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PERSPECTIVE

Application and implications of 
polyethylene glycol-fusion as a novel 
technology to repair injured spinal 
cords

Conventional vs. polyethylene glycol (PEG)-fusion tech-
nologies to repair severed spinal axons: Most spinal cord 
injuries (SCIs) involve cut- or crush-severance of spinal tract 
axons in the central nervous system (CNS). Clinical out-
comes after CNS axonal severance is very poor because prox-
imal segments of CNS axons lack a suitable environment for 
outgrowth (Kakulas, 1999; Fitch and Silver, 2008; Rowland 
et al., 2008; Kwon et al., 2010) and therefore do not naturally 
regenerate (Ramon y Cajal, 1928). Current strategies to try 
to increase behavioral recovery after SCI are focused on en-
hancing the environment for axonal outgrowth. These strat-
egies have had limited success to enhance return of function 
in animal model systems (Kwon et al., 2010). Encouraging 
outgrowths from surviving damaged axons may also provide 
significant benefits when spinal severance is not complete 
(Bittner and Fishman, 2000). However, these approaches, 
even if beneficial, do not prevent Wallerian degeneration of 
severed distal axonal segments, although PEG (Luo et al., 
2002; Kwon et al., 2009, 2010), methylene blue (MB) (Rojas 
et al., 2009), and melatonin (MEL) (Stavisky et al., 2005; 
Raza et al., 2008) administered in low systemic concentra-
tions may have some neuroprotective effects following SCI.

For several decades, we have been developing and im-
proving a novel technology using a well-specified sequence 
of bioengineered solutions of varying tonicity and concen-
tration. These bioengineered solutions of PEG, MB, and 
calcium (Ca2+) rapidly (within minutes) fuse/connect cut- or 
crush-severed ends of closely apposed nerve axons in com-
pletely severed nerves to restore axolemmal and axoplasmic 
continuity and action potential conduction across the lesion 
site (Bittner et al., 1986; Bittner, 2000; Riley et al., 2015). 
This technology first included PEG and varying osmotic and 
Ca2+ concentrations to repair invertebrate giant axons ex vivo 
(Bittner et al., 1986; Krause and Bittner, 1990), then in vivo 
(Lore et al, 1999), and then mammalian peripheral nerve ax-
ons (PNAs) and CNS axons ex vivo (Lore et al., 1999; Bittner 
et al., 2000; Marzullo et al., 2002). More recently, the use of 
MB and micro-sutures were added to this evolving PEG-fu-
sion technology to repair completely crush- or cut-severed 
sciatic nerves in rats in vivo to restore 40–80% of lost behav-
iors within 4–6 weeks and prevent or retard much Wallerian 
degeneration (Britt et al., 2010; Bittner et al., 2012). Even 
more recently, micro-sutured and PEG-fused autografts 
(Sexton et al., 2012) and (especially) allografts (Riley et al., 
2015) have been used to restore lost behavioral functions 
within 6 weeks postoperatively, in some cases almost com-
plete recovery within 1–2 weeks after ablating a 0.5–1.0 cm 
segment from a completely cut-severed sciatic nerve.

This PEG-fusion technology uses hypotonic Ca2+-free sa-
line to open and expand and closely appose the partially col-
lapsed vesicle-filled ends of severed axons that are connected 
by glial sheaths if crushed, or brought into close apposition 

(touching) by micro-sutures if cut. Next, the lesion site is 
bathed in hypotonic Ca2+-free saline with the anti-oxidant 
MB to prevent vesicle formation. A hypotonic solution of 
PEG is then applied to fuse the open, vesicle-free axonal 
ends. Finally, the lesion site is bathed in Ca2+-containing 
isotonic saline that induces vesicles to form and accumulate 
and seal any remaining axolemmal holes (Lore et al., 1999; 
Riley et al., 2015). 

We hypothesized that this PEG-fusion technology that 
successfully rejoins cut- and crush-severed PNAs in vivo 
could also rejoin crush-severed CNS axons (Lore et al., 
1999). We also hypothesized that the lipophilic properties of 
an amphoteric substance like PEG would allow it to readily 
penetrate the spinal cord white matter. Our data show that 
our PEG-fusion technology can indeed significantly enhance 
restoration of lost behaviors following SCI crush-severed in-
juries produced by a MASCIS device. We speculate that this 
PEG-fusion technology could produce a paradigm-shift in 
the treatment of traumatic injuries to CNS axons.

Materials and methods to induce PEG-fusion repair of 
crush-severed spinal axons: Animal studies were approved 
by the Institutional Animal and Care Use Committee (IA-
CUC) of Wayne State University, USA. Male adult Lewis rats 
(260–285 g, n = 12) were maintained on a 12-hour dark/
light cycle, given food and water ad libitum and allowed 
to acclimate for several days before surgery. At 30 minutes 
before surgery, rats were given Buprenex (0.05 mg/kg body 
weight) and were then anesthetized with 5% isoflurane 
via an inhalation chamber. The rats were maintained at 
1.5–1.8% isoflurane using a nose cone. Paralube ointment 
was applied to eyes and rats were placed on water circulating 
heating pad. Rats were shaved and skin was cleaned with 
betadine scrub, then with 70% alcohol. A laminectomy was 
performed at thoracic vertebrae 9–10 and the dura exposed. 
A MASCIS device (NY University, NYC, NY, USA; 10 g, 12.5 
cm drop) delivered a moderate contusive injury (Gruner, 
1992; Constantini and Young, 1994) that crush-severs many 
spinal tract axons. The dura over the injury site was immedi-
ately opened and the site flooded with the following series of 
four solutions to PEG-fuse crushed CNS axons:  

(1) For 3 minutes, hypotonic calcium (Ca2+)-free Krebs 
saline solution containing (in mM) 0.5 EGTA, 99 NaCl, 5 
KCl, 1.2 KH2PO4, 1.3 MgSO4, 26 NaHCO3, 10 Na ascorbate, 
10 dextrose, pH 7.35, 274 mOsm, in double distilled H2O 
(ddH2O) to open the cut ends of the axons, expel vesicles, 
and expand the axoplasm and axolemma so that open axonal 
membranes at severed ends come in close apposition. See 
Figure 1 of Britt et al. (2010).

(2) For 2 minutes, hypotonic Ca2+-free saline as described 
above containing 100 µM methylene blue (Faulding, Agua-
dilla, PR, USA) to prevent vesicle formation and interactions. 

(3) For 2 minutes, a hypotonic solution of 500 mM 3.25 
kDa PEG (Sigma Aldrich, St. Louis, MO, USA) in ddH2O to 
fuse the membranes of closely apposed open axonal ends. 

(4) For 2–4 minutes, wash at least 3× with an isotonic 
Ca2+-containing physiological saline consisting of (in mM) 
124 NaCl, 5 KCl, 1.2 KH2PO4, 1.3 MgSO4, 26 NaHCO3, 10 Na 
ascorbate, 10 dextrose, 2 CaCl2, pH 7.35, 321 mOsm in ddH2O 
to induce the formation of vesicles and activate proteins that 
induce their accumulation at sites of plasmalemmal damage 
where they interact to seal plasmalemmal disruptions. 
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Six randomly-assigned “PEG-fused” animals received all 
four solutions described above and six randomly assigned 
“negative control” animals received all four solutions except 
that PEG was not added to solution (3). After application of 
these four solutions, the meninges were placed in their origi-
nal position and muscles closed with 3-0 suture. The skin in-
cision was closed with wound clips. Bladders were expressed 
twice per day until function returned. 

 Rats were behaviorally assessed for return of hindlimb 
function using the Basso, Beattie and Bresnahan (BBB) loco-
motor test (Basso et al., 1996) for 5 weeks postoperatively by 
a person blinded as to treatment. Data were analyzed using a 
two-tailed Student’s t-test and two-way analysis of variance 
(ANOVA) with Bonferroni post-hoc test with significance set 
at P < 0.05. 

Results obtained in applying a PEG-Fusion technology to 
repair severed spinal axons: No adverse effects were ob-
served in applying the series of solutions to the dorsal sur-
face of the spinal cord. The rats were behaviorally tested for 
5 weeks. In the first week after injury, the mean BBB score 
of the negative control group was 3.17 ± 1.25 SEM. These 
mean scores were slightly higher than the PEG-fused group 
(2.83 ± 0.91 SEM). At 2–5 postoperative weeks, the mean 
score of the PEG group was 3–4 points higher than the 
negative control group. The scores of the PEG-fused group 
were significantly higher at 3–5 weeks after injury (P < 0.05; 
Figure 1). Using a two-way ANOVA with Bonferroni post-
hoc test, the curves were significantly different (P < 0.001; 
Figure 1).   

Implications of PEG-fusion technologies to repair severed 
spinal axons: CNS axonal severance is typically the most 
serious consequence of SCI and probably the most frequent 
CNS injury treated by clinicians (National Spinal Cord In-
jury Center, 2008). Many SCIs result from crush contusion 
transection or ablation, rather than cut, traumas in which 
the severed ends are connected by damaged glial sheaths 
and axolemmal membranes (Bittner et al., 2000; Kwon et al., 
2010). This first attempt using PEG-fusion to restore behav-
iors after crush-severance did not produce behavioral recov-
eries as rapid or as dramatic as that produced by PEG-fusion 
of crushed, cut or ablated PNAs (Britt et al., 2010; Bittner 
et al., 2012; Riley et al., 2015). Borgens et al. (2002) have 
reported recovery of a spinal reflex after delayed application 
of PEG following a forceps crush injury. Nevertheless, these 
initial results suggest that our PEG-fusion technology could 
be used to enhance behavioral recovery after SCI involving 
a crush lesion to several millimeters in length. PEG-fusion 
success might be further increased by more rapid removal of 
the dura or devices that would increase the rate or extent of 
diffusion of the four PEG-fusion solutions to all portions of 
the spinal cord. PEG-fusion success might also be enhanced 
by PEG-fusion of allografts as outlined below.

Following cut injuries, severed spinal axons and other tis-
sues typically separate by several millimeters and there are 
no tightly adhering tissues like the epineurium or perineuri-
um that surround PNA axons through which micro-sutures 
might be put to bring cut ends in close apposition required 
for successful PEG-fusion. Furthermore, more extensive 
crush injuries would almost-certainly damage greater lengths 
of spinal axons in Ca2+-containing cerebrospinal fluids and 

such damage cannot be repaired without using autograft or 
allograft tissues to bridge the gap that is then PEG-fused at 
both ends as reported for similar lesions to PNAs (Britt et al., 
2010; Bittner et al., 2012). PEG-fusion of donor allograft tis-
sues dramatically restore lost behavioral functions following 
ablations of sciatic PNAs (Riley et al., 2015) and might have 
similar results to repair gaps or ablated segments of spinal 
axons.

 It is possible that our current PEG-fusion technology 
could be modified to rapidly and permanently restore 
much behavior lost by cut- or crush severance or ablations 
of spinal axons, a result not readily obtained by any other 
chemical or surgical treatment published to date.  Clinical 
translation of this PEG-fusion technology may be feasible 
because all components of the fusion protocol are readily 
available and FDA approved. Furthermore, other studies 
have shown cooling (Sea et al., 1995; Marzullo et al., 2002) 
and cyclosporin A (Sunio et al., 1997) can maintain periph-
eral nervous system (PNS) or CNS viable and PEG-fusable 
for 3–10 days. Success with allograft repair of PNS and/or 
CNS nerve gaps might well lead to establishment of donors 
and tissue banks for PNS (sciatic, ulnar, etc.) and CNS (spi-
nal) nerves similar to those established for corneas, hearts, 
kidneys, or livers.
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Figure 1 Effect of polyethylene glycol (PEG) treatment on hindlimb 
locomotor function following spinal cord injury (SCI). 
A MASCIS rod-drop device (set at 10 g, 12.25 cm) was used to produce 
a mild contusive SCI at T9–10 in 12 male Lewis rats randomly assigned 
to receive a series of experimental solutions that included methylene 
blue and PEG or the same series of solutions without PEG. *The Basso, 
Beattie and Bresnahan (BBB) locomotor test scores at the same postop-
erative time differ by P < 0.05 (two-tailed Student’s t-test). ***Curves 
differ by P < 0.001 according to a two-way analysis of variance (ANOVA) 
with Bonferroni post-hoc test.
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