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Abstract
Mendelian randomization utilizes genetic variants as instrumental variables
(IVs) to estimate the causal effect of an exposure variable on an outcome of
interest even in the presence of unmeasured confounders. However, the pop-
ular inverse-variance weighted (IVW) estimator could be biased in the presence
of weak IVs, a common challenge in MR studies. In this article, we develop a
novel penalized inverse-variance weighted (pIVW) estimator, which adjusts the
original IVW estimator to account for the weak IV issue by using a penalization
approach to prevent the denominator of the pIVW estimator from being close
to zero. Moreover, we adjust the variance estimation of the pIVW estimator to
account for the presence of balanced horizontal pleiotropy. We show that the
recently proposed debiased IVW (dIVW) estimator is a special case of our pro-
posed pIVW estimator. We further prove that the pIVW estimator has smaller
bias and variance than the dIVW estimator under some regularity conditions.
We also conduct extensive simulation studies to demonstrate the performance
of the proposed pIVW estimator. Furthermore, we apply the pIVW estimator to
estimate the causal effects of five obesity-related exposures on three coronavirus
disease 2019 (COVID-19) outcomes. Notably, we find that hypertensive disease is
associated with an increased risk of hospitalized COVID-19; and peripheral vas-
cular disease and higher body mass index are associated with increased risks of
COVID-19 infection, hospitalized COVID-19, and critically ill COVID-19.

KEYWORDS
COVID-19, horizontal pleiotropy, instrumental variables, Mendelian randomization, penaliza-
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1 INTRODUCTION

It is of scientific interest to estimate the causal effects
of modifiable risk factors on various health outcomes
in epidemiological studies. For example, estimating the
causal effects of modifiable risk factors on the coron-
avirus disease 2019 (COVID-19) outcomes is currently

one of the most pressing global public health problems
(Jordan et al., 2020; Zheng et al., 2020). The COVID-19
pandemic, caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has posed a serious threat
to human health all over the world (Pascarella et al.,
2020). It is crucial to identify causal risk factors associ-
ated with COVID-19 incidence and mortality so that we
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F IGURE 1 The relationships among the 𝑗th genetic variant 𝐺𝑗 ,
the exposure 𝑋, the outcome 𝑌, and the unmeasured confounder 𝑈.
The effect of 𝐺𝑗 on 𝑋 is 𝛾𝑗 , the direct effect (pleiotropic effect) of 𝐺𝑗
on 𝑌 is 𝛼𝑗 , and the causal effect of 𝑋 on 𝑌 is 𝛽

can develop more effective prevention and intervention
strategies. One major challenge is the unmeasured con-
founding bias for the exposure-outcome relationship in
observational epidemiological studies.
To address this challenge, Mendelian randomization

(MR) utilizes genetic variants as instrumental variables
(IVs) to estimate the causal effect of an exposure vari-
able on an outcome of interest even in the presence of
unmeasured confounders (Smith & Ebrahim, 2003, 2004;
Sheehan et al., 2008). With the increasing availability of
summary-level data from genome-wide association stud-
ies (GWASs), many MR methods have been developed
based on GWAS summary-level data (Lawlor, 2016; Zheng
et al., 2017). However, the validity of MR analysis critically
depends on the following three core assumptions defining
a valid IV (Didelez & Sheehan, 2007; Lawlor et al., 2008):

(1) IV relevance: the IV must be associated with the
exposure;

(2) IV independence: the IV is independent of any con-
founder of the exposure-outcome relationship;

(3) Exclusion restriction: the IV affects the outcome only
through the exposure.

When any one of these three IV assumptions is violated,
conventional MR analysis may yield biased estimation of
the causal effect. In particular, the IV relevance assump-
tion can be nearly violated when the IVs are only weakly
associated with the exposure variable (Burgess & Thomp-
son, 2011; Burgess et al., 2011; Davies et al., 2015). In MR
studies, the weak IV bias may occur when the genetic vari-
ants only explain a small proportion of variance for the
exposure variable. On the other hand, the widespread hor-
izontal pleiotropy in human genome can also lead to the
violation of the exclusion restriction assumption (Hemani
et al., 2018; Verbanck et al., 2018), which is a phenomenon
that the genetic variants directly affect the outcome not
mediated by the exposure variable (see Figure 1 for a
graphical illustration).

The inverse-varianceweighted (IVW) estimator is one of
the most popular MR methods that has been widely used
in health studies (Burgess et al., 2013). It has a simple and
explicit expression, which combines the estimated causal
effects from multiple IVs into a weighted average with the
idea borrowed from the fixed-effect meta-analysis litera-
ture (Brockwell & Gordon, 2001). Despite its widespread
popularity, recent studies pointed out that the IVW esti-
mator can be seriously biased in the presence of weak IVs
(Zhao et al., 2020; Ye et al., 2021). MR-RAPS is a maxi-
mum profile likelihood estimator, which was shown to be
robust to weak IVs (Zhao et al., 2020). However, MR-RAPS
has no closed-form solution and might not have unique
estimates. Recently, the debiased IVW (dIVW) estimator
was proposed to account for the weak IV issue by a sim-
ple modification to the IVW estimator (Ye et al., 2021). The
dIVW estimator has been proved to be consistent even in
the presence of many weak IVs under certain conditions.
Nevertheless, as a ratio estimator, the dIVW estimator is
still likely to yield a biased estimate when its denominator
is close to zero. In fact, when the denominator is close to
zero, a ratio estimator may have a heavy-tailed distribution
and thus may not even have finite moments (Press, 1969;
Piegorsch & Casella, 1985).
In this article, we develop a novel penalized inverse-

variance weighted (pIVW) estimator, where the original
IVW estimator is adjusted by a proposed penalized log-
likelihood function. Through the penalization, we can
prevent the denominator in the ratio estimator from being
close to zero and thus provide improved estimation in
the presence of weak IVs. Moreover, we account for the
balanced horizontal pleiotropy by adjusting the variance
estimation of the pIVW estimator. The proposed pIVW
estimator has some attractive features. First, our theoret-
ical and numerical results show that the proposed pIVW
estimator has smaller bias and variance than the dIVW
estimator under some regularity conditions. Second, it is
consistent and asymptotically normal even in the presence
of many weak IVs, and requires nomore assumptions than
the dIVWestimator. Third, it has a unique and closed-form
solution, whereas some other robust MR methods (e.g.,
MR-RAPS) do not have a closed-form solution and might
not have unique estimates in practice.
We demonstrate the improved performance of the pro-

posed pIVW estimator compared to the other competing
MR methods via extensive simulation studies. Further-
more, we apply the pIVW estimator to estimate the causal
effects of five obesity-related exposures (i.e., peripheral
vascular disease, dyslipidemia, hypertensive disease, type
2 diabetes, and body mass index (BMI)) on three COVID-
19 outcomes (i.e., COVID-19 infection, hospitalized
COVID-19, and critically ill COVID-19). We find that
hypertensive disease is significantly associated with an
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increased risk of hospitalized COVID-19; and periph-
eral vascular disease and higher BMI are significantly
associated with increased risks of COVID-19 infection,
hospitalized COVID-19 and critically ill COVID-19.

2 THE TWO-SAMPLEMR DESIGN
AND PRIORWORK

2.1 Linear structural models

Suppose that there are 𝑝 independent genetic variants
{𝐺𝑗}

𝑝
𝑗=1

. When there is no horizontal pleiotropy, the rela-
tionships among the genetic variants 𝐺𝑗 , the exposure 𝑋,
the outcome 𝑌, and the unmeasured confounder 𝑈 (as in
Figure 1) can be formulated by the linear structural models
as follows (Bowden et al., 2015):

𝑋 =

𝑝∑
𝑗=1

𝛾𝑗𝐺𝑗 + 𝑈 + 𝜖𝑋, (1)

𝑌 = 𝛽𝑋 + 𝑈 + 𝜖𝑌, (2)

where 𝛾𝑗 is the genetic effect of 𝐺𝑗 on 𝑋, 𝛽 is the causal
effect of our interest, and 𝜖𝑋 and 𝜖𝑌 are mutually indepen-
dent random errors. Let Γ𝑗 denotes the effect of 𝐺𝑗 on 𝑌,
then we have Γ𝑗 = 𝛽𝛾𝑗 by substituting Equation (1) for 𝑋
in Equation (2).
Let �̂�𝑗 and Γ̂𝑗 be the estimates of 𝛾𝑗 and Γ𝑗 with the

variances 𝜎2
�̂�𝑗

and 𝜎2
Γ̂𝑗
, respectively. In the two-sample

MR design, {�̂�𝑗, 𝜎�̂�𝑗 }
𝑝
𝑗=1

and {Γ̂𝑗, 𝜎Γ̂𝑗 }
𝑝
𝑗=1

can be obtained
from two independent GWASs (Lawlor, 2016). Since the
GWASs generally involve large sample sizes, it is common
to assume that �̂�𝑗 and Γ̂𝑗 are independently distributed as
�̂�𝑗 ∼ 𝑁(𝛾𝑗, 𝜎

2
�̂�𝑗
) and Γ̂𝑗 ∼ 𝑁(Γ𝑗, 𝜎

2
Γ̂𝑗
) with known 𝜎2

�̂�𝑗
and

𝜎2
Γ̂𝑗
, respectively (Zhao et al., 2020).

2.2 The IVW estimator and debiased
IVW (dIVW) estimator

The popular inverse-variance weighted estimator com-
bines the estimated causal effects 𝛽𝑗 = Γ̂𝑗∕�̂�𝑗 from multi-
ple genetic variantswith theweights𝑤𝑗 = 𝜎−2

Γ̂𝑗
�̂�2
𝑗
as follows

(Burgess et al., 2013):

𝛽IVW =

∑𝑝

𝑗=1 𝑤𝑗𝛽𝑗∑𝑝

𝑗=1 𝑤𝑗

=

∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗
�̂�𝑗Γ̂𝑗∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗
�̂�2
𝑗

.

Let𝜇1 =
∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗
𝛾𝑗Γ𝑗 and𝜇2 =

∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗
𝛾2
𝑗
.Wehave𝛽 =

𝜇1∕𝜇2 since Γ𝑗 = 𝛽𝛾𝑗 under models (1)-(2). As shown by

Zhao et al. (2020), the IVW estimator can be approximated
by

𝛽IVW ≈

𝐸

(∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗
�̂�𝑗Γ̂𝑗

)
𝐸

(∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗
�̂�2
𝑗

) =
𝜇1

𝜇2 +
∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗
𝜎2
�̂�𝑗

=
𝛽

1 + 𝜇−12
∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗
𝜎2
�̂�𝑗

.

When there is no measurement error for 𝛾𝑗 (i.e., 𝜎2�̂�𝑗 =

0), we have 𝛽IVW ≈ 𝛽. However, some recent studies have
shown that the IVW estimator can be seriously biased
toward zero for ignoring the measurement errors of 𝛾𝑗
especially in the presence of many weak IVs that have
small 𝜎−2

�̂�𝑗
𝛾2
𝑗
(Ye et al., 2021; Zhao et al., 2020).

To handle the bias due to weak IVs, the debiased IVW
(dIVW) estimator (Ye et al., 2021) replaces the denominator
in the IVW estimator by an unbiased estimator �̂�2 of 𝜇2 as

𝛽dIVW =
�̂�1
�̂�2

=

∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗
�̂�𝑗Γ̂𝑗∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗

(
�̂�2
𝑗
− 𝜎2

�̂�𝑗

) .
The dIVW estimator has been shown to be consistent and
asymptotically normal under weaker conditions than the
IVW estimator. However, we find that the dIVW estimator
is more likely to yield extreme estimates in the presence of
weak IVs (as shown in Web Figure 1 under the simulation
study in Section 4). It can be shown that the denomina-
tor of the dIVW estimator has the same variance as the
denominator of the IVW estimator, but the expectation of
the former is closer to zero than that of the latter (see Web
AppendixA for details). Because zero is a singular point for
the denominator of a ratio, itmay result in the extreme esti-
mates of the dIVW estimator in the presence of weak IVs.
To overcome the limitations of the IVW estimator and the
dIVW estimator, we adjust the IVW estimator to account
for the weak IVs by using a penalized log-likelihood func-
tion for 𝜇1 and 𝜇2, which can prevent the estimator of 𝜇2
from being close to zero.

3 METHOD

3.1 The penalized IVW estimator

Assume that the estimators �̂�1 =
∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗
�̂�𝑗Γ̂𝑗 and �̂�2 =∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗
(�̂�2
𝑗
− 𝜎2

�̂�𝑗
) jointly follow the following bivariate

normal distribution(
�̂�1
�̂�2

)
∼ 𝑁

((
𝜇1
𝜇2

)
,

(
𝑣1 𝑣12
𝑣12 𝑣2

))
. (3)
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We propose the following penalized log-likelihood func-
tion to adjust the estimates of 𝜇1 and 𝜇2

𝑙𝑝(𝜇1, 𝜇2) = log 𝑓(𝜇1, 𝜇2) + 𝜆 log |𝜇2|, (4)

where 𝑓(𝜇1, 𝜇2) denotes the bivariate normal density func-
tion of �̂�=(�̂�1, �̂�2)′ and 𝜆 > 0 is the penalty parameter. The
penalized log-likelihood 𝑙𝑝(𝜇1, 𝜇2) becomes small when 𝜇2
approaches zero due to the penalty term 𝜆 log |𝜇2| (seeWeb
Figure 2 for a graphical illustration). Therefore, an estimate
of 𝜇2 being close to zero is less preferable by 𝑙𝑝(𝜇1, 𝜇2).
Specifically, we obtain the following estimators of 𝜇1 and
𝜇2 by maximizing 𝑙𝑝(𝜇1, 𝜇2)with closed-form expressions:

�̃�1 = �̂�1 +
𝑣12
𝑣2

(�̃�2 − �̂�2),

�̃�2 =

(
1

2
+

√
1

4
+ 𝜆𝑐2𝑣

)
�̂�2 = 𝑟𝜆�̂�2,

where 𝑟𝜆 = 1∕2 +
√
1∕4 + 𝜆𝑐2𝑣, 𝑐𝑣 =

√
𝑣2∕�̂�2 is

the estimated coefficient of variation of �̂�2, 𝑣12 =

2
∑𝑝

𝑗=1 𝜎
−4
Γ̂𝑗
𝜎2
�̂�𝑗
Γ̂𝑗�̂�𝑗 and 𝑣2 = 2

∑𝑝

𝑗=1 𝜎
−4
Γ̂𝑗
𝜎4
�̂�𝑗
{2 (�̂�2

𝑗
− 𝜎2

�̂�𝑗
)

𝜎−2
�̂�𝑗
+ 1} are the estimators of 𝑣12 and 𝑣2, respectively

(see Web Appendix B for detailed derivation). Note
that the bivariate normality assumption of �̂� can be
relaxed. In fact, we can take �̃�1 and �̃�2 as the esti-
mators that minimize the squared error loss function||𝚺−1∕2(�̂� − 𝝁)||22 with a penalty term −2𝜆 log |𝜇2|, that
is, ||𝚺−1∕2(�̂� − 𝝁)||22 − 2𝜆 log |𝜇2|, where 𝝁 and 𝚺 denote
the mean and the covariance matrix of �̂�, respectively.
Then we propose the following penalized IVW (pIVW)
estimator as a ratio of �̃�1 and �̃�2

𝛽pIVW =
�̃�1
�̃�2

=
1

𝑟𝜆
𝛽dIVW +

𝑣12
𝑣2

(
1 −

1

𝑟𝜆

)
. (5)

Note that 𝑟𝜆 acts like a correction factor for 𝛽dIVW. When
the penalty parameter 𝜆 = 0, the correction factor 𝑟𝜆 = 1

and then 𝛽pIVW reduces to 𝛽dIVW. When 𝜆 > 0, we can see
that 𝑟𝜆 > 1 and 𝑟𝜆 increases with the estimated coefficient
of variation 𝑐𝑣. Therefore, when the estimated coefficient
of variation 𝑐𝑣 is large (e.g., in the presence of many weak
IVs), 𝛽pIVW adjusts 𝛽dIVW by 𝑟𝜆 to prevent the denominator
�̃�2 from being close to zero (seeWeb Figure 3 for the differ-
ence between 𝛽pIVW and 𝛽dIVW against various 𝑟𝜆). A good
numerical example can be found in Section 5 (Table 4),
where 𝛽dIVW yields an extreme estimate of the causal effect
of peripheral vascular disease on hospitalized COVID-19,
and 𝛽pIVW adjusts it by the correction factor 𝑟𝜆 in the case
where no IV selection is performed.
To study the asymptotic properties of the pIVW esti-

mator, we make the following Assumptions 1 and 2,

which were also required for the consistency of the dIVW
estimator (Ye et al., 2021).

Assumption 1. The number of IVs 𝑝 diverges to infinity.

Assumption 2. {�̂�𝑗, Γ̂𝑗}
𝑝
𝑗=1

are independently distributed as
�̂�𝑗 ∼ 𝑁(𝛾𝑗, 𝜎

2
�̂�𝑗
) and Γ̂𝑗 ∼ 𝑁(𝛽𝛾𝑗, 𝜎

2
Γ̂𝑗
)with known variances

𝜎2
�̂�𝑗
and 𝜎2

Γ̂𝑗
. The ratio of variances 𝜎2

�̂�𝑗
∕𝜎2

Γ̂𝑗
is bounded away

from zero and infinity for all 𝑗 = 1,… , 𝑝.

Assumptions 1 and 2 are reasonable in the two-sample MR
design settings since the GWASs often have large sample
sizes and a large number of genetic variants. The indepen-
dence of {�̂�𝑗, Γ̂𝑗}

𝑝
𝑗=1

across genetic variants can be achieved
by the linkage-disequilibrium clumping (Purcell et al.,
2007).
Following Ye et al. (2021), we define the IV strength as

𝜅 =

∑𝑝

𝑗=1 𝛾
2
𝑗
𝜎−2
�̂�𝑗

𝑝
,

which is estimated by �̂� = 𝑝−1
∑𝑝

𝑗=1(�̂�
2
𝑗
− 𝜎2

�̂�𝑗
) 𝜎−2

�̂�𝑗
. We

also follow Ye et al. (2021) to define the effective sam-
ple size 𝜂 = 𝜅

√
𝑝. Note that the effective sample size 𝜂

is determined by the IV strength and the number of IVs
in the summary-level data, which is not the sample size
of the original individual-level data in GWASs. Under
Assumptions 1 and 2, it can be shown that 𝑐2𝑣 = 𝑂𝑝(𝜉) and
𝛽pIVW − 𝛽dIVW = 𝑂𝑝(𝜉), where 𝜉 = (𝜂

√
𝑝)−1 + 𝜂−2 con-

verges to zero as 𝜂 → ∞. Therefore, given the consistency
of 𝛽dIVW, it is straightforward that 𝛽pIVW is also consistent
as 𝜂 → ∞. In the following Theorem 1(a), we show that
the bias of 𝛽pIVW converges to zero at a faster rate than
that of 𝛽dIVW under the optimal 𝜆𝑜𝑝𝑡 = 1. In Theorem 1(b)
together with Remark 2, we show that the variance of
𝛽pIVW is smaller than that of 𝛽dIVW when 𝜆 > 0. In The-
orem 1(c), we also establish the asymptotic normality of
𝛽pIVW, which requires no more assumptions comparing to
𝛽dIVW.

Theorem 1. Suppose that Assumptions 1 and 2 hold and
the effective sample size 𝜂 → ∞. Then, we have the following
results:
(a) The bias of 𝛽dIVW is of order 𝑂(𝜉), and the bias of

𝛽pIVW is

𝐸(𝛽pIVW − 𝛽) = (1 − 𝜆)𝐸(𝛽dIVW − 𝛽) + 𝑜(𝜉).

The optimal 𝜆𝑜𝑝𝑡 = 1minimizes the absolute bias of 𝛽pIVW,
which is only of order 𝑜(𝜉).
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(b) The variances of 𝛽pIVW and 𝛽dIVW are both of order
𝑂(𝜉). But the difference between the variances of 𝛽dIVW and
𝛽pIVW is

Var(𝛽dIVW) − Var(𝛽pIVW) =
2𝜆𝛽2

𝜇42
Δ + 𝑜

(
𝜉2
)
,

𝑤ℎ𝑒𝑟𝑒 Δ =
3(𝜇1𝑣2 − 𝜇2𝑣12)

2

𝜇22𝛽
2

+
𝑣1𝑣2 − 𝑣212

𝛽2

+8𝜇2

(
𝑣12
𝑣2𝛽

− 1

) 𝑝∑
𝑗=1

𝜎4
�̂�𝑗
𝜎−6
Γ̂𝑗
(𝛾𝑗 + 𝜎2

�̂�𝑗
).

(c) Further assume that max𝑗𝛾2𝑗𝜎
−2
�̂�𝑗
∕(𝜅𝑝 + 𝑝) → 0. Then,

𝛽pIVW is asymptotically normal

𝑉
−
1

2

(
𝛽pIVW − 𝛽

) 𝑑
⟶ 𝑁(0, 1),

where

𝑉 = �̃�−22

𝑝∑
𝑗=1

{
𝜎−2
Γ̂𝑗
�̂�2
𝑗
+ 𝛽2pIVW𝜎

2
�̂�𝑗
𝜎−4
Γ̂𝑗

(
�̂�2
𝑗
+ 𝜎2

�̂�𝑗

)}
.

The proof of Theorem 1 is provided in Web Appendix C.

Remark 1. Theorem 1(a) states that 𝛽pIVW has smaller abso-
lute bias than 𝛽dIVW when 0 < 𝜆 < 2. In particular, the bias
of 𝛽pIVW with 𝜆𝑜𝑝𝑡 = 1 converges to zero at a faster rate
than that of 𝛽dIVW.

Remark 2. Theorem 1(b) shows that Var(𝛽pIVW) is smaller
than Var(𝛽dIVW) when Δ > 0. In fact, we have shown that
Δ > 0 is generally true for complex traits, of which a sin-
gle genetic variant can only explain a very small amount
of total variances (Boyle et al., 2017; Park et al., 2010;
Shi et al., 2016). More technical details can be found in
Web Appendix D. Therefore, when 𝜆 > 0, Var(𝛽pIVW) is
smaller than Var(𝛽dIVW) in MR settings. Together with
Theorem 1(a), 𝛽pIVW with 𝜆𝑜𝑝𝑡 = 1 has smaller bias and
variance than 𝛽dIVW.

Remark 3. In Theorem 1(c), we show that 𝛽pIVW is asymp-
totically normal as 𝜂 → ∞. Therefore, the confidence
interval of 𝛽 can be derived from the normal approxima-
tion of 𝛽pIVW. Alternatively, we can derive the confidence
interval of 𝛽 based on bootstrapping Fieller’s method
(Fieller, 1954; Hwang & Hwang, 1995), which has been
shown to have better coverage level than that based on
the normal approximation. More details can be found in
Web Appendix E.

In the setting of many weak IVs, we may have 𝜅 → 0 as
𝑝 → ∞ because more weak IVs are likely to be included
into the analysis as the number of IVs 𝑝 increases, which
may reduce the IV strength 𝜅. The above theorem holds in
this case as long as the effective sample size 𝜂 → ∞, which
means that it allows the presence of many weak IVs.

3.2 Selection of candidate instruments

In this section, we extend Theorem 1 to the setting where
IV selection is conducted to remove some weak IVs from
the analysis, which is a common practice in MR studies to
handle the weak IV bias.
Suppose that there is a selection dataset {�̂�∗

𝑗
, 𝜎∗

�̂�𝑗
}
𝑝
𝑗=1

that
is independent of the exposure and the outcome datasets.
Then, an IV is included into the analysis when |�̂�∗

𝑗
| >

𝛿𝜎∗
�̂�𝑗
with a pre-set threshold 𝛿 > 0 (Zhao et al., 2019). Ye

et al. (2021) showed that IV selection with an appropriate
threshold 𝛿 could reduce the bias of the IVW estimator
and improve the efficiency of the dIVW estimator. They
also recommended a threshold 𝛿 =

√
2 log 𝑝 to guarantee

a small probability of selecting any null IVs (i.e., 𝛾𝑗 = 0).
When the IV selection is performed at a threshold 𝛿, we
follow Ye et al. (2021) to define the IV strength as

𝜅𝛿 =

∑𝑝

𝑗=1 𝛾
2
𝑗
𝜎−2
�̂�𝑗
𝑞𝛿,𝑗

𝑝𝛿
,

where 𝑞𝛿,𝑗 = 𝑃(|�̂�∗
𝑗
| > 𝛿𝜎∗

�̂�𝑗
) and 𝑝𝛿 =

∑𝑝

𝑗=1 𝑞𝛿,𝑗 . Let 𝑆𝛿 =
{𝑗 ∶ |�̂�∗

𝑗
| > 𝛿𝜎∗

�̂�𝑗
} be the set of selected IVs, and �̂�𝛿 be

the number of selected IVs within 𝑆𝛿. Then, we can
estimate 𝜅𝛿 by �̂�𝛿 = �̂�−1

𝛿

∑
𝑗∈𝑆𝛿

(�̂�2
𝑗
− 𝜎2

�̂�𝑗
)𝜎−2

�̂�𝑗
. In the IV

selection setting, we define the effective sample size 𝜂𝛿 =
𝜅𝛿
√
𝑝𝛿∕max(1, 𝜑) and 𝜉𝛿 = (𝜂𝛿

√
𝑝
𝛿
max(1, 𝜑))−1 + 𝜂−2

𝛿
,

where 𝜑 =
√
𝑝−1
𝛿

∑𝑝

𝑗=1 𝛾
4
𝑗
𝜎−4
�̂�𝑗
𝑞𝛿,𝑗(1 − 𝑞𝛿,𝑗). To study the

theoretical properties of the proposed pIVW estimator
under IV selection, we have the following Assumption 3
for the summary-level data in the selection dataset.

Assumption 3. {�̂�∗
𝑗
, �̂�𝑗, Γ̂𝑗}

𝑝
𝑗=1

are mutually independent
and �̂�∗

𝑗
∼ 𝑁(𝛾𝑗, 𝜎

∗2
�̂�𝑗
) with known variance 𝜎∗2

�̂�𝑗
for every 𝑗.

The ratio of variances 𝜎2
�̂�𝑗
∕𝜎∗2

�̂�𝑗
is bounded away from zero

and infinity for all 𝑗 = 1,… , 𝑝.

Given a selection threshold 𝛿, we evaluate the dIVW
estimator 𝛽𝛿,dIVW = �̂�1,𝛿∕�̂�2,𝛿 and the proposed pIVW esti-
mator 𝛽𝛿,pIVW = �̃�1,𝛿∕�̃�2,𝛿 using the selected IVs within
the set 𝑆𝛿. Under Assumptions 1–3, we have 𝛽𝛿,pIVW −

𝛽𝛿,dIVW = 𝑂𝑝(𝜉𝛿). The following Theorem 2 shows that the
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asymptotic properties of the pIVW estimator in Theorem 1
still hold under the IV selection as the effective sample size
𝜂𝛿 → ∞.

Theorem 2. Suppose that Assumptions 1–3 hold and the
effective sample size 𝜂𝛿 → ∞. Then, we have the following
results:
(a) The bias of 𝛽𝛿,dIVW is of order 𝑂(𝜉𝛿), and the bias of

𝛽𝛿,pIVW is

𝐸(𝛽𝛿,pIVW − 𝛽) = (1 − 𝜆)𝐸(𝛽𝛿,dIVW − 𝛽) + 𝑜(𝜉𝛿).

The optimal 𝜆𝑜𝑝𝑡 = 1minimizes the absolute bias of 𝛽𝛿,pIVW,
which is only of order 𝑜(𝜉𝛿).
(b) The variances of 𝛽𝛿,pIVW and 𝛽𝛿,dIVW are both of order

𝑂(𝜉𝛿). But the difference between the variances of 𝛽𝛿,dIVW
and 𝛽𝛿,pIVW is

Var(𝛽𝛿,dIVW) − Var(𝛽𝛿,pIVW) =
2𝜆𝛽2

𝜇4
2,𝛿

Δ𝛿 + 𝑜
(
𝜉2
𝛿

)
,

𝑤ℎ𝑒𝑟𝑒 Δ𝛿 =
3(𝜇1,𝛿𝑣2,𝛿 − 𝜇2,𝛿𝑣12,𝛿)

2

𝜇2
2,𝛿
𝛽2

+
𝑣1,𝛿𝑣2,𝛿 − 𝑣2

12,𝛿

𝛽2

+8𝜇2,𝛿

(
𝑣12,𝛿

𝑣2,𝛿𝛽
− 1

) 𝑝∑
𝑗=1

𝜎4
�̂�𝑗
𝜎−6
Γ̂𝑗
(𝛾𝑗 + 𝜎2

�̂�𝑗
)𝑞𝛿,𝑗.

(c) Further assume that max𝑗𝛾2𝑗𝜎
−2
�̂�𝑗
𝑞𝛿,𝑗∕(𝜅𝛿𝑝𝛿 + 𝑝𝛿) → 0.

Then, 𝛽𝛿,pIVW is asymptotically normal

𝑉
−
1

2

𝛿

(
𝛽𝛿,pIVW − 𝛽

) 𝑑
⟶ 𝑁(0, 1),

where

𝑉𝛿 = �̃�−2
2,𝛿

∑
𝑗∈𝑆𝛿

{
𝜎−2
Γ̂𝑗
�̂�2
𝑗
+ 𝛽2

𝛿,pIVW
𝜎2
�̂�𝑗
𝜎−4
Γ̂𝑗

(
�̂�2
𝑗
+ 𝜎2

�̂�𝑗

)}
.

The proof of Theorem 2 is provided in Web Appendix F.
Theorem 2 shows that 𝛽𝛿,pIVW has smaller absolute bias
than 𝛽𝛿,dIVW when 0 < 𝜆 < 2. The bias of 𝛽𝛿,pIVW with
the optimal 𝜆𝑜𝑝𝑡 = 1 converges to zero faster than that of
𝛽𝛿,dIVW. We also prove that Δ𝛿 > 0 generally holds in the
genetic studies, and therefore Var(𝛽𝛿,pIVW) is smaller than
Var(𝛽𝛿,dIVW)when 𝜆 > 0. The pIVW estimator is still con-
sistent and asymptotically normal after accounting for the
IV selection. We extend the results for the dIVW estima-
tor in Ye et al. (2021) to the pIVW estimator. Note that,
the independent datasets for IV selection might not be
available for some traits in practice. However, the pIVW
estimator is still useful in this case, since it can handle
the weak IV bias even without IV selection as shown in
Theorem 1.

3.3 Accounting for balanced horizontal
pleiotropy

When there exists horizontal pleiotropy (i.e., nonzero
direct effect of𝐺𝑗 on𝑌 notmediated by𝑋), the linear struc-
tural model (2) can be modified as follows (Bowden et al.,
2015):

𝑌 = 𝛽𝑋 +

𝑝∑
𝑗=1

𝛼𝑗𝐺𝑗 + 𝑈 + 𝜖𝑌, (6)

where 𝛼𝑗 denotes the direct genetic effect of 𝐺𝑗 on the
outcome 𝑌 (i.e., pleiotropic effect). In this case, we have
Γ𝑗 = 𝛽𝛾𝑗 + 𝛼𝑗 . We follow a common practice in many MR
methods to assume that the horizontal pleiotropy is bal-
anced (i.e., the pleiotropic effect has mean zero) and treat
𝛼𝑗 as random effect following 𝛼𝑗 ∼ 𝑁(0, 𝜏2) (Bowden et al.,
2017; Zhao et al., 2020; Ye et al., 2021). Then, we have
Γ̂𝑗 ∼ 𝑁(𝛽𝛾𝑗, 𝜎

2
Γ̂𝑗
+ 𝜏2) in the presence of balanced hori-

zontal pleiotropy. To account for the balanced horizontal
pleiotropy, we estimate the variance of 𝛽𝛿,pIVW by

𝑉∗
𝛿
= �̃�−2

2,𝛿

∑
𝑗∈𝑆𝛿

{
𝜎−2
Γ̂𝑗
�̂�2
𝑗

(
1 + �̂�2𝜎−2

Γ̂𝑗

)
+ 𝛽2

𝛿,pIVW
𝜎2
�̂�𝑗
𝜎−4
Γ̂𝑗

(
�̂�2
𝑗
+ 𝜎2

�̂�𝑗

)}
,

where we follow Ye et al. (2021) to derive the estimator of
𝜏2 as

�̂�2 =

∑𝑝

𝑗=1

{(
Γ̂𝑗 − 𝛽pIVW�̂�𝑗

)2
− 𝜎2

Γ̂𝑗
− 𝛽2pIVW𝜎

2
�̂�𝑗

}
𝜎−2
Γ̂𝑗∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗

.

To establish the theoretical results for the pIVW esti-
mator in the presence of balanced horizontal pleiotropy,
we replace Γ̂𝑗 ∼ 𝑁(𝛽𝛾𝑗, 𝜎

2
Γ̂𝑗
) by Γ̂𝑗 ∼ 𝑁(𝛽𝛾𝑗, 𝜎

2
Γ̂𝑗
+ 𝜏2) in

Assumption 2, and assume that 𝜏2 < 𝑐1𝜎
2
Γ̂𝑗

with a con-

stant 𝑐1 > 0 for all 𝑗. We further assume that max𝑗 𝜎−2Γ̂𝑗
<

𝑐2𝑝
−1∑𝑝

𝑗=1 𝜎
−2
Γ̂𝑗
for a constant 𝑐2 > 0 in Theorems 1(c) and

2(c). Then, Theorems 1 and 2 can be extended to the situ-
ation with balanced horizontal pleiotropy. The proofs are
provided in Web Appendices C and F, respectively.

4 SIMULATION STUDY

4.1 Simulation settings

Wegenerate the summary-level data for 1000 IVs from �̂�𝑗 ∼

𝑁(𝛾𝑗, 𝜎
2
�̂�𝑗
) and Γ̂𝑗 ∼ 𝑁(Γ𝑗, 𝜎

2
Γ̂𝑗
) independently. For the true

𝛾𝑗 , we consider a scenario with many weak IVs and many
null IVs as in Ye et al. (2021), where we randomly generate
𝛾𝑗 ∼ 𝑁(0, 0.022) for the weak IVs and let 𝛾𝑗 = 0 for the null
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IVs. We set the proportion of null IVs to be 95%, 90%, and
80% corresponding to the effective sample size 𝜂 around
4.33, 9.52, and 21.85, respectively. Then, we let Γ𝑗 = 𝛽𝛾𝑗 +

𝛼𝑗 , where𝛼𝑗 ∼ 𝑁(0, 𝜏2).We set𝛽 = 0.5, and 𝜏 = 0, and 0.01
that represent the absence and the presence of balanced
horizontal pleiotropy, respectively. The variances 𝜎2

�̂�𝑗
and

𝜎2
Γ̂𝑗
are given by 𝜎2

�̂�𝑗
= {Var(𝑋) − 𝛾2

𝑗
Var(𝐺𝑗)}∕{𝑛𝑋Var(𝐺𝑗)}

and 𝜎2
Γ̂𝑗
= {Var(𝑌) − Γ2

𝑗
Var(𝐺𝑗)}∕{𝑛𝑌Var(𝐺𝑗)}, where 𝑛𝑋

and 𝑛𝑌 denote the sample sizes of the GWASs for the expo-
sure and the outcome, respectively. We set 𝑛𝑋 = 0.5𝑛𝑌 =

100, 000. For Var(𝐺𝑗), we let 𝐺𝑗 ∼ 𝐵𝑖𝑛(2,MAF𝑗) and ran-
domly generate theminor allele frequencies fromMAF𝑗 ∼
𝑈(0.1, 0.5). For Var(𝑋) and Var(𝑌), we calculate them
from Equations (1) and (6) with the variances of 𝑈, 𝜖𝑋
and 𝜖𝑌 being 2, respectively. Furthermore, we generate
an independent dataset with �̂�∗

𝑗
∼ 𝑁(𝛾𝑗, 0.5𝜎

2
�̂�𝑗
) for the IV

selection at threshold 𝛿 =
√
2 log 𝑝 = 3.72. The simulation

is based on 10,000 replicates.
We first investigate the impact of the penalty parame-

ter 𝜆 on the performance of the proposed pIVW estimator,
where 𝜆 increases from 0 to 2.5 by 0.5. Then, we com-
pare the proposed pIVW estimator with 𝜆𝑜𝑝𝑡 = 1 to other
competingMRmethods, including the IVW, theMR-Egger
(Bowden et al., 2015), the MR-Median (Bowden et al.,
2016), the MR-RAPS (Zhao et al., 2020), and the dIVW
estimators. The performances among various methods are
compared in terms of the relative bias (bias divided by
the true 𝛽) and the empirical standard error of the esti-
mated causal effect, as well as the coverage probability of
nominal 95% confidence interval. For the pIVW estima-
tor, we present the coverage probability of bootstrapping
Fieller’s confidence interval in this simulation. In Sec-
tion 4.3, we also compare bootstrapping Fieller’s interval
with the confidence interval derived from the normal
approximation of the pIVW estimator under a wide range
of parameter settings.

4.2 Simulation results

The pIVW estimator has the smallest bias at 𝜆 = 1 as sum-
marized in Table 1. The empirical standard error of the
pIVW estimator decreases as 𝜆 increases. As the effective
sample size 𝜂 increases, the value of 𝜆 tends to have less
influence on the performance of the pIVW estimator. We
find similar results in the presence of balanced horizontal
pleiotropy and IV selection (seeWebTables 1 and 3). There-
fore, we recommend to choose the optimal 𝜆𝑜𝑝𝑡 = 1 for the
pIVW estimator in practice due to its smallest bias.
We next compare the pIVW estimator (𝜆𝑜𝑝𝑡 = 1) against

the other five competingMRmethods under the situations
without horizontal pleiotropy and IV selection with the

TABLE 1 The pIVW estimator with various penalty parameter
𝜆. The true causal effect 𝛽 = 0.5. No horizontal pleiotropy exists
(𝜏 = 0). No IV selection is conducted. The simulation is based on
10,000 replicates. Bias (%): bias divided by 𝛽; CP (%): coverage
probability of the 95% confidence interval; SE: empirical
standard error

𝜼 𝝀 Bias SE CP
4.33 0 22.4 2.156 94.8

0.5 3.7 0.341 94.3
1 −3.3 0.293 94.0
1.5 −8.3 0.267 93.4
2 −12.3 0.248 92.8
2.5 −15.6 0.234 91.9

9.52 0 3.0 0.148 94.8
0.5 1.3 0.143 94.6
1 −0.2 0.139 94.6
1.5 −1.6 0.136 94.4
2 −2.9 0.133 94.2
2.5 −4.2 0.130 93.9

21.85 0 0.7 0.069 94.6
0.5 0.4 0.068 94.5
1 0.0 0.068 94.5
1.5 −0.3 0.067 94.4
2 −0.7 0.067 94.3
2.5 −1.0 0.067 94.1

results summarized in Table 2. The pIVW estimator has
negligible bias that is the smallest among all six methods.
In contrast, the IVW, the MR-Egger, and the MR-Median
estimators have serious biases and poor coverage prob-
abilities. The MR-RAPS and the dIVW estimators have
relatively large empirical standard errors when the effec-
tive sample size 𝜂 is small (𝜂 = 4.33), and we find that
they yield some extreme estimates in this case (see Web
Figure 1). As 𝜂 increases, the differences in the perfor-
mance among the MR-RAPS, the dIVW, and the pIVW
estimators become smaller.
The results with IV selection at threshold

𝛿 =
√
2 log 𝑝 = 3.72 are given in Table 3. The pro-

posed pIVW estimator still has the smallest bias among
six methods and has smaller empirical standard error
than the dIVW estimator. We obtain similar results in
the presence of balanced horizontal pleiotropy (see Web
Tables 4 and 5).
We conduct an additional simulation study tomimic the

individual-level data-generating mechanisms in GWASs.
We first simulate the individual-level data based on the
linear structural models (1) and (6). Then, we obtain the
summary-level data by estimating the marginal effects
and their standard errors from the linear regressions
as in Ye et al. (2021) and Wang et al. (2022). We have
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TABLE 2 Comparison of the pIVW estimator (𝜆𝑜𝑝𝑡 = 1) with
other competing MR methods. The true causal effect 𝛽 = 0.5. No
horizontal pleiotropy exists (𝜏 = 0). No IV selection is conducted.
The simulation is based on 10,000 replicates. Bias (%): bias divided
by 𝛽; CP (%): coverage probability of the 95% confidence interval;
SE: empirical standard error

𝜼 Method Bias SE CP
4.33 IVW −88.0 0.028 0.0

MR-Egger −80.2 0.045 0.0
MR-Median −83.1 0.041 0.0
MR-RAPS 7.4 0.743 93.5
dIVW 22.4 2.156 94.6
pIVW −3.3 0.293 94.0

9.52 IVW −76.9 0.027 0.0
MR-Egger −63.5 0.042 0.0
MR-Median −67.6 0.040 0.0
MR-RAPS 1.2 0.120 94.7
dIVW 3.0 0.148 95.5
pIVW −0.2 0.139 94.6

21.85 IVW −59.1 0.024 0.0
MR-Egger −42.0 0.036 0.0
MR-Median −46.7 0.036 0.0
MR-RAPS 0.3 0.060 94.8
dIVW 0.7 0.069 94.8
pIVW 0.0 0.068 94.5

similar findings in the simulation with individual-level
data. More details are given in Web Appendix G and Web
Tables 6–9.

4.3 Empirical guidelines on 𝜼 for
asymptotics

In Theorem 1, the asymptotic properties of 𝛽pIVW require
the effective sample size 𝜂 → ∞. To investigate how large
of 𝜂 is enough for the asymptotics, we conduct further
simulations for 𝛽pIVW with 𝜆𝑜𝑝𝑡 = 1 under a wide range
of parameter settings, including: (1) 𝛾𝑗 ∼ 𝑁(0, 𝜎2) with 𝜎
varying from 0.01 to 0.05, (2) the proportion of null IVs
from 0 to 99%, and (3) 𝑛𝑥 = 𝑐𝑛𝑦 = 100, 000 with 𝑐 rang-
ing from 0.1 to 10. The results show that the relative
bias of 𝛽pIVW decreases more rapidly than that of 𝛽dIVW
as 𝜂 increases (see Figure 2(A)). 𝛽pIVW is nearly unbi-
ased when 𝜂 > 5, while 𝛽dIVW requires 𝜂 > 15 to have a
negligible bias. The variance of 𝛽pIVW is much smaller
than that of 𝛽dIVW when 𝜂 < 5, and they get close to
each other as 𝜂 increases (see Figure 2(B)). The confi-
dence interval derived from the normal approximation
of 𝛽pIVW maintains nominal coverage probability when
𝜂 > 10, while bootstrapping Fieller’s confidence interval

TABLE 3 Comparison of the pIVW estimator (𝜆𝑜𝑝𝑡 = 1) with
other competing MR methods. The true causal effect 𝛽 = 0.5. No
horizontal pleiotropy exists (𝜏 = 0). The IV selection threshold
𝛿 =

√
2 log 𝑝. The simulation is based on 10,000 replicates. Bias (%):

bias divided by 𝛽; CP (%): coverage probability of the 95%
confidence interval; SE: empirical standard error

𝜼𝜹 Method Bias SE CP
6.76 IVW −7.3 0.122 93.4

MR-Egger −41.9 0.376 89.3
MR-Median −11.6 0.140 95.1
MR-RAPS 1.4 0.137 95.8
dIVW 3.2 0.144 96.0
pIVW −0.1 0.136 95.3

10.26 IVW −7.9 0.079 91.4
MR-Egger −43.6 0.207 79.2
MR-Median −12.2 0.097 93.0
MR-RAPS 0.7 0.088 95.5
dIVW 1.4 0.090 95.5
pIVW 0.1 0.088 95.1

17.84 IVW −7.9 0.049 87.4
MR-Egger −48.6 0.130 51.2
MR-Median −12.5 0.062 88.3
MR-RAPS 0.4 0.055 94.9
dIVW 0.7 0.056 95.0
pIVW 0.2 0.055 94.7

maintains nominal coverage probability when 𝜂 > 5 (see
Figure 2(C)).
We have similar findings for 𝜂𝛿 under the IV selection

(see Web Figure 4), where we consider a grid of two addi-
tional parameters, including the selection threshold 𝛿 from
1 to 4 and �̂�∗

𝑗
∼ 𝑁(𝛾𝑗, 𝑐𝜎

2
�̂�𝑗
) with 𝑐 from 0.1 to 10. We also

find similar results in the presence of balanced horizon-
tal pleiotropy (see Web Figures 5 and 6). Therefore, we
recommend that 𝜂 (or 𝜂𝛿) should be larger than 5 for the
pIVW estimator to have a negligible bias and a nominal
coverage probability of the confidence interval. On the
other hand, although the bias and variance of the pIVW
estimator might not be negligible when 𝜂 (or 𝜂𝛿) is less
than 5, they are still much smaller than those of the dIVW
estimator (see Figure 2(A) and (B)).

5 REAL DATA APPLICATIONS TO
COVID-19 OUTCOMES

In this section, we focus on estimating the causal effects of
five obesity-related exposures (i.e., peripheral vascular dis-
ease, dyslipidemia, hypertensive disease, type 2 diabetes,
and BMI) on three COVID-19 outcomes: (1) COVID-19
infection, (2) hospitalized COVID-19, and (3) critically
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F IGURE 2 The plots of (A) the absolute relative biases (biases divided by 𝛽); (B) the empirical standard errors; and (C) the coverage
probabilities of the 95% confidence intervals for the dIVW estimator and the pIVW estimator (𝜆𝑜𝑝𝑡 = 1) against the effective sample size 𝜂.
The dashed line shows 𝜂 = 5. The dots represent the simulation results under different settings of parameters based on 10,000 replicates.
There is no horizontal pleiotropy (𝜏 = 0) or IV selection. This figure appears in color in the electronic version of this article, and any mention
of color refers to that version

ill COVID-19 (COVID-19 Host Genetics Initiative, 2021).
The GWAS summary-level data for the three COVID-19
outcomes is obtained from the COVID-19 Host Genet-
ics Initiative (COVID-19 Host Genetics Initiative, 2020),
which includes up to 49,562 cases and twomillion controls
from 47 distinct studies. For BMI, the selection dataset is
from Akiyama et al. (2017) with 173,430 individuals and
the exposure dataset is from UK BioBank with 359,983
individuals (Abbott et al., 2018). For the other four obesity-
related exposures, the selection datasets are from the
GWAS meta-analysis of Genetic Epidemiology Research
on Adult Health and Aging (GERA) with 53,991 individ-
uals (Zhu et al., 2018), and the exposure datasets are from
the GWASmeta-analysis of UK BioBankwith 108,039 indi-
viduals (Zhu et al., 2018). More detailed data description is
provided in Web Table 10. To exclude correlated IVs, we
perform the linkage-disequilibrium clumping to remove
the correlated genetic variants within 10Mb pairs andwith
the linkage disequilibrium 𝑟2 < 0.001. The numbers of IVs
included into the analysis are from 1768 to 2338 for different
datasets (see Web Table 11 for details).
From the results of the pIVW estimator with 𝜆𝑜𝑝𝑡 = 1,

we find significant positive causal effects of hypertensive
disease on hospitalized COVID-19, and BMI on the three
COVID-19 outcomes at significance level 0.05 (see Table 4
and Web Figures 7 and 8). Our findings agree with some
recent epidemiological studies (Nakeshbandi et al., 2020;
Popkin et al., 2020). Some previous MR studies have also
found significant causal effects of BMI on the COVID-19
outcomes (Leong et al., 2021; Ponsford et al., 2020), but
there is still no MR analysis on the hypertensive disease to
the best of our knowledge. Additionally, the pIVW estima-
tor suggests that peripheral vascular disease is significantly
associated with higher risks of three COVID-19 outcomes
under the IV selection at threshold 𝛿 =

√
2 log 𝑝 = 3.87.

To our knowledge, there is a lack of MR studies about the

associations between peripheral vascular disease and the
COVID-19 outcomes, despite a high incidence of periph-
eral vascular disease in COVID-19 patients (Hanff et al.,
2020). For type 2 diabetes and dyslipidemia, the pIVW esti-
mator does not find any evidence of associations with the
three COVID-19 outcomes. More results can be found in
Web Table 11 and Web Figures 7 and 8.
The other competingMRmethods provide very different

causal effect estimates when the estimated effective sam-
ple size 𝜂 or 𝜂𝛿 is small (see Table 4; see Web Appendix H
for the estimation of 𝜂 and 𝜂𝛿). For peripheral vascular dis-
easewith a very small 𝜂when no IV selection is performed,
the IVW estimator has a very small estimate (0.007) that
might be biased toward zero, because its denominator is
a biased estimator of 𝜇2 and might overestimate 𝜇2 in the
presence of manyweak IVs (Ye et al., 2021). In contrast, the
dIVW estimator yields a relatively large estimate (4.413)
with an extreme estimated standard error (95.942), which
possibly overestimates the causal effect due to the presence
of many weak IVs. In this case, the pIVW estimator adjusts
the dIVW estimator by the correction factor 𝑟𝜆 = 20.86,
and provides a causal effect estimate being 0.219 with the
estimated standard error being 0.429. After we perform
IV selection to remove the weak IVs, the estimates from
all the methods are in similar magnitudes. For BMI with
large 𝜂 and 𝜂𝛿, there is a smaller discrepancy among these
methods, and the pIVW estimator and the dIVW estimator
provide similar results in this case.

6 DISCUSSION

The popular IVW estimator suffers from substantial bias
in the presence of weak IVs, a common challenge in MR
studies. In this paper, we develop a novel penalized IVW
(pIVW) estimator to prevent the denominator of the ratio
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TABLE 4 Estimated causal effects (𝛽) and estimated standard errors (SEs) of three obesity-related exposures (i.e., peripheral vascular
disease (PVD), hypertensive disease (HD), and BMI) on the risk of hospitalized COVID-19. The pIVW estimator with the optimal 𝜆𝑜𝑝𝑡 = 1

No IV selection IV selection 𝜹 =
√
𝟐 𝐥𝐨𝐠𝒑

Exposure Method �̂� 𝜷 (𝐒𝐄) �̂�𝜹 𝜷 (𝐒𝐄)

PVD IVW 1.68 0.007 (0.013) 3.98 0.233 (0.055)
MR-Egger 0.022 (0.019) 0.292 (0.071)
MR-Median 0.032 (0.020) 0.367 (0.098)
MR-RAPS 0.379 (0.550) 0.419 (0.217)
dIVW 4.413 (95.942) 0.670 (0.317)
pIVW 0.219 (0.429) 0.594 (0.245)

HD IVW 28.85 0.089 (0.033) 12.04 0.135 (0.065)
MR-Egger 0.068 (0.047) 0.199 (0.091)
MR-Median 0.109 (0.059) 0.132 (0.099)
MR-RAPS 0.241 (0.095) 0.161 (0.080)
dIVW 0.246 (0.093) 0.163 (0.079)
pIVW 0.244 (0.093) 0.163 (0.078)

BMI IVW 218.93 0.382 (0.077) 37.36 0.371 (0.100)
MR-Egger 0.455 (0.105) 0.563 (0.140)
MR-Median 0.549 (0.141) 0.361 (0.176)
MR-RAPS 0.466 (0.097) 0.397 (0.106)
dIVW 0.468 (0.096) 0.397 (0.106)
pIVW 0.468 (0.096) 0.397 (0.106)

from being close to zero to reduce the bias due to the
presence of many weak IVs. Moreover, we allow for the
balanced horizontal pleiotropy by adjusting the variance
estimation of the proposed pIVW estimator. Both sim-
ulation studies and real data analysis demonstrate the
improved performance of the proposed pIVW estimator
compared to the original IVW estimator and the recent
dIVW estimator (Ye et al., 2021).
Our pIVW estimator has multiple advantages. First, our

theoretical and numerical results show that the bias of the
pIVW estimator with the optimal 𝜆𝑜𝑝𝑡 = 1 converges to
zero at a faster rate than that of the dIVW estimator as the
effective sample size 𝜂 (or 𝜂𝛿) increases. Meanwhile, the
pIVWestimatorwith the optimal 𝜆𝑜𝑝𝑡 = 1has smaller vari-
ance than the dIVWestimator. Second, the proposed pIVW
estimator is consistent and asymptotically normal even
in the presence of many weak IVs, and requires no more
assumptions than the dIVW estimator. The dIVW estima-
tor can also be viewed as a special case of our proposed
pIVW estimator, because the dIVW estimator is equivalent
to the pIVW estimator with 𝜆 = 0. When 𝜆 > 0, their dif-
ference converges to zero as the effective sample size 𝜂 (or
𝜂𝛿) increases. Third, the pIVW has a unique and closed-
form solution, whereas many competingMRmethods that
are robust to the weak IVs do not have a closed-form solu-
tion and might have multiple numerical solutions (Zhao
et al., 2019, 2020). In future work, we plan to extend the

proposed penalization approach to other MR estimators to
handle the weak IV bias, for instance, a penalized MR-
Egger estimator (Bowden et al., 2015) to account for the
unbalanced horizontal pleiotropy, and to account for the
linkage disequilibrium (Wang et al., 2022).
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