaned toward positive correlations e.g., between Bd and Alaria (Fig 3). This

was driven by high infection abundances of most parasites in Pacific chorus frogs (Psre), con-

sistent with these fast-lived hosts investing little in parasite defense [20]. More host species are

needed to make reliable inference at this level.

At the individual host level macroparasite loads correlated positively, so that if an individual

was heavily infected with one macroparasite, it was more likely to be heavily infected with

other macroparasites (Fig 4). These positive correlations can occur despite negative within-

host interactions [41]. For instance Ribeiroia (Rib) and Echinostoma (Echino) both have nega-

tive effects on the persistence of one another within host individuals, and the positive correla-

tion may result from these parasites having similar niche requirements and host preferences

[30]. In contrast, Bd correlated negatively with two macroparasites, Alaria, and Echinostoma
(Echino). Parasite interactions could drive these correlations or they could result from con-

founding variables. For example, host age increases cumulative exposure, confounding infer-

ence on parasite interactions derived from correlations. Such correlations may disappear after

including the confounding trait as a covariate, contingent on the validity of the model with

respect to the true latent processes [16]. Last, correlations could arise from sampling bias [42].

For instance, if Bd or Echinostoma (Echino) infection increases catchability, then these two

Joint Host-Symbiont Distribution Models
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parasites will correlate negatively in our sample even if they are not correlated within the

population.

We partitioned variation in host and parasite abundance among model levels to better

understand the relative strength of processes operating at different scales. This analysis aims to

summarize the correlations and extra-Poisson variance induced by the random effects. We

considered effective variance Ve(X): = |SX|1/d, the d–th root of the determinant of a covariance

matrix SX with dimension d, which represents the average scatter in any direction [43]. We

also considered effective dependence De(X): = 1 − |RX|1/d, where RX is a correlation matrix,

which captures the stochastic dependence among species [43]. If species tend to be highly cor-

related, this parameter will be close to one. With no correlation among species, effective

dependence is zero. Within-site, among-survey variation accounted for less variation in host

abundance than among site random effects (Fig 5). For parasites, variation among host indi-

viduals exceeded among-site variation. This is striking, but consistent with the notion that

Fig 1. Site level variance covariance matrix and random effect posteriors. Diagonal elements display the among-site standard deviation in abundance

for all host and parasite species (Anbo = Anaxyrus boreas, Psre = Pseudacris regilla, Lica = Lithobates catesbeianus, Tagr = Taricha granulosa, Tato =

Taricha torosa, Rib = Ribeiroia ondatrae, Echino = Echinostoma sp., Cephalo = Cephalogonimus sp., Alaria = Alaria sp., Rv = Ranavirus sp., Bd =

Batrachochytrium dendrobatidis). Green indicates hosts and blue, parasites. Upper triangular elements show among-species correlation parameters. Black

indicates correlations that are probably positive or probably negative (95% of posterior probability mass greater than or less than zero); grey indicates

otherwise. Lower triangular elements show bivariate scatter plots of the posterior means of the site-level random effects corresponding to the intersection of

the species in the rows and columns, such that each site is represented by one point in each panel.

doi:10.1371/journal.pone.0165768.g001
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parasites are overdispersed and aggregated among host individuals [44]. Despite high variance,

parasite abundance showed relatively low dependence at the individual level. Effective depen-

dence was comparable across other model levels, which might be expected if species interac-

tions and/or joint responses to covariates similarly influence patterns of co-aggregation at

these levels.

Discussion

We presented a general hierarchical modeling framework to understand correlations and driv-

ers of host and symbiont abundance. This builds upon existing multi-species abundance mod-

els and specifically extends a two symbiont abundance model by Stutz et al. in review, allowing

for more than two species of symbionts, inclusion of hosts (any number of species), partially

observed occurrence states, and greater flexibility in likelihood specification. Many host-

Fig 2. Survey level variance covariance matrix and random effect posteriors. Diagonal elements display the among-survey standard deviation in

abundance for host species. Upper triangular elements show among-species correlation parameters. Black indicates correlations that are probably positive or

probably negative (95% of posterior probability mass greater than or less than zero); grey indicates otherwise. Lower triangular elements show bivariate

scatter plots of the posterior means of the survey-level random effects corresponding to the intersection of the species in the rows and columns, such that

each survey is represented by one point in each panel.

doi:10.1371/journal.pone.0165768.g002
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symbiont distributions could be investigated with this method beyond host-parasite associa-

tions, including commensal and mutualistic symbionts of plants and animals.

This approach has been described primarily from a causally agnostic perspective, in which

we are estimating unstructured correlations among species, but alternative approaches could

be taken. If there is a known causal direction, e.g., in an experimental setting, one could extend

this method to model the effect of host density on symbiont abundance rather than their corre-

lation. Estimation of many covariance matrices is a rather data-hungry operation, particularly

when the correlation parameters are free to vary independently. If less information were avail-

able, it may be advantageous to either include structure for the correlation parameters (e.g.,

[21]), or adopt a latent factor approach as recently described by [15]. In the context of host-

symbiont models, latent factors could be used at multiple levels to account for unobserved site,

host, and species level characteristics.

Fig 3. Host species level variance covariance matrix and random effect posteriors. Diagonal elements display the among host species standard

deviation in abundance for parasite species. Upper triangular elements show among-species correlation parameters. Black indicates correlations that are

probably positive or probably negative (95% of posterior probability mass greater than or less than zero); grey indicates otherwise. Lower triangular elements

show bivariate smoothed scatter plots of species-level random effects, with host species codes printed at the posterior means. The smoothed grey portions

represent the posterior densities of the species-level random effects.

doi:10.1371/journal.pone.0165768.g003
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Another advantage of this joint modeling approach is the ability to decompose variation

and dependence across multiple levels of organization. Effective variance and dependence may

reflect the relative importance of processes at different levels of organization. For instance, we

found variation among host species in parasite abundance comparable to variation among spa-

tial locations, both of which exceeded variation within sites. Generally, the contribution of

model levels to effective variance will differ among study systems, and the ability to compare

across levels should be valuable in determining how to begin model expansion. In our case

study for instance, a logical next step would be inclusion of site and host individual level

covariates.

Alternative likelihood functions, including those accounting for measurement error, can be

readily combined with this method. Here we made use of a Poisson likelihood, but some situa-

tions may call for the use of zero-inflated probability distributions with support for all real

Fig 4. Individual level variance covariance matrix and random effect posteriors. Diagonal elements display the among host individual standard

deviation in abundance for parasite species. Upper triangular elements show among-individual correlation parameters. Black indicates correlations that are

probably positive or probably negative (95% of posterior probability mass greater than or less than zero); grey indicates otherwise. Lower triangular elements

show bivariate scatter plots of the posterior means of the individual-level random effects corresponding to the intersection of the species in the rows and

columns, such that each host individual is represented by one point in each panel.

doi:10.1371/journal.pone.0165768.g004

Joint Host-Symbiont Distribution Models
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positive values, such as a zero-inflated lognormal or gamma [45]. This would allow for direct

modeling of observations generated via quantitative polymerase chain reaction, typical of

applications to viruses and bacteria, and environmental DNA of free-living species. Continu-

ous distributions would circumvent the need to round values for use with Poisson or negative

binomial distributions with integer support. Last, we have assumed that infections are detected

without error, but a rich set of methods could be applied to account for error in this measure-

ment process [45, 46].

We assumed that sites favoring high density are more likely to be occupied. However, if dif-

ferent processes drive species occurrence and abundance, then alternative occurrence submo-

dels could be developed. In particular, spatial and temporal dependence may be useful for

representing limits to species occurrence [47]. Future developments of this approach might

prioritize inclusion of spatiotemporally explicit colonization dynamics that account for occu-

pancy status of neighboring sites, habitat quality, and dispersal functions [48]. These

approaches will prove useful to understand how much of the spread of an invasive symbiont

may be due to changes in the host distribution vs. changes in the symbiont distribution alone,

with potential applications to the management of emerging infectious diseases [49].

Symbionts have received an increased appreciation over past decades as the field of disease

ecology has gained momentum and as modern genetic methods have increased our ability to

sample unculturable communities [50, 51]. However, the development of methods to under-

stand the distribution of symbionts has not kept pace with developments in free living species

[52]. The approach presented here draws upon these developments with the goal of producing

a general approach that can be readily adapted to other host-symbiont systems. Simultaneously

Fig 5. Bivariate posterior distributions of the effective variance and dependence for the multivariate

random effects. Each point represents a simulated draw from the posterior. Effective variance measures the

magnitude of spread in any direction of the random effects, and effective dependence measures the

magnitude of among-species correlation.

doi:10.1371/journal.pone.0165768.g005
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modeling hosts and their symbionts in this hierarchical framework provides a powerful

method to dissect patterns of occurrence and abundance for free living and symbiotic

organisms.

Supporting Information

S1 Code. This supplement includes all code and data required to replicate our analysis.

The analysis.R file will read and process the data from host_data.csv and parasi-
te_data.csv, compile the Stan model (mod.stan), then estimate the parameters and rec-

reate the figures.

(ZIP)

Acknowledgments

We thank Melina Allahverdian, Dana Calhoun, Kelly DeRolf, Jackie Gregory, Emily Hannon,

Jeremy Henderson, Megan Housman, Aaron Klingborg, Bryan LaFonte, Keegan McCaffrey,

Travis McDevitt-Galles, Mary Toothman, and Vanessa Wuerthner for assistance with data col-

lection. We also thank Tad Dallas, Helen McCreery, Joseph Mihaljevic, Lauren Shoemaker,

Timothy Szewczyk, and Topher Weiss-Lehman for feedback on the manuscript. Finally, we

gratefully acknowledge contributions of data and intellectual suggestions from Cheryl Briggs,

Jason Hoverman, Jason Rohr, and Andrew Blaustein. This research was supported by funding

from the National Institutes of Health, Ecology and Evolution of Infectious Diseases Program

(R01GM109499), the National Science Foundation (DEB-1149308), and the David and Lucile

Packard Foundation. The content is solely the responsibility of the authors and does not neces-

sarily represent the official views of the National Institutes of Health.

Author Contributions

Conceptualization: MBJ WES PTJJ.

Data curation: MBJ PTJJ.

Formal analysis: MBJ.

Funding acquisition: PTJJ.

Investigation: MBJ WES PTJJ.

Methodology: MBJ.

Project administration: PTJJ.

Resources: MBJ WES PTJJ.

Software: MBJ.

Supervision: PTJJ.

Validation: MBJ.

Visualization: MBJ.

Writing – original draft: MBJ WES PTJJ.

Writing – review & editing: MBJ WES PTJJ.

Joint Host-Symbiont Distribution Models

PLOS ONE | DOI:10.1371/journal.pone.0165768 November 10, 2016 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165768.s001


References
1. Bashan Y. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology

Advances. 1998; 16(4):729–770. doi: 10.1016/S0734-9750(98)00003-2

2. Jones KE, Patel NG, Levy Ma, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging

infectious diseases. Nature. 2008 2; 451(7181):990–3. doi: 10.1038/nature06536 PMID: 18288193

3. Moran NA, Baumann P. Bacterial endosymbionts in animals. Current Opinion in Microbiology. 2000; 3

(3):270–275. doi: 10.1016/S1369-5274(00)00088-6 PMID: 10851160

4. Ebert D, Lipsitch M, Mangin KL. The effect of parasites on host population density and extinction: exper-

imental epidemiology with Daphnia and six microparasites. The American Naturalist. 2000; 156(5):459–

477. doi: 10.1086/303404

5. Lloyd-Smith JO, Cross PC, Briggs CJ, Daugherty M, Getz WM, Latto J, et al. Should we expect popula-

tion thresholds for wildlife disease? Trends in ecology & evolution. 2005 9; 20(9):511–9. doi: 10.1016/j.

tree.2005.07.004 PMID: 16701428

6. Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S, et al. Species interactions in a par-

asite community drive infection risk in a wildlife population. Science. 2010; 330(6001):243–246. doi: 10.

1126/science.1190333 PMID: 20929776

7. Mihaljevic JR. Linking metacommunity theory and symbiont evolutionary ecology. Trends in Ecology

and Evolution. 2012 2; 27(6):323–329. doi: 10.1016/j.tree.2012.01.011 PMID: 22341499

8. Gelman A, Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models. Analytical Meth-

ods for Social Research. Cambridge University Press; 2007.

9. Ashford JR, Sowden RR. Multi-variate probit analysis. Biometrics. 1970; 26(3):535–546. doi: 10.2307/

2529107 PMID: 5480663

10. Aitchison J. The statistical analysis of compositional data. Journal of the Royal Statistical Society:

Series B. 1982; 44(2):139–177.

11. Aitchison J, Ho CH. The multivariate Poisson-log normal distribution. Biometrika. 1989; 76(4):643–653.

doi: 10.1093/biomet/76.4.643

12. Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, et al. The role of biotic interac-

tions in shaping distributions and realised assemblages of species: Implications for species distribution

modelling. Biological Reviews. 2013; 88(1):15–30. doi: 10.1111/j.1469-185X.2012.00235.x PMID:

22686347

13. Clark JS, Gelfand AE, Woodall CW, Zhu K. More than the sum of the parts: forest climate response

from joint species distribution models. Ecological Applications. 2014; 24(5):990–999. doi: 10.1890/13-

1015.1 PMID: 25154092

14. Pollock LJ, Tingley R, Morris WK, Golding N, O’Hara RB, Parris KM, et al. Understanding co-occurrence

by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecol-

ogy and Evolution. 2014; 5(5):397–406. doi: 10.1111/2041-210X.12180

15. Warton DI, Blanchet FG, Hara RBO, Ovaskainen O, Taskinen S, Walker SC, et al. So many variables:

joint modeling in community ecology. Trends in Ecology & Evolution. 2015; xx:1–14. doi: 10.1016/j.tree.

2015.09.007 PMID: 26519235

16. Pearl J. Causality. New York: Cambridge. 2000;.

17. Ovaskainen O, Hottola J, Shtonen J. Modeling species co-occurrence by multivariate logistic regression

generates new hypotheses on fungal interactions. Ecology. 2010; 91(9):2514–2521. doi: 10.1890/10-

0173.1 PMID: 20957941

18. Mideo N, Alizon S, Day T. Linking within- and between-host dynamics in the evolutionary epidemiology

of infectious diseases. Trends in Ecology and Evolution. 2008; 23(9):511–517. doi: 10.1016/j.tree.2008.

05.009 PMID: 18657880

19. Puoti M, Airoldi M, Bruno R, Zanini B, Spinetti A, Pezzoli C, et al. Hepatitis B virus co-infection in human

immunodeficiency virus infected subjects. AIDS Reviews. 2002; 4:27–35. PMID: 11998781

20. Johnson PTJ, Rohr JR, Hoverman JT, Kellermanns E, Bowerman J, Lunde KB. Living fast and dying of

infection: host life history drives interspecific variation in infection and disease risk. Ecology letters.

2012 3; 15(3):235–42. doi: 10.1111/j.1461-0248.2011.01730.x PMID: 22221837

21. Dorazio RM, Connor EF. Estimating abundances of interacting species using morphological traits, for-

aging guilds, and habitat. PLoS ONE. 2014; 9(4):e94323. doi: 10.1371/journal.pone.0094323 PMID:

24727898

22. He F, Gaston KJ. Occupancy, spatial variance, and the abundance of species. The American naturalist.

2003; 162(3):366–375. doi: 10.1086/377190 PMID: 12970844

Joint Host-Symbiont Distribution Models

PLOS ONE | DOI:10.1371/journal.pone.0165768 November 10, 2016 13 / 15

http://dx.doi.org/10.1016/S0734-9750(98)00003-2
http://dx.doi.org/10.1038/nature06536
http://www.ncbi.nlm.nih.gov/pubmed/18288193
http://dx.doi.org/10.1016/S1369-5274(00)00088-6
http://www.ncbi.nlm.nih.gov/pubmed/10851160
http://dx.doi.org/10.1086/303404
http://dx.doi.org/10.1016/j.tree.2005.07.004
http://dx.doi.org/10.1016/j.tree.2005.07.004
http://www.ncbi.nlm.nih.gov/pubmed/16701428
http://dx.doi.org/10.1126/science.1190333
http://dx.doi.org/10.1126/science.1190333
http://www.ncbi.nlm.nih.gov/pubmed/20929776
http://dx.doi.org/10.1016/j.tree.2012.01.011
http://www.ncbi.nlm.nih.gov/pubmed/22341499
http://dx.doi.org/10.2307/2529107
http://dx.doi.org/10.2307/2529107
http://www.ncbi.nlm.nih.gov/pubmed/5480663
http://dx.doi.org/10.1093/biomet/76.4.643
http://dx.doi.org/10.1111/j.1469-185X.2012.00235.x
http://www.ncbi.nlm.nih.gov/pubmed/22686347
http://dx.doi.org/10.1890/13-1015.1
http://dx.doi.org/10.1890/13-1015.1
http://www.ncbi.nlm.nih.gov/pubmed/25154092
http://dx.doi.org/10.1111/2041-210X.12180
http://dx.doi.org/10.1016/j.tree.2015.09.007
http://dx.doi.org/10.1016/j.tree.2015.09.007
http://www.ncbi.nlm.nih.gov/pubmed/26519235
http://dx.doi.org/10.1890/10-0173.1
http://dx.doi.org/10.1890/10-0173.1
http://www.ncbi.nlm.nih.gov/pubmed/20957941
http://dx.doi.org/10.1016/j.tree.2008.05.009
http://dx.doi.org/10.1016/j.tree.2008.05.009
http://www.ncbi.nlm.nih.gov/pubmed/18657880
http://www.ncbi.nlm.nih.gov/pubmed/11998781
http://dx.doi.org/10.1111/j.1461-0248.2011.01730.x
http://www.ncbi.nlm.nih.gov/pubmed/22221837
http://dx.doi.org/10.1371/journal.pone.0094323
http://www.ncbi.nlm.nih.gov/pubmed/24727898
http://dx.doi.org/10.1086/377190
http://www.ncbi.nlm.nih.gov/pubmed/12970844


23. MacKenzie D, Nichols J, Lachman G. Estimating site occupancy rates when detection probabilities are

less than one. Ecology. 2002; 83(8):2248–2255. doi: 10.1890/0012-9658(2002)083%5B2248:

ESORWD%5D2.0.CO;2
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