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Abstract: Eukaryotic cells have complicated membrane systems. The outermost plasma 
membrane contains various substructures, such as invaginations and protrusions, which are 

involved in endocytosis and cell migration. Moreover, the intracellular membrane 

compartments, such as autophagosomes and endosomes, are essential for cellular viability. 

The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily proteins are important players in 

membrane remodeling through their structurally determined membrane binding surfaces. A 

variety of BAR domain superfamily proteins exist, and each family member appears to be 

involved in the formation of certain subcellular structures or intracellular membrane 

compartments. Most of the BAR domain superfamily proteins contain SH3 domains, which 

bind to the membrane scission molecule, dynamin, as well as the actin regulatory 

WASP/WAVE proteins and several signal transduction molecules, providing possible links 

between the membrane and the cytoskeleton or other machineries. In this review, we 

summarize the current information about each BAR superfamily protein with an SH3 

domain(s). The involvement of BAR domain superfamily proteins in various diseases is  

also discussed. 
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1. Introduction 

The relationship between cellular morphology and diseases, such as cancer, has been unclear. 

However, transformed cancer cells are often first recognized by changes in their morphology. The 

shapes of transformed cancer cells are apparently different from those of the normal parental cells, as 

observed microscopically. The shape of the eukaryotic plasma membrane changes during various 

processes, such as cell division, cell movement, and differentiation. Eukaryotic cells also contain 

various intracellular vesicles that synthesize, traffic, and degrade materials, such as proteins, during 

membrane remodeling, including the fission and fusion of vesicles (Figure 1). Dynamic remodeling of 

the membrane is achieved by the interplay between proteins and lipids. Among these proteins, 

accumulating evidence indicates that the Bin-Amphiphysin-Rvs167 (BAR) domain superfamily 

proteins (referred to hereafter as BAR proteins) play key roles.  

Figure 1. Subcellular structures on which Bin-Amphiphysin-Rvs167 (BAR) domain 

proteins act, as discussed in this review.  

 

The BAR proteins are evolutionarily conserved, from yeast to human [1–4]. The BAR domains 

typically form a dimer, which is the unit for membrane binding. The structures of the BAR domain 

dimers resemble a banana. Each dimer possesses a distinct curved surface, from almost flat like 

Pinkbar to those of various steepness, where the basic-charged amino acid residues form a cluster, and 

deforms the membrane through the binding of the curved surface to the negatively-charged 

phospholipids in the plasma membrane (Figure 2).  

BAR proteins include subfamilies defined by their BAR, N-BAR/BAR (the Bin-Amphiphysin-Rvs167), 

F-BAR (extended Fes-CIP4 homology (EFC)/FCH-BAR), or I-BAR (IRSp53-MIM homology domain 
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I-BAR/inverse-BAR) domains [1–4]. SH3 domains are commonly observed among the BAR domain 

superfamily proteins. Most of the SH3 domains bind to WASP family proteins and dynamin. The 

WASP family proteins include N-WASP and WAVE, which are activators of the Arp2/3 complex. The 

Arp2/3 complex mediates actin polymerization, which is involved in lamellipodia formation, 

podosome formation, clathrin-mediated endocytosis, pathogen infection and neurite extension 

downstream of N-WASP and WAVE [5]. Dynamin catalyzes membrane scission [6,7]. The SH3 

domain also binds to several other molecules, such as the lipid phosphatase synaptojanin [8]. 

Synaptojanin has been linked to uncoating of clathrin-coated vesicles (CCVs) [8]. Therefore, the BAR 

domain superfamily proteins that are coupled to dynamin, WASP/WAVE family proteins, and other 

proteins are involved in several biological functions, including regulation of both the cytoskeleton and 

membrane shape. In this review, we describe the current information about each BAR protein with an 

SH3 domain(s). We also describe some BAR proteins that lack the SH3 domain, which regulate the 

actin cytoskeleton. 

Figure 2. Schematic models for membrane deformation, based on the geometries of 

basic-charged amino acid residues that correspond to the structures of the 

membrane-binding surface of the F-BAR domain-containing proteins. (A) BAR or F-BAR 

proteins bind to the membrane to generate invaginations, such as caveolae and 

clathrin-coated pits; (B) I-BAR proteins deform the membrane to generate protrusions, 

such as filopodia and lamellipodia.  
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2. The BAR and N-BAR Domain Subfamily 

The BAR subfamily contains the members that do not belong to the F-BAR and I-BAR subfamilies. 

The N-BAR domain is included in the BAR subfamily that contains amino acids that form an 

amphipathic helix upon membrane binding in front of the BAR domain fold. This helix is thought to 

enhance membrane-binding ability by its insertion into the membrane [9,10]. The domain organization 

of the BAR protein subfamily is shown in Figure 3. 

Figure 3. Domain organization of BAR subfamily proteins. BAR: Bin-Amphiphysin-Rvs 

domain; SH3: Src homology 3 domain; RhoGAP: Rho GTPase activating protein domain; 

PX: Phox homology domain; PH: Pleckstrin Homology domain; ArfGAP: Arf Rho GTPase 

activating protein domain; PTB: Phospho-tyrosine binding domain; PDZ: Psd-95, Dlg and 

ZO1 domain; RhoGEF: Rho guanine-nucleotide exchange factors domain; Ank: Ankyrin.  

 

2.1. Amphiphysin 

The structure of the BAR domain was first solved for Arfaptin, but was first characterized as a 

membrane-binding domain for amphiphysin [9,11]. The positively-charged surface of the amphiphysin 

BAR domain binds to the negatively-charged plasma membrane, mostly through phosphatidylserine 

and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] [9]. Furthermore, the BAR domains from 
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amphiphysin have membrane-induced amphipathic helix on the dimer ends, and thus it is classified as 

an N-BAR domain. The hydrophobic amino acids are inserted into the membrane, like a wedge, 

thereby strengthening the interaction between the membrane and the BAR domain [9]. The SH3 

domain of amphiphysin binds both dynamin and N-WASP, and these interactions are thought to be 

important for its function [12,13]. Amphiphysin has a binding site for clathrin between the BAR 

domain and the SH3 domain. Dynamin binding to the SH3 domain of amphiphysin was shown to 

disrupt clathrin binding to the N-terminal region [14]. Recruitment kinetics of amphiphysin and other 

BAR proteins to CCPs was recently shown by Taylor et al. [15]. The narrow tubular invaginations in 

the membrane, generated by the BAR domain of amphiphysin, suggested that amphiphysin acts at a 

late stage of fission for clathrin-mediated endocytosis.  

In addition to endocytosis, the N-BAR domain of amphiphysin is required for ruffle formation and 

phagocytosis, although its correspondence to the membrane curvature is unclear [16]. Phagocytosis is 

dependent on the activation of the Rho GTPase family proteins, such as Cdc42 and Rac, which 

regulate actin polymerization by the Arp2/3 complex and the WASP family [17,18]. N-WASP 

dimerization improves Arp2/3 binding to VCA domain, this can occur efficiently due to the 

dimeric/oligomeric nature of BAR proteins [19,20]. Therefore, amphiphysin might provide an 

additional layer of WASP regulation through its SH3-mediated binding.  

The membrane tubulation activity of amphiphysin in vitro was originally reported by Takei  

et al. [13]. Moreover, amphiphysin tubulation activity was also found in T-tubules [21]. T-tubules are 

invaginations of the external membranes of skeletal and cardiac muscle cells, which are rich in ion 

channels required for excitation-contraction coupling. Amphiphysin-2, a variant of the BAR protein, is 

highly expressed in skeletal muscle, and is localized on T-tubules [22]. Interestingly, this variant lacks 

the binding sites for clathrin and the clathrin adaptor AP-2, and instead comprises a polybasic 

sequence (encoded by exon 10) that enhances its affinity for the plasma membrane by electrostatic 

interactions  [22]. Amphiphysin-2, in cooperation with other proteins, plays a critical role in the 

induction and stabilization of this unique organelle. Genetic disruption of the only amphiphysin gene 

in Drosophila disrupts the T-tubule network [21], and missense mutations in the human gene encoding 

amphiphysin-2 cause myopathies [23]. In addition, amphiphysin-2 (BIN1) tubulates membranes, either 

by itself or cooperatively with dynamin 2 (DNM2) [13,24]. The cooperation between BIN1 and 

DNM2 is mediated by the interaction of the BIN1 SH3 domain with the proline-rich domain of DNM2. 

However, this interaction may not occur prior to the association of BIN1 with membranes, since the 

polybasic sequence binds to the SH3 domain when it is not membrane-bound [25]. Indeed, PI(4,5)P2 

binding is necessary to release the SH3 domain from the poly-basic region, enabling the interaction 

between the SH3 domain and DNM2. The existence of this intermolecular regulation was elucidated in 

cultured cells [25]. 

2.2. Endophilin 

Endophilins are composed of an N-terminal BAR domain and a C-terminal SH3 domain. The BAR 

domain of endophilin A1 forms a wedge at the center of the BAR domain dimer, which is thought to 

be inserted into the membrane [10,26,27]. Endophilin participates in clathrin-dependent endocytosis 

via the BAR and SH3 domains as well as the uncharacterized “fast mode” of endocytosis [28]. The 
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endophilin SH3 domain interacts with dynamin, N-WASP, and the phosphoinositide phosphatase 

synaptojanin [8,29]. A recent study suggests that Endophilin BAR domain dimerization on membranes 

triggers the access of ligands to the SH3 domain [30]. Recently, by using knock-out mice of all three 

endophilin A isoforms, it was demonstrated that all three endophilins, A1, A2, and A3, are involved in 

the recycling of synaptic vesicles at the uncoating stage of CCVs (clathrin-coated vesicles), rather than 

the scission of CCPs (clathrin-coated pits). This result is consistent with a role for Endophilin in 

Synaptojanin recruitment, not for dynamin recruitment or vesicle fission [8]. 

There are several possible links between diseases and endophilin A. Interestingly, it was recently 

reported that the SH3 domain of endophilin A binds with high affinity to Parkin, a protein linked to 

Parkinson’s disease [31], and also to huntingtin and ataxin-2, two additional proteins implicated in 

neurodegenerative diseases [32]. Endophilin 1,2 double knock-out mice develop neurodegerative 

disease leading to epileptic seizures [8]. 

In contrast to endophilin A, endophilin B1, also known as Bif1 or SH3GLB1, interacts via its 

N-BAR domain with Beclin 1, the mammalian homologue of yeast Atg6 (autophagy-related gene 6), 

through the UVRAG protein (UV irradiation resistance-associated gene). This interaction regulates the 

formation of autophagosomes, by promoting the activation of phosphatidylinositol (3) kinase C3 (PI3 

kinase C3) [33]. Endophilin-B1 participates in the maintenance of mitochondrial morphology. The 

depletion of endophilin-B1, by using short-hairpin RNAs, leads to the dissociation of the outer 

mitochondrial membrane and the formation of vesicular and tubular structures from the remnants of 

this membrane [34]. These results were phenocopied by the knockdown of the dynamin homolog Drp1 

(dynamin-related protein 1), a protein implicated in mitochondrial fission. Thus, Drp1 and 

endophilin-B1 may function in concert, and perhaps interact directly, in the maintenance of 

mitochondrial morphology [34]. Endophilin-B1 may also interact with Bax, Bcl2-associated X protein, 

to promote apoptosis following cytokine withdrawal [35]. However, in contrast to endophilin A1, there 

have been no reports of interaction of endophilin-B1 with N-WASP. 

2.3. Sorting Nexins 

Sorting nexins contain the BAR domain and the PX domain, but only SNX9 and 18 contain the 

SH3 domain. The BAR domain of the sorting nexin, SNX9, is in the proximity of the PX domain, 

which specifically recognizes phosphoinositides, such as PI(4,5)P2. The BAR and PX domains 

function as one unit with broad phosphoinositide specificity [36,37]. The roles of the BAR domains in 

the other SNX proteins have not been well studied. The PX domain shows affinity for various 

phosphoinositides, but it may also be involved in protein–protein interactions [38]. The BAR-PX unit 

of SNX9 also deforms membranes into tubules, and SNX9 is involved in clathrin-mediated 

endocytosis and endosomal trafficking [36,37,39]. SNX9 and the closely related SNX18 are accessory 

proteins required for the fission of clathrin-coated endocytic vesicles [40]. The SH3 domain of SNX9 

binds to N-WASP and dynamin [39]. The SNX9 protein participates in the Arp2/3 complex activation 

by N-WASP, in the presence of liposomes [41]. 

SNX1 and SNX2 function in endosome trafficking. Although SNX1 and SNX2 lack the SH3 

domain for N-WASP binding, another Arp2/3 complex activating protein, WASH, reportedly 

associates with SNX1 and SNX2 [35,36].  
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2.4. Tuba 

Tuba contains the BAR domain, four N-terminal SH3 domains, a DH domain and two C-terminal 

SH3 domains. The four N-terminal SH3 domains exhibit strong affinity for dynamin, the DH domain 

is a Cdc42 GEF, and the C-terminal SH3 domains bind directly to the N-WASP and Ena/VASP 

proteins. Tuba is localized at synapses and dorsal ruffles. The membrane deformation induced by the 

BAR domain of Tuba has not been elucidated yet [42,43]. The role of Tuba in apical junction 

formation in epithelial cells dependent on Cdc42 and N-WASP is demonstrated [44]. Tuba is also 

shown to be required for epithelial cyst morphogenesis [45]. 

2.5. APPL1 

APPL1, Centaurin, and ASAP1 are composed of the BAR and PH domains. Among the three 

proteins, ASAP1 also contains an SH3 domain (Figure 3). The PH domain is a module for 

phosphoinositide recognition. APPL1 is present on endosomal vesicles derived from clathrin-mediated 

endocytosis and on macropinosomes [46]. The dissociation of APPL1 from endosomes is reportedly 

correlated with the recruitment of PI(3)P binding proteins, such as WDFY2 and EEA1, to 

endosomes [47].  

The BAR domain of APPL1 binds not only to lipids but also to small GTPases, using different 

surfaces. BAR domains of APPL1/2 interact with Rab5, which regulates endosomes maturation and 

fusion [48]. In addition, in response to extracellular stimuli, such as epidermal growth factor (EGF), 

APPL1 and 2 translocate from the membrane to the nucleus, where they interact with the nucleosome 

remodeling and histone deacetylase complex (NuRD/MeCP1) and thus regulate cell proliferation [49]. 

The release of the APPL proteins from endosomes and their subsequent translocation to the nucleus 

occur in a Rab5-dependent fashion, and GTP hydrolysis by Rab5 is required to release APPL [49].  

2.6. ASAP1 

ASAP1 is an ArfGTPase activating protein (GAP) containing a BAR domain. The PH domain of 

ASAP1 binds to PI(4,5)P2, which stimulates the GAP activity [46,50,51]. The proline-rich domain of 

ASAP1 binds to Src [52] and CrkL [53]. These Src and CrkL proteins also participate in the formation 

of the podosome. Podosomes facilitate cell migration and tissue invasion by immune cells. 

Invadopodia are related structures in invasive cancer cells. And ASAP1 is required for podosome 

formation in NIH3T3 cells. Furthermore, the Src-dependent phosphorylation of ASAP1 on Tyr-782 is 

necessary for podosome formation [51]. The SH3 domain of ASAP1 can also bind to cortactin and 

FAK [51], although interactions with N-WASP and dynamin were not reported. However, another 

study showed that ASAP1 interacts through its BAR domain with the C-terminal region of GEFH1, a 

guanine nucleotide exchange factor for RhoA, and thus inhibits podosome formation [54]. Therefore, 

further studies are required to clarify the role of ASAP1 in podosome formation. 

ASAP3, which is closely related to ASAP1, is associated with focal adhesions and circular dorsal 

ruffles, but is not localized to podosomes [55]. The reduction of ASAP3 expression results in fewer 

actin stress fibers, reduced levels of phosphorylated myosin, and slower cell migration and invasion. 

Conversely, the down-regulation of ASAP1 has no effect on either migration or invasion [56,57]. 
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2.7. PICK1 

PICK1 contains a PDZ domain, but lacks an SH3 domain. The BAR domain of PICK1 reportedly 

interacts with the Arp2/3 complex to suppress the nucleation of actin filaments, thereby inhibiting the 

endocytosis of neurotransmitter receptors. The PDZ domain of PICK1 interacts directly with lipid 

membranes containing phosphoinositides, and the PDZ–lipid interaction is necessary for synaptic 

transmission [58–60]. The interplay between the BAR and PDZ domains of PICK1 has been reported [61]. 

Experimental observations suggested that the PICK1-PDZ domain inhibits the activity of the 

PICK1-BAR domain, and this auto-inhibition can be released by PICK1-PDZ ligand binding [62,63]. 

3. F-BAR Domain Subfamily 

The F-BAR-domain-containing proteins exist in all eukaryotes, except plants. These proteins are 

also known as Pombe/Cdc15 homology (PCH)-family proteins, from the founding member of this 

family (Figure 4). 

Figure 4. Domain organization of F-BAR proteins. EFC: extended FER-CIP4 homology 

(EFC) or FCH and BAR (F-BAR) domain; HR1: Protein kinase C-related kinase homology 

region 1 domain; SH2: Src homology 2 domain; SH3: Src homology 3 domain;  

FX: F-BAR extension domain; Tyr-kinase: Tyrosine kinase domain; RhoGAP: Rho 

GTPase activating protein domain; C1: Protein kinase C conserved region 1. 

 

3.1. FCHo1 and FCHo2 

The F-BAR domain of FCHo2 also forms a crescent-shaped dimer, but the curvature of its 
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membrane-binding, concave surface is smaller than those of the F-BAR domains of CIP4 and FBP17 [64]. 

Correspondingly, the FCHo1/2 proteins were required for the initiation of clathrin assembly at the 

plasma membrane through binding to the scaffold proteins for clathrin-coated pits, such as eps15 and 

intersectin, which in turn recruit the adaptor complex AP2 for clathrin assembly [65].  

3.2. FBP17, CIP4, and Toca-1 

The structures of the F-BAR domain from CIP4 and FBP17 were the first to be solved, among the 

F-BAR domains [66]. The amino acid sequence of the F-BAR domain of Toca-1/formin binding 

protein 1-like (FNBPIL) is almost identical to those of CIP4 and FBP17 [66–68]. Toca-1 was 

identified biochemically as an essential component of Cdc42-mediated actin polymerization [69]. The 

diameter of tubules generated by the F-BAR domains of CIP4 and FBP17 is much larger than that 

induced by the BAR domains of amphiphysin and endophilin, and appears to correspond to the 

curvature of the initial stages of clathrin-coated pits [66–68]. An isomeric variant of CIP4, CIP4h  

(also known as CIP4/2) was identified, and both CIP4h and CIP4 reportedly function directly in the 

translocation of GLUT4 during endocytosis [70,71]. CIP4 regulates insulin signaling downstream of 

TC10 GTPase, via recruitment of GAPex-5 to inactivate Rab31 leading to increased GLUT4 vesicle 

trafficking to the cell surface [72]. However, CIP4 was shown to inhibit GLUT4 trafficking to the cell 

surface using both knock-down and knock-out approaches [71,73]. Resolving these conflicting 

findings may require resolving CIP4’s role in endocytosis and exocytosis of GLUT4. 

The SH3 domains of FBP17 and CIP4 bind to dynamin, which antagonizes the tubulation activities 

of FBP17 and CIP4 [67,68]. The SH3 domain also binds to N-WASP, which functions downstream of 

Cdc42. In addition to the F-BAR domain, FBP17, Toca-1 and CIP4 possess Cdc42, Rnd2 and/or TC10 

binding sites (HR1 domain: homology region 1) [69,70,74,75]. Toca-1, FBP17, CIP4, and Cdc42 are 

involved in regulating the activation of N-WASP [67–69,76]. CIP4 reportedly associates with the 

proline-rich domain of Wiskott-Aldrich syndrome protein (WASP) in macrophages and CIP4 can 

regulate localization of WASP in macrophages [77,78]. 

FBP17, CIP4, and Toca-1 are involved in a variety of structures, in addition to clathrin-coated pits. 

The F-BAR and SH3 domains of FBP17 are essential for the formation of podosomes and phagocytic 

cups in macrophages [79]. The microinjection of a CIP4 mutant lacking its SH3 domain resulted in the 

inactivation of podosome formation in macrophages, suggesting a critical role for the CIP4/WASP 

interaction [80]. Moreover, the F-BAR and SH3 domains of FBP17 are necessary for recruiting the 

WASP-WIP complex and dynamin-2 to the plasma membrane [67,79,81,82]. In macrophages, FBP17 

interacts with the WASP-WIP complex and dynamin-2 to form podosomes, through its F-BAR and 

SH3 domains. Therefore, complex formation between the F-BAR domain of FBP17 and PI(4,5)P2 may 

be required for the membrane localization of FBP17 as well as the WASP-WIP complex and 

dynamin-2, to determine where podosomes will form [79].  

CIP4 localization to invadopodia was reported in breast cancer cells [83]. Notably, CIP4 is involved 

in the surface expression of transmembrane type 1 matrix metalloprotease (MT1-MMP), an important 

metalloprotease for matrix degradation at the podosome. CIP4 is reportedly phosphorylated by Src at 

the linker region between the HR1 domain and the SH3 domain [84]. Tyrosine phosphorylation at 

Y471 by Src is important for matrix degradation as well as invasion in breast tumor cells [84]. Src 
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kinase inhibits endocytosis of MT1-MMP to promote cell invasion, which is partly explained by 

phosphorylation of BAR proteins [85], first shown by Wu et al. (2005) to involve disruption of 

Dynamin binding to Endophilin following SH3 domain phosphorylation by Src. This observation is 

consistent with CIP4 phosphorylation by Src to reduce MT1-MMP internalization [84,85]. 

Although Toca-1 is thought to have a concave membrane-binding surface, the role of F-BAR 

domain-containing proteins, such as Toca-1, in filopodia formation has been suggested by 

reconstitution assay [86]. This might occur through membrane binding to the neck region of filopodia, 

in a similar manner to PACSIN, as described in the next section [86,87]. CIP4 also reportedly 

functions in lamellipodia, although the mechanism is unclear [88]. Knock-out mice experiments 

revealed that CIP4 is essential for optimal GC (germinal center) formation, skin inflammation, and 

integrin-dependent T-cell migration [89]. 

Toca-1 promotes vesicle motility, filopodia and lamellipodia formation by recruiting N-WASP or 

Abi1, respectively [90–92]. Toca-1/FNBPIL is essential for autophagy of the intracellular pathogen 

Salmonella enterica serovar Typhimurium [93]. The interaction between Toca-1 and ATG3 (autophagy 

protein) occurs through the Toca-1 HR1 domain [93]. Moreover, CIP4 was proposed to be involved in 

endosomal trafficking [94].  

In terms of their relationships to diseases, the SH3 domains of CIP4 bind to the huntingtin protein, 

which is mutated in patients with Huntington disease [95]. CIP4 has been implicated in renal cancer, 

where a mutation causes the expression of a truncated CIP4 fragment including the F-BAR domain 

and lacking the SH3 and HR1 regions [96]. Recent studies implicate CIP4 family proteins in cancer 

cell invasion [79,83,84,92], and will require extension to tumor metastasis studies in animal models. 

3.3. PACSIN (Syndapin) 

The syndapins (synaptic dynamin-associated proteins), also known as PACSINs (PKC and casein 

kinase substrate in neurons), have three isoforms. Whereas PACSIN1 is restricted to neurons, 

PACSIN2 is ubiquitously expressed and PACSIN3 is present in lung and muscle tissues [97]. 

PACSINs have been implicated in the regulation of both clathrin-mediated endocytosis [98,99] and 

caveolae endocytosis [100,101]. PACSINs contain an N-terminal F-BAR domain and a C-terminal 

SH3 domain. The F-BAR domains of PACSINs have a hydrophobic wedge [102,103]. Overexpression 

of the SH3 domain of syndapins inhibits receptor-mediated endocytosis [104]. 

Structurally, PACSINs have a concave membrane-binding surface, as in the other F-BAR domains, 

such as FBP17, CIP4, and FCHo2 [102,103]. Therefore, the inward membrane tubulation is a natural 

outcome of its membrane binding. The membrane tubules induced by the PACSIN F-BAR are 

narrower than those induced by the F-BAR domains of FBP17 and CIP4, which correlates with the 

structural differences between these proteins [100,103]. The narrower diameter of the tubules suggests 

that PACSIN2 is involved with the clathrin-coated pit at a transient, late stage of clathrin-coated 

vesicle fission. PACSIN2 is also localized at caveolae, which typically have a narrower neck diameter 

than clathrin-coated pits [100,101]. The direct binding of the PACSIN2 F-BAR domain with 

caveolin-1 supports the role of PACSIN2 in caveolae.  

However, overexpression of the full-length protein generates microspikes and lamellipodia-like 

structures, as well as cellular invaginations [102,105]. For protrusions such as microspikes, the 
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concave membrane-binding surface might fit to the neck of protrusions, where the same positive 

curvatures were found. The PACSIN2 F-BAR domain alone appears to be localized at these  

necks [102]. 

The SH3 domain of PACSIN2/syndapin II also binds to N-WASP and dynamin [98]. The SH3 

domain seems to contribute to the auto-inhibition of PACSIN1’s membrane tubulation ability. The 

basic patch on the F-BAR domain interacts with a corresponding acidic surface on the PRD-binding 

RT loop of the SH3 domain [106]. Interestingly, such charge complementarity is also used by the PxxP 

motifs within SH3 domain ligands, such as dynamin1 [107]. On the other hand, the intermolecular 

interaction between F-BAR domains can compete with the intramolecular SH3/F-BAR 

interaction [106]. These intramolecular interactions have recently been observed with BAR 

domain-containing proteins Endophilin, where Endophilin BAR domain dimerization on membranes is 

suggested to trigger the access of ligands to the SH3 domain [30]. Thus, perhaps the SH3 domain does 

not inhibit the BAR domain, but this curvature sensing domain triggers the appropriate subcellular 

space to engage with its ligand. In addition, the SH3 domains of PACSIN1 bind to huntingtin protein, 

which is mutated in patients with Huntington disease [108]. 

3.4. NOSTRIN 

NOSTRIN contains an F-BAR domain and an SH3 domain, and is reportedly localized at caveolae. 

The SH3 domain of NOSTRIN binds to N-WASP and dynamin [109,110]. However, the structure of 

the NOSTRIN F-BAR domain has not been reported. Patients with alcoholic hepatitis had significantly 

high hepatic levels of NOSTRIN. NOSTRIN induces the intracellular translocation of endothelial NO 

synthase (eNOS) and reduces NO generation, indicating that NOSTRIN expression is regulated under 

pathologic conditions [111]. 

3.5. Fes and Fer 

The Fes/Fps and Fer proteins are a distinct family of non-receptor tyrosine kinases, with prominent 

roles in inflammation and immunity [112–114]. Fes/Fps and Fer have a kinase region, an SH2 domain, 

an F-BAR extension (FX) domain and an F-BAR domain. The kinase region resembles those of the 

Src family tyrosine kinases. The region adjacent to the Fes or Fer F-BAR domain binds to 

phosphatidic acid (PA), and was named the FX domain. The F-BAR and FX units act as a membrane 

binding module with a preference for PA, and the F-BAR and FX units are essential for the 

membrane-dependent activation of the Fer kinase activity, which is involved in lamellipodia formation 

and cell migration [115]. The structure of the F-BAR-FX unit has not been determined. Recent study 

shows that Fes not only binds PA, but to phospholipase D2 (PLD2), leading to increased 

differentiation of myeloid leukemia cells [116] . Fer was localized to microtubule ends, and it can 

phosphorylate the adhesion molecule platelet/endothelial cell adhesion molecule 1 (PECAM-1) [117]. 

Fes signaling in stromal cells promotes breast tumor growth and metastasis [118]. Fes expression was 

also recently shown to have prognostic value for recurrence of prostate cancer [119]. Fer was recently 

linked to resistance of lung adenocarcinoma cells to quinicrine, an anti-malarial drug with anti-cancer 

properties [120]. Fer and a truncated Fer isoform (FerT) have recently been implicated in promoting 

growth and survival in colon cancer cell lines [121]. 
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3.6. srGAPs 

The slit-robo GAP proteins, (srGAP)1–4, contain an F-BAR domain at the N-terminus, a RhoGAP 

domain in the middle and an SH3 domain at the C-terminus [122,123]. The specificity of the GAP 

activity on small GTPases differs among the srGAP1–4 proteins. The SH3 domain often binds to 

WASP/WAVE proteins. srGAP1 binds to WASP, and inactivates Cdc42. In this respect, srgp-1 

(nematode ortholog of mammalian srGAP) senses membrane invaginations through its BAR domain, 

and is involved in cell corpse clearance and sick-cell killing in C. elegans [124]. srGAP2 binds to 

N-WASP and inactivates Rac [123,125]. srGAP3/WRP binds to WAVE1, and inactivates Rac [122]. 

The overexpression of the F-BAR domain-containing fragment of srGAP2 induced filopodia-like 

protrusions without actin filament localization, in a similar manner to the overexpression of the I-BAR 

domain of IRSp53. However, its membrane-binding mechanism is still unclear [123]. A recent 

mutational analysis revealed that the predicted concave surface does not bind membranes [126]. The 

srGAP3 gene is deleted in a severe type of mental retardation [127]. 

3.7. GAS7 

GAS7 contains the SH3 domain and the F-BAR domain. The SH3 domain is located at the 

N-terminus of the F-BAR domain, and this is the unique characteristic of GAS7. The structure of the 

F-BAR domain is unknown. The SH3 domain binds to N-WASP [128]. GAS7 plays a role in neuronal 

development [128], and its ability to cross-link actin and modulate actin dynamics can induce cell 

protrusions [129].  

3.8. PSTPIP1/2 and Cdc15 

PSTPIP1 was first identified as a tyrosine phosphorylated protein associated with F-actin [130]. 

PSTPIP1 contains an F-BAR domain and an SH3 domain, and the latter domain interacts with WASP 

and a tyrosine phosphatase [131]. The structure of its F-BAR domain is unknown. Mutations in the 

PSTPIP1 gene cause a rare autoinflammatory disease (PAPA syndrome). Two mutations (E250Q and 

A230T) were found in the BAR domain of patients with PAPA syndrome, although the effects of these 

mutations on PSTPIP1 function have not been clarified [132].  

PSTPIP2 shares about 41% sequence homology with its counterpart, PSTPIP [131]. PSTPIP2 has 

only the F-BAR domain, and no other domain was identified. Two sites of tyrosine phosphorylation 

and a binding site for PTP-PEST are found in both PSTPIP1 and PSTPIP2 [131]. Recently, PSTPIP2 

has been linked to filopodium formation, through its putative F-actin bundling activity [133]. However, 

the role of the membrane-binding F-BAR domain in filopodium formation has yet to be investigated. It 

was shown that PSTPIP2 regulates the organization of the actin cytoskeleton, as well as macrophage 

morphology and motility, in response to Colony Stimulating Factor-1 (CSF-1) [133]. PSTPIP2 

interacts with F-actin and increases cortical actin bundling. In vitro, PSTPIP2 induces F-actin bundling, 

decreases the actin polymerization rate, and increases F-actin stability [133]. Moreover, PSTPIP2 

reportedly binds phospholipids and deforms the plasma membrane into narrow tubes in COS-7 

cells [67]. In whole animals, the anti-inflammatory role of PSTPIP2 was shown in mouse model 

studies [134,135]. Mice with PSTPIP2 mutations that cause reduced expression levels (cmo and lupo) 
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leads to fatal autoimmune disease due in part to hyperactivation of macrophages [136]. 

PSTPIP1 is localized to the cleavage furrow of cultured human cells [137]. PSTPIP1 is highly 

homologous to Saccharomyces cerevisiae Cdc15, but lacks the long linker region between the F-BAR 

domain and the SH3 domain present in Cdc15. Cdc15 is localized at the contractile ring and is 

essential for cytokinesis [138–140]. The phosphorylation of Cdc15 controls its function in cytokinesis. 

On the other hand, phosphorylation at many sites within Cdc15 generates a closed conformation, 

which inhibits Cdc15 assembly at the division site in interphase. Conversely, Cdc15 dephosphorylation 

induces an open conformation, oligomerization, and scaffolding activity during mitosis [141]. Cdc15 

was described originally as an SH3 domain-containing protein that regulates actin nucleation, through 

the recruitment of formin Cdc12 and type I myosin Myo1 to the contractile ring by its F-BAR 

domain [142]. Cdc15 also stabilizes the contractile ring through its SH3 domain [143].  

F-BAR domains are also found in various other Saccharomyces cerevisiae proteins such as 
Cyk2/Hof1, Bzz1 and Rgd1–2 and Schizosaccharomyces pombe proteins such as Imp2, YB65 (pombe 

Bzz1p) and Rga7–9 [144,145]. Hof1 is localized at the site of cell division where septin is present. In 

addition, the deletion of the F-BAR domain of Hof1 reportedly caused defective actomyosin ring 

contraction [146]. 

4. I-BAR Subfamily 

The I-BAR domain binds to the membrane through its convex surface. The I-BAR domain, with the 

inverted geometry of the membrane-binding surface, as compared to most BAR and F-BAR domains, 

is involved in the plasma membrane protrusions of filopodia and lamellipodia. The structures of the 

I-BAR domains from IRSp53, MIM, and Pinkbar have been determined [147–150] (Figure 5). 

Figure 5. Schematic of domain organization of I-BAR proteins. IRSp53-MIM homology 

domain (IMD)/inverse-BAR (I-BAR); CRIB: Cdc42-Rac interactive binding region; SH3: 

Src homology 3 domain; WH2: Wasp homology 2 (verprolin homology) domain. 

 

4.1. IRSp53 

In vitro, the incubation of the I-BAR domain with liposomes induced membrane invaginations, 

which corresponded geometrically to cellular protrusions [148]. The binding of the I-BAR domain to 
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these membrane structures was confirmed by cryo-electron microscopy [151]. The I-BAR interaction 

with the membrane occurs through phosphatidylserine, but a preference for PI(4,5)P2 and PI(3,4,5)P3 

was observed for the I-BAR of IRSp53 [148,149,151]. The overexpression of the I-BAR fragment 

alone induced highly dynamic membrane protrusions that even persisted in the presence of an actin 

polymerization inhibitor [148,149,152,153]. Furthermore, several regions without actin filaments were 

also observed in these protrusions [148,154]. When the full-length proteins were overexpressed, the 

induced protrusions contained actin filaments, presumably because the SH3 domain recruits proteins 

that bundle and/or induce the formation of actin filaments. Interestingly, the SH3 domain of IRSp53 

binds to the Arp2/3 activator, WAVE2, which plays essential roles in lamellipodium formation, and 

also to N-WASP, which is considered to function in filopodium formation and endocytosis [155–157]. 

The SH3 domain also binds to MENA and VASP, which promote actin polymerization without 

branching [157–159]. The IRSp53 SH3 domain reportedly binds to dynamin [157], but the 

significance of dynamin in membrane protrusions is still unclear. Several laboratories have confirmed 

I-BAR binding to the actin filament, though its significance in relation to membrane deformation is 

unclear [147–149]. IRSp53 also has a PDZ binding motif, and its interactions with several PDZ 

domain-containing proteins may be important for the assembly of some cellular structures [160–163]. 

In cells, IRSp53 is involved in both filopodium and lamellipodium formation, as suggested from the 

localization and the binding of WAVE2, N-WASP, VASP, and Mena [155,156,158,159]. Filopodia are 

regulated by the small GTPase, Cdc42. IRSp53 contains a Cdc42-binding motif and seems to be 

required for the Cdc42-induced formation of filopodia [157]. This latter activity might also depend on 

its association with another cytoskeletal modulator, epidermal growth factor receptor kinase substrate 

8 (Eps8), which is known to function in actin-capping and -bundling [164]. In addition, an analysis 

with N-WASP knockout cells indicated that the IRSp53-mediated formation of filopodium-like 

protrusions requires N-WASP, but its Arp2/3 complex activating ability was not involved in the 

protrusion formation, and thus IRSp53 might be sufficient for unbranched actin filament formation in 

filopodia [157].  

The siRNA-mediated knockdown of IRSp53 also revealed its role in lamellipodia formation [156]. 

Moreover, IRSp53 is required, in association with the WAVE2-Abi1 complex, for various 

actin-mediated processes such as lamellipodium formation, but not for the formation of filopodia [165]. 

The lamellipodia-like structures induced by WAVE2 and IRSp53 are involved in 

phagocytosis [165,166]. In Dictyostelium discoideum, the IBARa protein (which contains an I-BAR 

domain) is involved in curvature sensing, and its SH3 domain recruits regulators of actin 

polymerization, including the Arp2/3 complex, at the neck of a particle during phagocytosis [167].  

4.2. MIM 

MIM and ABBA lack an SH3 domain. Both MIM and ABBA are composed of a C-terminal 

actin-monomer binding WH2 (WASP homology 2) domain and an N-terminal I-BAR domain. The 

WH2 domain of MIM directly binds to actin [168,169]. In addition to its induction of a negatively 

curved membrane, the I-BAR from MIM also has a wedge for insertion into a membrane enriched in 

PI(4,5)P2, which it then deforms into tubular structures in vitro [148,149,151]. MIM enhances 

Arp2/3-mediated actin polymerization through interactions with cortactin, but inhibits 
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WASP-mediated actin polymerization [169].  

MIM is strongly expressed during development in muscles and postmitotic neurons, and in adult 

mice in the kidneys, liver, and Purkinje cells of the cerebellum [168,170]. Mouse model studies 

revealed that MIM deficiency leads to a progressive kidney disease characterized by abnormal tubular 

morphology, severe urine concentration defects, renal electrolyte wasting and bone abnormalities [171]. 

Interestingly, MIM was recently also implicated in the Sonic hedgehog (Shh) signaling pathway. Shh 

is a potent morphogen that controls many developmental processes, including left–right asymmetry 

and organ patterning. Ectopic or dysfunctional Shh signaling has been linked to many cancers [172]. 

4.3. Pinkbar 

Pinkbar (planar intestinal- and kidney-specific BAR domain protein) contains an I-BAR domain 

and an SH3 domain. The I-BAR domain of Pinkbar is noticeably shorter (164 Å) than those of IRSp53 

(182 Å) [147] and MIM (185 Å) [173]. The I-BAR domain of Pinkbar interacts with PI(4,5)P2-rich 

vesicles through electrostatic interactions. Due to its flat structure, the BAR domain of Pinkbar does 

not induce membrane protrusions or invaginations, and instead deforms phosphoinositide-rich 

membranes into planar structures [150]. The binding partner for the SH3 domain has not been 

identified. 

Pinkbar is expressed predominantly in intestinal and kidney epithelial cells, where it localizes to 

Rab13-positive vesicles and to the plasma membrane at the cell-cell junctions [150]. The small 

GTPase, Rab13, is highly expressed in the intestinal epithelial cells and promotes tight junction 

integrity [174,175]. Therefore, Pinkbar may be involved in the formation of specific membrane 

structures at the intercellular junctions of enterocytes that may regulate intestinal permeability or 

nutrient absorption.  

5. Conclusions 

We have summarized the current information available for the well-studied BAR proteins. More 

than 50 different types of BAR proteins are present in humans, and therefore we still lack a complete 

understanding of the membrane curvature generation and sensing mediated by BAR proteins. Several 

BAR proteins are associated with multiple structures, and thus the BAR proteins may simply function 

for the generation and recognition of membrane curvature, and might not have one-to-one 

relationships to subcellular structures. The various combinations of BAR proteins for each subcellular 

structure may provide its characteristic membrane shape. 
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