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Abstract. The three-dimensional structure of actin 
filaments decorated with the actin-binding domain of 
chick smooth muscle c~-actinin (orAl-2) has been de- 
termined to 21-/~ resolution. The shape and location 
of otAI-2 was determined by subtracting maps of 
F-actin from the reconstruction of decorated filaments. 
orAl-2 resembles a bell that measures ~38 ,~ at its 
base and extends 42 ~ from its base to its tip. In 
decorated filaments, the base of c~A1-2 is centered 
about the outer face of subdomain 2 of actin and con- 

tacts subdomain 1 of two neighboring monomers along 
the long-pitch (two-start) helical strands. Using the 
atomic model of F-actin (Lorenz, M., D. Popp, and 
K. C. Holmes. 1993. J. Mol. Biol. 234:826-836.), we 
have been able to test directly the likelihood that 
specific actin residues, which have been previously 
identified by others, interact with orAl-2. Our results 
indicate that residues 86-117 and 350-375 comprise 
distinct binding sites for t~-actinin on adjacent actin 
monomers. 

T 
HE importance of actin in cellular processes ranging 
from muscle contraction to cell motility has made 
this protein one of the most widely studied since its 

discovery half a century ago (reviewed in Kabsch and Van- 
dekerckhove, 1992). The function and dynamics of actin in 
the cell is regulated by a diverse group of proteins that bind 
either monomeric or filamentous actin or both (Pollard and 
Cooper, 1986; Vandekerckhove and Vancomperuolle, 1992). 
c~-Actinin is an F-actin cross-linking protein that is found in 
stress fibers and adhesion plaques in nonmuscle cells, as well 
as in Z discs and their homologues in muscle cells (Blan- 
chard et al., 1989). Its function in the cell is not clear, but 
its subcellular distribution suggests that it may be important 
in the attachment of cytoskeletal structures to the mem- 
brane. 

All t~-actinin isoforms exist as homodimers of elongated 
subunits arranged in an antiparallel fashion. Each subunit is 
organized into domains: a 28-kD amino-terminal actin- 
binding domain (aA1-2) ~, four central t~-helical repeats, 
and a carboxy-terminal domain containing two EF hand mo- 
tifs (Baron et al., 1987). The actin-binding domain is related 
in sequence to similar-sized domains in dystrophin, spec- 
trin, ABP120, filamin, and fimbrin (de Arruda et al., 1990; 
Matsudaira, 1991). Together, these proteins form a family of 
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I. Abbt~iation~ used in this paper: aAI-2, actin-binding domain of chick 
smooth muscle a-actinin; CTF, contrast transfer function. 

actin cross-linkers that differ primarily in the structure and 
number of central repeats. In addition, orAl-2 can function- 
ally replace $2-3, an F-actin-binding domain in gelsolin that 
is unrelated in sequence but is of similar size (Way et al., 
1992). Thus, the structure of oral-2 is important as an arche- 
type for the interactions of a number of proteins with actin 
filaments, including severing proteins such as gelsolin. 

Monomer-binding proteins that block polymerization can 
be cocrystallized with G-actin and studied by x-ray crystal- 
lography (Kabsch et al., 1990; Schutt et al., 1993; Me- 
Laughlin et al., 1993). In the absence of such proteins, 
G-actin polymerizes into filaments, making crystals un- 
attainable. Thus, electron microscopy is the method of 
choice for studying the structure of F-actin-binding proteins 
bound to actin filaments (Moore ct al., 1970). Recent papers 
on myosin SI interactions with F-actin demonstrate the 
power of combining the two approaches (Schroder et al., 
1993; Raymcnt et al., 1993). 
Current information about the location of a-actinin's bind- 

ing site on actin has derived from a number of techniques 
including synthetic peptides, antibodies, affinity chromatog- 
raphy, and chemical cross-linking (Lcbart et al., 1993, 1990; 
Mimura and Asano, 1987). With these methods, specific 
residues likely to be involved in binding have been identified, 
but structural information about the interaction is restricted 
to the interface between the proteins. We sought to deter- 
mine directly the location of the binding site by electron 
microscopy and image processing of actin filaments deco- 
rated with otAI-2. The results show that o~AI-2 contacts sub- 
domain 1 of two actin monomers along the long-pitch helix 
of the filament at a site centered at subdomain 2. 
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Materials and Methods 

Preparation of Decorated Filaments for 
Electron Microscopy 
The actin-binding domain from chick smooth muscle c~-actinin (residues 
1-269) was expressed and purified from F~cherichia coli as described previ- 
ously (Way et al., 1992). G-actin was purified from chicken acetone powder 
by the method of Spudich and Watt (1971). Actin was polymerized in buffer 
A (10 mM Tris, pH 8, 100 mM NaC1, 1 mM MgCI2, 0.2 mM ATP, 1 mM 
DTT, 3 mM NAN3, 0.1 mM CaCI2) for 30 min at room temperature. 
F-actin (0.05-1.0 mg/ml) in buffer A was incubated for 30 rain at room tem- 
perature in the presence of a three- to sixfold molar excess of c~AI-2. Reac- 
tion mixtures, pellets, and supernatants were analyzed by SDS-PAGE to de- 
termine the stoichiometry required for actin filament saturation (Way et al., 
1992). We sought to reduce background noise in the micrographs by using 
the minimal amount of aAl-2 required to achieve saturation of the actin. 
Approximately 5/~1 of filaments were applied to holey carbon copper elec- 
tron microscope grids, blotted with filter paper, and rapidly frozen in liquid 
propane. 

Electron Microscopy 
Transmission electron microscopy was performed using an electron micro- 
scope (CM12; Philips Electronic Instruments, Inc., Mahwah, NJ) outfitted 
with an anticontaminator (651N; Gatan, Inc., Warrendale, PA). Electron 
microscope grids were maintained at •-172°C using a cryotransfer system 
(626; Gatan, Inc.) cooled with liqtnd nitrogen. Images were recorded on 
film (SO-163; Eastman Kodak Co., Rochester, NY) at --1-1.2/~m under 
focus at a nominal magnification of 60,000 and an electron dose of ,x,12 
e-/.~ 2. Negatives were developed for 12 min in full-strength developer 
(D19; Eastman Kodak Co.). 

Image Analysis 
Three-dimensional reconstructions. Electron micrographs were digitized 
with a densitometer (1412; Eikonix Corp., Bedford, MA) at a scanning 
raster of 25 ~un (resulting in a pixel size of ,~4.3 ~). Image analysis and 
display was performed on a Lexidata Lex 90 graphics device (Lexidata 
Corp., Biilerica, MA) and a cluster of VAX workstations using a suite of 
programs written and maintained at Brandeis University. Filament images 
were straightened by fitting a spline to the particle axis and then interpolat- 
iag onto a straight line (Egelman, 1986). Straightened images were masked 
and their edges were apodized before computing their Fourier transforms 
(Stewart et al., 1981). Approximate positions of the strongest layer-lines 
(typically 1, 2, 5, 6, and 7) were selected interactively. A least-squares fit 
of the strong reflections was used to determine the exact positions of all 
layer-lines in the Fourier transform (Owen and DeRosier, 1993). Layer-line 
data were collected within the first node of the transform, which was deter- 
mined from regions of carbon support film adjacent to the particles ana- 
lyzed. 

After correcting for the phase origin and particle tilt, layer-lines were 
separated into near- and far-side data sets (DeRosier and Moore, 1970). We 
found that two rounds of interactive alignment were sufficient to align the 
data sets (Amos, 1975). Potations and shifts were determined based on the 
phase minimum between each data set and a reference (using layer-lines 1, 
2, 5, 6, and 7). In the first round, the reference was derived from one of 
the original images. In the second round, a preliminary average was used 
as the reference. A total of 80 data sets (from 40 filaments) were submitted 
for alignment. Of these, 12 were excluded because the polarities between 
the two sides of the same particle did not agree. The mean phase residual 
for the individual data sets against the reference (calculated using layer-lines 
1, 2, 5, 6, and 7) was 72 ° and61 ° for the first and last rounds of alignment, 
respectively. A phase residual of 61 ° is similar in magnitude to those 
reported for other actin structures such as F-actin decorated with Fab frag-  
ments, 53 ° (Orlova et al., 1994); actin-scruin filaments, 60 ° (Owan and 
DeRosier, 1993); and L/mulus thin filaments, 54 ° (Lehman et al., 1994). 
Electron density maps were computed by Fourier-Bessel transformation of 
averaged layer-line data (DeRosier and Moore, 1970). The final reconstruc- 
tion consisted of 68 data sets (from 34 filaments) corresponding to ,x,3,800 
subunits. Particle boundaries were determined based on the predicted vol- 
ume of the filament using a protein density of 0.81 D/A 3 and a molecular 
mass of 74 kD per unit cell. 

Reliability of the map. We selected layer-lines to include in the recon- 
struction by determining the statistical significance of the Fourier 

coefficients in the averaged data set, as described previously (Owen and 
DeRosier, 1993). 16 layer-lines contained significant data out to an approxi- 
mate axial and radial resolution of 21 A. Because the data were within the 
first node of the contrast transfer function (CTF), no phase corrections were 
necessary. Amplitude data at higher resolution in the Fourier transforms of 
the c~Al-2--decorated filaments are attenuated by the CTE This will result 
in a blurring of the subunits' boundaries but should not otherwise alter mor- 
phological features. There is no satisfactory way to correct this fall off for 
helical structures. Moreover, based on work done with Sl-decorated actin, 
changes resulting from an uncorrected CTF do not appear to pose a problem 
(Milligan and Flicker, 1987). Therefore, we have chosen to present uncor- 
rected data, as has been done by others (Owen and DeRosier, 1993; Unwin, 
1993; Mllligan et al., 1990). The significance of features within the recon- 
struction was determined by performing a Student's t test (Trachtenberg and 
DeRosier, 1987) for each pixel in the electron density map (two-sided, 
n = 68, P = 0.95). All features of the ~A1-2-decorated filaments were sig- 
nificant by this criterion. 

Comparison with other structures. The a-actinin portion of the recon- 
struction was identified by comparing the o~A1-2-decorated filaments with 
other actin structures. This was done both qualitatively by inspection and, 
more quantitatively, by calculating difference maps. Three-dimensional 
reconstructions from electron micrographs of F-actin prepared under a 
number of conditions were kindly supplied by Edward Egelman (University 
of Minnesota, Minneapolis, MN) (Orlova and Egelman, 1992, 1993). 
Atomic models of actin (Holmes, 1990; Lorenz et al., 1993) were used to 
generate electron density maps of F-actin and then treated as electron mi- 
croscopy data. All maps were brought to a common phase origin and re- 
scaled to a common mean density before computing the differences. The 
expectation was that the positive density remaining after subtracting an 
F-actin map from the decorated filament would correspond to the ¢A1-2 
fragment. This holds true assuming that the differences in the actin regions 
of the map are small, which is what we observed. The boundary of the frag- 
ment was chosen based on the predicted volume occupied by the actin- 
binding domain. Electron density maps and atomic models were displayed 
on a vector graphics device (PS300; Evans & Sutherland, Salt Lake City, 
UT) using the program FRODO (Jones, 1982). 

Results 

Appearance of ~A1-2-decorated Filaments 
Fig. 1 presents an electron micrograph of frozen-hydrated 
actin filaments decorated with t~A1-2 (a) and the computed 
diffraction pattern (c) of one of the filaments (b). The low 
contrast in the images is caused by the absence of stain. The 
filaments are wider than undecorated F-actin. In the pres- 
ence of the actin-binding domain of c~-actinin, we found that 
short actin filaments were not uncommon. This observation 
supports the findings of Colombo and co-workers (1993), 
who found that o~-actinin inhibits the annealing of F-actin af- 
ter filament fragmentation. The modulation along the fila- 
ments arising from the twisting of the two long-pitch helices 
is more readily apparent in these decorated filaments than in 
naked F-actin. This is also evident in the computed diffrac- 
tion patterns of decorated filaments in which the first three 
layer-lines, arising from the two-start helices, are intensified. 

The Fourier transforms of decorated filaments show no 
significant deviations from the helical symmetry of F-actin. 
The mean symmetry for the 34 filaments included in the final 
reconstruction was 2.157 subunits/turn (SD = 0.0039). This 
means there are ~28 subunits in 13 turns of the 59-A 
"genetic" helix. The root-mean-squared angular deviation 
per subunit of the decorated filaments was calculated as de- 
scribed in Stokes and DeRosier (1987) and is '~3.2 ° per 
subunit. This is somewhat less than the disorder measured for 
undecorated F-actin, 5.2 ° per subunit (Egelman and De- 
Rosier, 1992). A decrease in the variability of actin's twist 
has also been observed in filaments decorated with myosin 
S1 and scruin (Stokes and DeRosier, 1987). 
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Figure 1. Actin filaments decorated with etA1-2. (a) Electron micrograph of aA1-2--decorated filaments preserved in vitreous ice. (b) 1.4 
x enlargement of the filament that is indicated with an arrow in a. (c).Computed diffraction pattern of the filament shown in b. The number 
(l) and order (n) of the strong layer-lines are indicated. Bar, 500 A. 

To overcome the noise in the images, 34 filaments were 
aligned and averaged. Fig. 2 presents plots of  amplitudes and 
phases for the averaged data set, the atomic model of F-actin 
(Lorenz et al., 1993), and a reconstruction of  actin from 

electron microscope data (Orlova and Egelman, 1992). The 
layer-line data for the aA1-2-decorated actin are very similar 
to that of other actin structures. The main differences be- 
tween the t~A1-2 decorated filaments and F-actin are an in- 
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Figure 2. Plot of G~,t(R) (Klug et al., 1958) am- 
plitudes (solid curves) and phases (dotted curves) 
for (a) c~A1-2-decorated actin, (b) model F-actin 
(Lorenz et al., 1993), and (c) a reconstruction of 
F-actin prepared with beryllium fluoride from 
electron microscopy data (Orlova and Egelman, 
1992). The order (n) and positions are listed for 
each layer-line. Amplitudes for the three highest 
layer-lines (25.6, 24.0, and 20.9) have been scaled 
3 x. Phases vary from 0* to 360 °. 
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crease in the amplitudes of layer-lines 1-3, a decrease in the 
amplitudes on 7, and a shift of the peaks on layer-lines 1-3 
towards the meridian relative to their positions in undeco- 
rated filaments. These differences are more readily apparent 
in the layer-line intensities of the computed diffraction pat- 
terns that are shown in Fig. 3, a and c. 

Features in the Reconstructed Filaments 

The three-dimensional reconstruction was generated by 
Fourier-Bessel inversion of the averaged layer-line dataset. 

Figure 3. Diffraction pattern and projection image of (a and b) cxAl- 
2-decorated actin and (c and d) model F-actin (Lorenz et al., 
1993). The reconstruction of uA1-2-decorated actin is an average 
taken from 34 filaments. There is a dramatic improvement in the 
signal/noise ratio after averaging that can be readily seen by com- 
parison with the images and diffraction patterns in Fig. 1 (a and 
c). The diffraction patterns show differences between decorated 
filaments and F-actin. The presence of the c~-actinin fragment en- 
hances the intensity of layer-line 3 (hollow arrows) and decreases 
the intensity of layer-line 7 (solid arrows) relative to undecorated 
actin. The peaks in the diffraction pattern of decorated filaments are 
shifted radially inward because of the increase in the diameter of 
these particles. (b and d) Projection images of the two structures 
show the presence of the actin-binding domain on decorated fila- 
ments. The c~A1-2-decorated filaments are ,M35 A in diameter. 

16 layer-lines plus the equator, extending out to a resolution 
of,~, 21 A, were included at full weight in the reconstruction. 
Fig. 3 presents a projection image of the reconstructed fila- 
ment (b) with F-actin (d) shown for comparison. Despite the 
presence of the 31-kD cx-actinin actin-binding domain, the 
decorated filament still displays features characteristic of ac- 
tin. The most obvious features are the two twisting long-pitch 
helices that are half-staggered relative to each other. The fila- 
ments differ because of the presence of extra density that in- 
creases the diameter to ,,~135/~. 

Comparison with other actin structures permitted us to as- 
sign the polarity of the component actin filament. The actin 
polarity is obvious on inspection, but it can be shown more 
rigorously by aligning the decorated filament with actin 
reconstructions. In all cases tested, the decorated filament 
gave an unambiguous result in the alignment. The up-down 
difference in phase residuals (calculated using layer-lines 1, 
2, 5, 6, and 7) was typically "o25 °. In Figs. 3, 5, and 6, the 
"pointed" or "minus" end of the actin filament is at the top. 

Comparison with Other Actin Reconstructions 

Fig. 4 presents sections through the reconstruction of aA1-2- 
decorated actin spaced 10 A apart with a reconstruction 
of F-actin from electron microscopy data (Orlova and Egel- 
man, 1992) and a model of the filament based on x-ray data 
(Lorenz et al., 1993). The outer contour of the map of the 
decorated filament was chosen to enclose a volume corre- 
sponding to actin plus ~A1-2, but by inspection it is apparent 
that actin is overrepresented (Fig. 4 a). It roughly approxi- 
mates the size of F-actin contoured at 135-145% of its calcu- 
lated molecular volume. The contouring difficulties arise be- 
cause the features corresponding to the oral-2 are weaker 
than those of actin perhaps because of incomplete decora- 
tion. The actin maps presented in Fig. 4, b and c, have been 
contoured to match the volume of the actin portion of deco- 
rated filaments to aid in the comparison of the structures. 

There is good agreement between the shapes and locations 
of the subdomains in the actin portion of the maps. Differ- 
ences are restricted to the outer domain of actin (subdomains 
1 and 2 according to the atomic model of the filament). In 
the first and third sections (at 0 and 20 ~,), subdomain 1 is 
enlarged. However, there is no enlargement of subdomain 1 
is the section cut at the approximate level of the amino termi- 
nus (30/~). The clearest differences are seen in the section 
cut through subdomain 2 (10/~), where aA1-2 is resolved 
into an additional distinct domain. 

The shape of the cx-actinln actin-binding domain was de- 
termined by subtracting F-actin from the entire reconstruc- 
tion. Difference maps were computed using reconstructions 
of F-ADP-BeF-3 actin, lithium actin filaments, Ca2+-Br S- 
ATP actin filaments polymerized with KC1, F-Mg2+-ADP 
filaments polymerized with Mg 2÷ from G-Mg2+-ATP actin, 
and F-Mg~+-ADP filaments polymerized with KCI from the 
G-Mg2+-ATP actin (Orlova and Egelman, 1992; Orlova and 
Egelman, 1993) and with 20-/~ resolution maps derived 
from two atomic models of F-actin (Holmes et al., 1990; 
Lorenz et al., 1993). Reconstructions were aligned in Fou- 
rier space and scaled to a common mean density in real space 
before subtracting one map from the other. There are slight 
variations in the domain's appearance depending on the actin 
structure used to calculate the difference map; however, the 
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Figure 4. Comparison of actin 
structures in cross-section. 
(a) Sections, spaced ,~10 /~ 
apart, through an ctA1-2-dec- 
orated filament oriented with 
its pointed end down. The 
particle axis is indicated with 
a cross. Each section cuts 
through two different actin 
monomers in the filament, be- 
low and above the horizontal 
bar of the cross. Comparable 
sections through (b) a recon- 
struction of F-actin prepared 
with beryllium fluoride from 
electron microscopy data (Or- 
lova and Egelman, 1992) and 
(c) a model fo the actin fila- 
ment based on x-ray data (Lo- 
renz et al., 1993) are shown 
contoured at 140% molecular 
volume for comparison pur- 
poses. In the second section 
(10 ~), subdomain 2 of the 
lower monomer is indicated 
with an arrow. The t~-actinin 
domain is seen extending from 
subdomain 2 in this section. 
In the first (0 /~) and third 
(20 /~) sections, subdomain 
1 is enlarged in the txA1-2- 
decorated filament. The fourth 
section (30/~) is cut near the 
level of the amino terminus of 
the lower monomer. There is 
no evidence of orAl-2 density 
in this region of actin. 
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Figure 5. Positive density re- 
maining after computing dif- 
ference map. (a) Surface ren- 
dering showing the shape of 
the actin-binding domain de- 
termined by subtracting (b) 
F-ADP-BeF-3 actin (Orlova 
and Egelman, 1992) from (c) 
the c~A1-2--decorated filament. 
The additional small mass 
present in the difference map 
is probably a result of imper- 
fect density scaling of the 
maps before subtracting them. 
It falls outside the boundary of 
both actin and the c~A1-2- 
decorated filament and is not 
significant according to the 
Student's t test calculated for 
the reconstruction. The ap- 
proximate positions of the 
four subdomains of actin are 
indicated in b. 

basic shape is the same. The best match in the actin portion 
of our map was to F-ADP-actin prepared in the presence of 
beryllium fluoride, therefore, these are the results that we 
present. 

The positive density resulting from subtracting F-ADP- 
BeF-3 actin from the ¢xA1-2-decorated filament structure is 
shown in Fig. 5. There are two peaks, but only one (the larger 
of the two) is significant according to the Student's t test. We 
interpret this as deriving from the o~A1-2 fragment. The 
smaller peak is not significant and is located outside the 
boundary of both actin and the decorated filament. 

The ot-actinin domain resembles a bell or gumdrop with 
its base touching the actin filament. There is a small bump 
extending from the base that does not contact actin. The en- 
tire mass measures ,o38/~ at its base and extends 42/~ from 
its base to its tip. The actin-binding domain rests in the in- 
dentation between one monomer and the next one up the 
long-pitch strand. The binding site is centered around subdo- 
main 2, but aA1-2 contacts portions of subdomain 1 of two 
different monomers. The base of orAl-2 forms an angle rela- 
tive to the filament axis. This is most apparent in back views 
of the domain that are revealed as it follows the helical path 
of actin. 

Discussion 

Actin Structure 

Recently, there have been several actin reconstructions done 
both in stain (Vibert et al., 1993; Owen and DeRosier, 1993; 
Egelman, 1986; Bremer et al., 1991) and in ice (Egelman, 
1986; Schmid et al., 1994; Milligan et al., 1990). Both 
embedding methods give comparable structures to >~ 20/~ 
resolution. We compared our reconstruction to a number of 
other EM reconstructions of F-actin. In our reconstruction 
of c~A1-2-decorated filaments, all four subdomains were 
readily identifiable. The actin portion of our map most 
closely matches that of F-ADP-actin prepared in beryllium 
fluoride (Orlova and Egelman, 1992), primarily because of 

the position of subdomain 2. What is gratifying is that we 
see only one significant peak (presumably arising from the 
uA1-2 fragment) in the difference maps between our deco- 
rated filaments (in ice) and Orlova and Egelman's map of BeF 
actin (in stain). We also compared the o~A1-2-decorated fila- 
ments with two atomic models of F-actin (Holmes et al., 
1990; Lorenz et al., 1993). The major difference between 
these two models is in the positioning of subdomain 2, which 
is shifted towards the particle axis in the revised model. Ac- 
tin filaments decorated with o~A1-2 more closely resemble 
the revised model (Lorenz et al., 1993). In previously pub- 
lished EM reconstructions of F-ADP-actin subdomain 2 is 
not observed, presumably because of disorder in this domain 
(Milligan et al., 1990; Bremer et al., 1991; Orlova and Egel- 
man, 1992). The fact that subdomain 2 is visible in our 
reconstruction suggests that its position is stabilized by inter- 
actions with aA1-2. 

o~Actinin Actin-binding Domain Structure 

Three-dimensional reconstructions obtained from two-dimen- 
sional crystals of o~-actinin suggest that the actin-binding 
domain (o~AI-2) consists of two ellipsoids of unequal sizes 
that form a "V" (Taylor, K., personal communication). The 
NH~-terminal segment (orAl) is larger than the second seg- 
ment (o~A2) based on both the reconstruction and the pre- 
dicted mass from the protein's sequence (de Arruda et al., 
1990; Taylor and Taylor, 1993). In our reconstruction, we 
cannot resolve the two segments thought to comprise o~A1-2. 
However, the bell-shaped appearance of the c~-aetinin por- 
tion of our map suggests that o~A1-2 may consist of two or 
more subdomains. One interpretation of our reconstruction 
is that ~A1 forms the base of the mass, touching actin, and 
aA2 corresponds to the smaller protrusion at the higher ra- 
dius. This takes into account the evidence from a number of 
sources showing that the major portion of the actin-binding 
site is restricted to oral (Hemmings et al., 1992; Karinch et 
al., 1990; Levine et al., 1990, 1992; Way et al., 1992). 
Other interpretations are also possible. If the resolution is 
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sufficient, this domain assignment may be tested by fitting 
the oA1-2 portion of our reconstruction with the reconstruc- 
tion of intact ot-actinin. 

It is also possible that there is a conformational change in 
o~A1-2 upon binding actin that would lead to a difference in 
its appearance in our reconstruction relative to the structure 
of the unbound form. There is precedent for this notion. 
Wallraff et al. (1986) have observed a shortening of Dic- 
tyostelium ot-actinin when bound by an antibody to the actin- 
binding site of the molecule. Meyer and Aebi (1990) found 
that some o~-actinin isoforms shorten during bundle forma- 
tion, raising the possibility that there is a conformational 
change in the molecule upon binding actin. Interestingly, this 
phenomenom was observed in Acanthamoeba and Dic- 
tyostelium ot-actinin, but not in the chicken gizzard isoform. 
Nevertheless, a smaller conformational change might still 
exist in the smooth muscle ot-actinin that does not produce 
a significant alteration in molecular length and, therefore, 
went undetected in their analysis. 

ct-Actinin Binding to Actin 

Identification of the aA1-2-bindin$ site by electron mi- 
croscopy. Although at this resolution we cannot identify spe- 
cific contacts between the a-actinin and actin molecules, 
there are regions of continuity between the two. We will refer 
to these as contacts as has been done by others (Milligan and 
Flicker, 1987; Owen and DeRosier, 1993). The c~A1-2-bind- 
ing site is centered at the front outer face of subdomain 2 of 
actin (Fig. 6, a and b). The lower half of the actin-binding 
domain rests on the front face of actin, whereas the upper 
portion is oriented more towards the back of aodn. Because 
of its size, the actin-binding domain overlaps the top portion 
of subdomain 1 on the same monomer, as well as the bottom 
portion of the subdomain 1 on the next monomer up the two- 
start helix. The fact that the ot-actinin domain contacts two 
actin monomers along the long-pitch helix may explain why 
it binds to F-actin but not to G-actin. 

The geometry of o~A1-2's interaction with a pair of actin 
subunits suggests a possible explanation for ot-actinin's in- 
ability to nucleate polmerization. Compare this to gelsolin, 
which binds actin rimers and does nucleate polymerization 
(Doi and Frieden, 1984). Using chemically cross-linked ac- 
tin, it has been shown that gelsolin binds two actin mono- 
mers that are "diagonally adjacent along the short-pitch helix 
of actin" (Doi, 1992). These and other observations have led 
to the assumption that the orientation of monomers in the 
gelsolin nucleator is across, rather than along, the actin fila- 
ment (McLaughlin et al., 1993). In contrast, ot-actinin binds 
two monomers along the long-pitch helix and does not nucle- 
ate polymerization. 

~-Actinin-binding sites identified by other methods. A 
number of studies suggest that o~-actinin binds to certain pep- 
tides in subdomain 1 of actin. Our reconstruction permits a 
direct test of the likelihood that the specific residues 
identified by others are involved in ot-actinin binding. Fig. 
6, c and d, presents the electron density map of oeA1-2 with 
a carbon backbone rendering of actin. The putative binding 
sites are indicated on the actin model. 

The 12 amino-terminal residues of actin were identified as 
a potential binding site by chemical cross-linking (Mimura 
and Asano, 1987). They do not appear to reside in the o.A1- 

2-binding site in our reconstruction. In support of this, anti- 
bodies directed against residues 1-7 of actin did not interfere 
with ct-actinin binding (I_¢bart et al., 1993). Visual compari- 
son of our reconstruction with one of filaments decorated 
with these antibodies (Orlova and Egelman, 1994) reveals 
that the sites are distinct. These residues are thought to be 
highly mobile (Kabsch et al., 1990). This may explain why 
they were detected by chemical cross-linking, but not in 
other assays. 

Residues 86-117 (ABS1) and 350-375 (ABS2) have been 
identified as likely binding sites by a number of different 
techniques (Fabbrizio et al., 1993; Lebart et al., 1993, 1990; 
Mimura and Asano, 1987). These putative actin-binding 
sites, ABS1 and ABS2, have been highlighted in Fig. 6. The 
lower part of orAl-2 makes extensive contacts with the a he- 
lix at the interface between subdomains 1 and 2 (Trp 79-Ash 
92). Weaker contacts are made between the top portion of 
ot-actinin and subdomain 1 of the next actin monomer in the 
filament, in the region of Ser 350-Lys 359. This suggest that 
portions of ABS1 and ABS2 are contained in different cx-acti- 
nin binding sites on adjacent actin monomers. 

Recent mutational studies in yeast implicate both subdo- 
main 1 and 2 in the binding site. SAC6 encodes the yeast 
form of fimbrin, a member of the ot-actinin family of actin- 
binding proteins that contains two tandem otA1-2-1ike do- 
mains (Adams et al., 1989, 1991). Point mutations in yeast 
actin have been assessed for their ability to suppress the 
SAC6 mutant. All of the point mutants in actin that have been 
implicated in yeast flmbrin binding fall in either subdomain 
2 or near the interface between subdomains 1 and 2 (Honts 
et al., 1994). Thus based on the sequence homology between 
ot-actinin and fimbrin, we would expect the same residues in 
actin to be important for oA1-2 binding. This is consistent 
with our reconstruction. Site-directed changes in actin at po- 
sition 99-100, when tested in yeast, produced phenotypes 
similar if not identical to SAC6 mutations, suggesting that 
these residues are involved in fimbrin binding (I-Ioltzman et 
al., 1994). These two residues lie at the outside of subdo- 
main 1, at or near the site of contact between actin and 
txA1-2, according to our reconstruction. 

Relationship to Other F-Actin-binding Proteins 

Myosin-binding site. From a structural standpoint, myosin 
is the best characterized of the F-actin binding proteins. 
There are now two models of its interactions with actin at 
atomic resolution that have been obtained by combining data 
from x-ray crystallography, fiber diffraction, and electron 
microscopy (Schroder et al., 1993; Payment et al., 1993). 
The primary contacts made by myosin are on the outer face 
of subdomain 1, with additional sites on subdomain 3. There 
are also minor contacts on the outer domain of an adjacent 
monomer (Milligan et al., 1990). Myosin S1 and t~-actinin 
do not appear to compete for the same site on immobilized 
monomeric actin (Lebart et al., 1993). This is consistent 
with our reconstruction, which shows that the a-actinin 
binding site is centered on subdomain 2. 

Tropomyosin-binding site. Electron microscopy and im- 
age analysis have been used to identify tropomyosin's binding 
site(s) on actin filaments (Milligan and Flicker, 1987; Milli- 
gan et al., 1990; Vibert et al., 1993; Lehman et al., 1994). 
Skeletal muscle tropomyosin is found on the "inner domain" 
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Figure 6. Location of the alpha-actinin binding site on actin. (a and b) The electron density arising from c~A1-2 (blue) shown with the 
F-ADP-BeF-3 actin reconstruction (orange; Orlova and Egelman, 1992) used to compute the difference map. The structures have been 
rotated clockwise ,'o135 ° in b. (c and d) The aA1-2 electron density shown with the atomic model of F-actin (Lorenz et al., 1993). Three 
actin monomers are shown in yellow. ABS1 (86-117) and ABS2 (350-375) are highlighted in pink and green. The position of the amino 
terminus of the top monomer is indicated with an asterisk. 
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in the presence of calcium (Vibert and Craig, 1982; Milligan 
and Flicker, 1987; Milligan et al., 1990; Lehman et al., 
1994). In the absence of calcium, tropomyosin is shifted to- 
wards and makes contacts with the outer domain of actin, 
near the junction between subdomalns 1 and 3 (Lehman et 
al., 1994). Interestingly, the situation appears to be reversed 
in smooth muscle, where the regulatory function of troponin 
is replaced by caldesmon (Vibert et al., 1993). Thus, tropo- 
myosin appears to be in a position to sterically inhibit ot-acti- 
nin binding in the "off" state of skeletal muscle and in the "on" 
state of smooth muscle. In vitro studies have shown that tro- 
pomyosin can compete with ot-actinin for actin binding (Goll 
et al., 1972; Zeece et al., 1979; Grazi et al., 1991). This 
raises the possibility that tropomyosin is at least partly re- 
sponsible for determining the distribution of ot-actinin-con- 
talning structures (Z bands, dense bodies) in muscle cells. 

Scruin-binding site. Scruin is a 102-kD protein that is 
present in the acrosomal process of Limulus sperm (Tilney, 
1975). It contains a duplicated actin-binding domain that is 
found in a number of proteins, including the Drosophila pro- 
tein kelch (Way, M., and P. Matsudaira, manuscript in prep- 
aration). Scruin crosslinks actin filaments into a highly or- 
dered bundle (Schmid et al., 1993). Three-dimensional 
reconstructions from electron micrographs of filaments 
(Owen and DeRosier, 1993) and bundles (Schmid et al., 
1994) show the interactions of these two proteins at 13-A 
resolution, making this by far the best-characterized actin- 
binding protein by electron microscopy. 

In contrast to ot-actinin, scruin contacts two actin mono- 
mers across the genetic helix of actin. One domain of scruin 
contacts one monomer on its front face (relative to the orien- 
tation of G-actin in Kabsch et al. [1990]) at subdomain 1 and 
at the junction between subdomains 3 and 4. The other do- 
main of scruin binds the second actin monomer on the back 
face of subdomains 1 and 2. This would appear to leave the 
outer regions of subdomains 1 and 2 available for interaction 
with oe-actinin (see Fig. 4, d and f; Owen and DeRosier, 
1993). 

Implications for the Severing Mechanism of  Gelsolin 

Gelsolin is a calcium-regulated actin severing protein with 
homologies to fragmin, severin, and villin (Way and Weeds, 
1988). It is organized into six repeats, termed S1-6, whose 
different activities have been partially characterized (re- 
viewed in Janmey, 1993; Weeds and Maciver, 1993). The 
monomer binding sites are located in S1 and $4-6 (Bryan, 
1988; Yin et al., 1988; Way et al., 1989), and the F-actin 
binding site is in $2 (Way et al., 1992). Efficient severing and 
barbed end capping require segments 1 and 2 of gelsolin 
(Way et al., 1992). 

Recently, the structure of gelsolin S1 in complex with 
G-actin was solved by x-ray crystallography (McLaughlin et 
al., 1993). Segment 1 is tightly bound in the cleft between 
subdomains 1 and 3 in a site that would correspond to the 
barbed end of the actin filament. Based on some of the bind- 
ing properties of the individual domains and sequence sim- 
ilarities between segments, McLaughlin et al. (1993) pro- 
posed a model for gelsolin binding to F-actin and filament 
capping. According to the model, S1 and $4 bind to the same 
site on adjacent actin monomers across the genetic helix (see 
Fig. 4 a; McLaughlin et al., 1993). This dictates that seg- 
ments 2 and 3 connect the two domains by running across 

the filament by the shortest route, bringing it in contact with 
the inner domain of actin (see Fig. 4 c; McLaughlin et al., 
1993). Based on our structure and available data, we suggest 
that an alternative model is required. 

Way et al. (1992) have proposed that the F-actin binding 
domain of ct-actinin is functionally analogous to $2-3 based 
on the following observations: the F-actin-binding domains 
of gelsolin ($2-3) and tx-actinin (txA1-2) compete for the 
same binding site on filaments in vitro and a hybrid protein 
comprised of segment 1 of gelsolin and the actin-binding do- 
main of cx-actinin was found to have similar severing activi- 
ties to gelsolin S1-3. This implies that txA1-2 positions gelso- 
lin segment 1 correctly for severing and must have a similar 
binding site to that of $2-3. The logical conclusion from this 
suggestion is that the F-actin binding domain of gelsolin 
($2-3) binds to the outer domain of actin in a similar position 
to that of txA1-2 in our reconstruction. This position is incon- 
sistent with the model of McLaughlin et al. (1993) and is 
more consistent with an earlier model proposed by Pope et 
al. (1991), in which $2-3 binds on the outer domain of actin 
at the interface between two monomers on the long-pitch he- 
lix of the filament. 

Conclusions 

The actin-binding domain of o~-actinin is an archetype for 
related domains in a large number of actin crosslinldng pro- 
teins, including dystrophin and fimbrin. Previous studies had 
localized the ~x-actinin binding site to primarily two sites on 
actin, at residues 86-117 and 350-375 (Fabbrizio et al., 
1993; Lebart et al., 1993, 1990; Mimura and Asano, 1987). 
Because both sites fall on subdomain 1 of actin, the simplest 
interpretation of the data available at the time was that c~-acti- 
nin binds to a single monomer. Using electron microscopy 
and image processing, we have found that ¢xA1-2 actually 
contacts two monomers along the long-pitch helix of the ac- 
tin filament at a site centered at subdomain 2. This structure 
provides a framework for understanding numerous biochem- 
ical data on the properties of c~-actinin, including its spec- 
ificity for filamentous versus monomeric actin, its inability 
to nucleate actin polymerization, and the competition by tro- 
pomyosin for actin binding. In addition, the agreement be- 
tween our structure and the SAC6 studies in yeast provide 
support for the view that the actin-binding domains of tim- 
brin and cx-actinin are in fact homologues. Finally, this struc- 
ture also provides important insights into how severing pro- 
teins such as gelsolin bind actin filaments to sever them. 
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