

Citation: Baek SY, Jang KH, Choi EH, Ryu SH, Kim SK, Lee JH, et al. (2016) DNA Barcoding of Metazoan Zooplankton Copepods from South Korea. PLoS ONE 11(7): e0157307. doi:10.1371/journal. pone.0157307

Editor: Jiang-Shiou Hwang, National Taiwan Ocean University, TAIWAN

Received: July 15, 2015

Accepted: May 30, 2016

Published: July 6, 2016

Copyright: © 2016 Baek et al. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: The sequence data examined here are available under the GenBank accession numbers KR048930–KR049062.

Funding: This present work was carried out with the support of "Origin of Biological Diversity of Korea: Molecular Phylogenetic Analyses of Major Korean Taxa" funded by the National Institute of Biological Resources (NIBR No. 2013-02-013), and "Cooperative Research Program for Agriculture Science & Technology Development (National Agricultural Genome Program, Project title: De novo genome annotation for centipede, Scolopendra

RESEARCH ARTICLE

DNA Barcoding of Metazoan Zooplankton Copepods from South Korea

Su Youn Baek¹[©], Kuem Hee Jang²[©], Eun Hwa Choi²[©], Shi Hyun Ryu³, Sang Ki Kim¹, Jin Hee Lee¹, Young Jin Lim², Jimin Lee⁴, Jumin Jun⁵, Myounghai Kwak⁵, Young-Sup Lee¹, Jae-Sam Hwang⁶, Balu Alagar Venmathi Maran², Cheon Young Chang⁷, II-Hoi Kim⁸, Ui Wook Hwang^{1,2}*

 School of Life Sciences, Graduate School, Kyungpook National University, Daegu, South Korea,
Department of Biology, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, South Korea, 3 Freshwater Biodiversity Research Division, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongsangbuk-do, Republic of Korea, 4 Marine Ecosystem Research Division, Korea Institute of Ocean Science and Technology, Ansan, South Korea,
Biological Resources Research Department, National Institute of Biological Resources, Incheon, South Korea, 6 Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, Republic of Korea, 7 Department of Biological Science, College of Natural Sciences, Daegu University, Gyeongsan, South Korea, 8 Department of Biology, Gangneung-Wonju National University, Gangneung, Gangwon-Do,South Korea

• These authors contributed equally to this work. * <u>uwhwang@knu.ac.kr</u>

Abstract

Copepods, small aquatic crustaceans, are the most abundant metazoan zooplankton and outnumber every other group of multicellular animals on earth. In spite of ecological and biological importance in aquatic environment, their morphological plasticity, originated from their various lifestyles and their incomparable capacity to adapt to a variety of environments, has made the identification of species challenging, even for expert taxonomists. Molecular approaches to species identification have allowed rapid detection, discrimination, and identification of cryptic or sibling species based on DNA sequence data. We examined sequence variation of a partial mitochondrial cytochrome C oxidase I gene (COI) from 133 copepod individuals collected from the Korean Peninsula, in order to identify and discriminate 94 copepod species covering six copepod orders of Calanoida, Cyclopoida, Harpacticoida, Monstrilloida, Poecilostomatoida and Siphonostomatoida. The results showed that there exists a clear gap with ca. 20 fold difference between the averages of within-specific sequence divergence (2.42%) and that of between-specific sequence divergence (42.79%) in COI, suggesting the plausible utility of this gene in delimitating copepod species. The results showed, with the COI barcoding data among 94 copepod species, that a copepod species could be distinguished from the others very clearly, only with four exceptions as followings: Mesocyclops dissimilis-Mesocyclops pehpeiensis (0.26% K2P distance in percent) and Oithona davisae-Oithona similis (1.1%) in Cyclopoida, Ostrincola japonica-Pseudomyicola spinosus (1.5%) in Poecilostomatoida, and Hatschekia japonica-Caligus quadratus (5.2%) in Siphonostomatoida. Thus, it strongly indicated that COI may be a useful tool in identifying various copepod species and make an initial progress toward the

subspinipes, Project No. PJ010338)" Rural Development Administration, Republic of Korea.

Competing Interests: The authors have declared that no competing interests exist.

construction of a comprehensive DNA barcode database for copepods inhabiting the Korean Peninsula.

Introduction

Copepods are one of the prevalent taxonomic groups among crustaceans, encompassing approximately 14,000 described species worldwide [1, 2, 3], of which about 695 species from 97 families have been known to occur in Korean waters (http://www.kbr.go.kr/home/find/find020011.do). Their incomparable capability of adaptation to diverse environmental conditions has probably led to their extraordinary morphological and ecological diversity; as a consequence, copepod species are distributed throughout the world and found in nearly every kind of aquatic habitats [2, 4]. In addition, the diversity of copepod species is directly associated with maintaining natural resources as well as nourishing human life, since many of them numerically dominate most planktonic communities [1, 5], play a pivotal function in aquatic food webs [6], regulate global carbon cycle and climate [7–8] and live as endo- or ectoparasites in many aquatic animals [1, 4, 9]. Despite the ecological and economic significance, little is known about the number of copepod species on earth.

In recent years, because of their ecological importance, a lot of attention has been placed on the estimation of the biodiversity of this subclass Copepoda in marine and freshwater ecosystems [10-13]. The identification and classification of copepods have fundamentally been based on their morphological and anatomical characteristics [1, 2, 4]. However, such conventional ways may have some limitation in precisely estimating the abundance of copepod species in a certain environment, because they are time-consuming and necessitate special training or professional skills. Another difficulty may also be the existence of closely related taxa that are barely distinguishable [12, 14-16]. To make it more difficult, many of copepod species display morphological intraspecific variation corresponding to the habitat types [17]. Consequently, the application of a rapid and promising protocol for the species identification is critically needed for the estimation of copepod diversity.

Many different genetic markers have been considered to complement those conventional approaches. Mitochondrial cytochrome *C* oxidase subunit I gene (*COI*) is the gene offering the most efficient and accurate barcoding method for species-level identification in animal kingdom [18–21], though its efficiency is limited in taxa showing little nucleotide sequence diversity of mitochondrial DNA, such as scleractinian corals and calcarean sponges [22–24]. The partial *COI* barcoding region, which is ca. 600 bp in length, has been found valuable to reveal cryptic species that may not be possible to resolve the phylogenetic relationships in many copepods [12, 16, 25–27]. Numerous published studies for a variety of copepods have also proved the usefulness of *COI* in identifying species [28–30]. The *COI* gene is also effective in investigating phylogenetic relationship among species or higher taxa [27, 30–32]. Whereas *COI* has been analyzed from many calanoid and cyclopoid copepods, relatively limited genetic information is available for the remaining orders.

In the present study, the *COI* diversity was investigated from 133 individuals of 94 species of copepods representing six orders, Calanoida, Cyclopoida, Harpacticoida, Monstrilloida, Poecilostomatoida and Siphonostomatoida. Until now, extensive DNA barcoding study has never been done over the six copepod orders. Specifically, *COI* barcoding has never been attempted in the order Monstrilloida. Primary aims of this study are (i) to test whether *COI* is a sufficient and promising marker to identify various copepod species and (ii) to create preliminary progress towards the construction of a comprehensive DNA barcode database for identified specimens of copepods inhabiting the Korean Peninsula.

Materials and Methods

Sample collection

Specimens were collected from 2003 to 2014 across freshwater systems, coastal and oceanic areas on and around South Korea (Fig 1). Collection of every sample examined here did not require permission from government authorities, because copepods are an invertebrate animal, for which collecting regulations are not strictly controlled in South Korea. Nevertheless, we received permission from the Ministry of Environment of the Korean government for our sample collection in the present study. Individual specimens were carefully identified based on morphological characters. The entire bodies of all individuals were preserved in 95% ethanol. Species names, GenBank accession numbers and other characteristics of all taxa used in the present study are listed in Table 1.

Laboratory protocols

Ethanol-preserved specimens were rehydrated in distilled water for 5 hours before the procedure of DNA extraction. Genomic DNA was extracted using the QIAamp DNA micro kit (QIAGEN Co. Germany) in accordance with the manufacturer-recommended protocol with an exception that incubation with proteinase K was conducted overnight. For large specimens, the DNA was extracted with the Qiagen DNeasy Blood and Tissue Kit (QIAGEN Co. Germany).

Fig 1. Collecting locations of 94 copepod species including the six orders used in the present study.

doi:10.1371/journal.pone.0157307.g001

Table 1. Summary of classification, species name, adult life style, collection locality, GPS, GenBank accession numbers, and used PCR primers for 133 samples covering 94 copepod species examined here.

Classification	Species	LS*	Voucher No.	Location	GPS	GenBank Acc. No.	PS**
Order Calanoida							
Acartiidae	Acartia erythrea	FI	LEGO-CAL002-1	Buheung-ri, Namjeong-myeon, Yeongdeok-gun, Gyeongsangbuk-do	36.292274, 129.377329	KR048930	1/11
			LEGO-CAL002-2	Yonghan-ri, Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	36.112617, 129.427250	KR048931	1/11
	Acartia steueri	FI	LEGO-CAL005	Samjeong-ri, Guryongpo-eup, Nam- gu, Pohang-si, Gyeongsangbuk-do	36.003694, 129.571265	KR048932	1/11
			LEGO-CAL005-9	Gampo-ri, Gampo-eup, Gyeongju-si, Gyeongsangbuk-do	35.804109, 129.504398	KR048933	1/11
			LEGO-CAL005-10	Gyewon-ri, Janggi-myeon, Nam-gu, Pohang-si, Gyeongsangbuk-do	35.862180, 129.526584	KR048934	1/11
	Acartia tsuensis	FI	LEGO-CAL007	Jindong-ri, Jindong-myeon, Masanhappo-gu, Changwon-si, Gyeongsangnam-do	35.152335, 128.611304	KR048935	111/11
			LEGO-CAL007-13	Jindong-ri, Jindong-myeon, Masanhappo-gu, Changwon-si, Gyeongsangnam-do	35.152335, 128.611304	KR048936	/
Calanidae	Calanus sinicus	FI	LEGO-CAL019	Nampo-dong 1-ga, Jung-gu, Busan	35.096872, 129.032409	KR048947	VI/II
			LEGO-CAL019-70	Jinhae-gu, Changwon-si, Gyeongsangnam-do	35.133799, 128.672114	KR048948	VIII/IX
			LEGO-CAL019-71	Wollae-ri, Jangan-eup, Gijang-gun, Busan	35.327013, 129.280212	KR048949	VI/II
Centropagidae	Sinocalanus tenellus	FI	LEGO-CAL033-15	Daebudong-dong, Danwon-gu, Ansan-si, Gyeonggi-do	37.233211, 126.602035	KR048937	1/11
			LEGO-CAL033-16	Samsan-dong, Nam-gu, Ulsan	35.544860, 129.354529	KR048938	/
			LEGO-CAL033-17	Nampobangjoje-ro, Boryeong-si, Chungcheongnam-do	36.264025, 126.547897	KR048939	1/11
Diaptomidae	Heliodiaptomus kikuchii	FI	LEGO-CAL038	Naeri-ri, Jillyang-eup, Gyeongsan-si, Gyeongsangbuk-do	35.896667, 128.846775	KR048940	IV/V
	Neodiaptomus schmackeri	FI	LEGO-CAL041	Sangnim-ri, Jillyang-eup, Gyeongsan- si, Gyeongsangbuk-do	35.908780, 128.830534	KR048941	1/11
			LEGO-CAL041-23	Neungcheon-ri, Yongmun-myeon, Yecheon-gun, Gyeongsangbuk-do	36.702354, 128.424865	KR048942	1/11
			LEGO-CAL041-24	Sinwol-ri, Geumho-eup, Yeongcheon- si, Gyeongsangbuk-do	35.939784, 128.901072	KR048943	1/11
			LEGO-CAL041-26	Osu-dong, Yeongcheon-si, Gyeongsangbuk-do	35.956514, 128.921268	KR048944	1/11
	Sinodiaptomus sarsi	FI	LEGO-CAL042-27	Juhang-ri, Seo-myeon, Seocheon- gun, Chungcheongnam-do	36.155484, 126.571364	KR048945	IV/V
	Acanthodiaptomus pacificus	FI	LEGO-CAL037	Daeheul-ri, Jocheon-eup, Jeju-si, Jeju-do	33.468988, 126.667769	KR048946	/
			-	Japan (Makino and Tanabe, 2009)	-	AB494174	-
Paracalanidae	Paracalanus parvus	FI	LEGO-CAL057	Yonghan-ri, Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	36.112617, 129.427250	KR048950	VIII/X
			LEGO-CAL057-33	Sinchang-ri, Janghang-eup, Seocheon-gun, Chungcheongnam-do	36.007095, 126.692016	KR048951	VI/II
			LEGO-CAL057-34	Geumjin-ri, Ganggu-myeon, Yeongdeok-gun, Gyeongsangbuk-do	36.376379, 129.401393	KR048952	111/11
Classificarion	Species	LS*	Voucher No.	Location	GPS	GenBank Acc. No.	PS**

(Continued)

PLOS

:0)

PLOS ONE

Pseudodiaptomidae	Pseudodiaptomus inopinus	FI	LEGO-CAL063	Gosan-ri, Hangyeong-myeon, Jeju-si, Jeju-do	33.307396, 126.163262	KR048953	VIII/IX
			LEGO-CAL063-44	Daebudong-dong, Danwon-gu, Ansan-si, Gyeonggi-do	37.229179, 126.600490	KR048954	VIII/IX
			LEGO-CAL063-45	Sindu-ri, Wonbuk-myeon, Taean-gun, Chungcheongnam-do	36.836185, 126.182155	KR048955	VIII/IX
	Pseudodiaptomus marinus	FI	LEGO-CAL066	Sindu-ri, Wonbuk-myeon, Taean-gun, Chungcheongnam-do	36.836185, 126.182155	KR048956	111/11
			LEGO-CAL066-50	Yonghan-ri, Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	36.112305, 129.428881	KR048957	1/11
			LEGO-CAL066-51	Wollae-ri, Jangan-eup, Gijang-gun, Busan	35.327013, 129.280212	KR048958	111/11
	Pseudodiaptomus nihonkaiensis	FI	LEGO-CAL067	Gyewon-ri, Janggi-myeon, Nam-gu, Pohang-si, Gyeongsangbuk-do	35.862180, 129.526584	KR048959	111/11
			-	Korea (Eyun et al. 2007)	-	AF536519	-
Temoridae	Eurytemora affinis	FI	LEGO-CAL077	Namdaecheon-ro, Seo-myeon, Yangyang-gun, Gangwon-do	38.032633, 128.601820	KR048960	111/11
	Eurytemora pacifica	FI	LEGO-CAL078-59	Gampo-ri, Gampo-eup, Gyeongju-si, Gyeongsangbuk-do	35.808234, 129.504698	KR048961	VI/II
			LEGO-CAL078	Yonghan-ri, Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	36.112166, 129.428881	KR048962	/
			LEGO-CAL078-61	Joyang-dong, Sokcho-si, Gangwon- do	38.193728, 128.601078	KR048963	/
	Temora turbinate	FI	LEGO-CAL081	Nampo-dong 1-ga, Jung-gu, Busan	35.096872, 129.032409	KR048964	/
			LEGO-CAL081-63	Nambumin-dong, Seo-gu, Busan	35.092961, 129.025250	KR048965	1/11
			LEGO-CAL081-64	Wollae-ri, Jangan-eup, Gijang-gun, Busan	35.327013, 129.280212	KR048966	1/11
Order Cyclopoida	-						
Cyclopidae	Cyclops kikuchii	FI	LEGO-CYC007	Sangnim-ri, Jillyang-eup, Gyeongsan- si, Gyeongsangbuk-do	35.908780, 128.830534	KR048967	1/11
	Diacyclops bicuspidatus	FI	LEGO-CYC010	Pyeongsa-ri, Jillyang-eup, Gyeongsan-si, Gyeongsangbuk-do	35.898130, 128.856595	KR048968	/
	Macrocyclops albidus	FI	LEGO-CYC017	Indong-ri, Gangdong-myeon, Gyeongju-si, Gyeongsangbuk-do	35.988227, 129.255676	KR048969	111/11
			-	Mexico (Prosser et al. 2013)	-	KC617060	-
			-	Mexico (Prosser et al. 2013)	-	KC617660	-
	Megacyclops viridis	FI	LEGO-CYC019	Pyeongsa-ri, Jillyang-eup, Gyeongsan-si, Gyeongsangbuk-do	35.898130, 128.856595	KR048970	111/11
			LEGO-CYC019-72	Daegudae-ro, Gyeongsan-si, Gyeongsangbuk-do	35.898210, 128.843872	KR048971	VI/II
			LEGO-CYC019-71	Juhang-ri, Seo-myeon, Seocheon- gun, Chungcheongnam-do	36.156038, 126.567802	KR048972	VI/V
	Mesocyclops pehpeiensis	FI	LEGO-CYC021-77	Naeri-ri, Jillyang-eup, Gyeongsan-si, Gyeongsangbuk-do	35.896667, 128.846775	KR048973	1/11
			-	Taiwan (Unpublished)	-	KJ020571	-
	Mesocyclops dissimilis	FI	LEGO-CYC020-83	Naeri-ri, Jillyang-eup, Gyeongsan-si, Gyeongsangbuk-do	35.896667, 128.846775	KR048974	VI/II
	Acanthocyclops vernalis	FI	LEGO-CYC040	Ogok-dong, Gangseo-gu, Seoul	37.556788, 126.766500	KR048975	VIII/X
Classification	Species	LS*	Voucher No.	Location	GPS	GenBank Acc. No.	PS**

PLOS ONE

	Apocyclops borneoensis	FI	LEGO-CYC046	Unseo-dong, Jung-gu, Incheon	37.422974, 126.426755	KR048976	VI/II
	Halicyclops itohi	FI	LEGO-CYC016	Hanja-ri, Hwangsan-myeon, Haenam- gun, Jeollanam-do	34.545315, 126.432664	KR048977	I/VII
	Paracyclops fimbriatus	FI	LEGO-CYC023	Saekdal-dong, Seogwipo-si, Jeju-do	33.244290, 126.405785	KR048978	111/11
	Tropocyclops setulifer	FI	LEGO-CYC039	Seongnyugul-ro, Geunnam-myeon, Uljin-gun, Gyeongsangbuk-do	36.956665, 129.379810	KR048979	VIII/IX
Notodelphyidae	Bonnierilla curvicaudata	Ec	LEGO-CYC028	Sacheonjin-ri, Sacheon-myeon, Gangneung-si, Gangwon-do	37.837785, 128.877136	KR048980	1/11
			LEGO-CYC028-107	Songjeong-dong, Gangneung-si, Gangwon-do	37.772045, 128.929185	KR048981	VIII/IX
			LEGO-CYC028-108	Namae-ri, Hyeonnam-myeon, Yangyang-gun, Gangwon-do	37.950192, 128.776801	KR048982	VI/II
	Doropygus rigidus	Ec	LEGO-CYC031	Gallam-ri, Wondeok-eup, Samcheok- si, Gangwon-do	37.263509, 129.323927	KR048983	VI/II
	Lonchidiopsis hartmeyeri	Ec	LEGO-CYC033	Geumjin-ri, Okgye-myeon, Gangneung-si, Gangwon-do	37.642461, 129.043641	KR048984	111/11
	Pachypygus curvatus	Ec	LEGO-CYC034	Sin-ri, Sinji-myeon, Wando-gun, Jeollanam-do	34.334344, 126.800075	KR048985	/
Oithonidae	Oithona similis	FI	LEGO-CYC036-117	Yonghan-ri, Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	36.112305, 129.428881	KR048986	IV/V
			LEGO-CYC036	Wollae-ri, Jangan-eup, Gijang-gun, Busan	35.327013, 129.280212	KR048987	111/11
	Oithona davisae	FI	LEGO-CYC035	Samsan-dong, Nam-gu, Ulsan	35.544755, 129.354915	KR048988	1/11
Order Harpacticoida	1						
Ameiridae	Nitokra spinipes	FI/B	LEGO-HAR003	Jinha-ri, Seosaeng-myeon, Ulju-gun, Ulsan	35.382490, 129.345288	KR049004	1/11
	Nitokra lacustris	FI/B	LEGO-HAR002	Wollae-ri, Jangan-eup, Gijang-gun, Busan	35.327013, 129.280212	KR049005	IV/V
Canthocamptidae	Canthocamptus kitaurensis	FI/B	LEGO-HAR010	Ahwa-ri, Seo-myeon, Gyeongju-si, Gyeongsangbuk-do	35.890030, 129.044042	KR049006	1/11
Dactylopusiidae	Dactylopusia pauciarticulata	FI/B	LEGO-HAR015	Gisamun-ri, Hyeonbuk-myeon, Yangyang-gun, Gangwon-do	38.006289, 128.731514	KR049007	IV/V
Darcythompsoniidae	Leptocaris brevicornis	As	LEGO-HAR017	Dadae-dong, Saha-gu, Busan	35.061526, 128.956287	KR049008	VI/II
Harpacticidae	Tigriopus japonicas	FI/B	LEGO-HAR023-94	Manheung-dong, Yeosu-si, Jeollanam-do	34.773827, 127.742034	KR049009	IV/V
			LEGO-HAR023-95	Seongsan-eup, Seogwipo-si, Jeju-do	33.373084, 126.872241	KR049010	IV/V
	Harpacticus uniremis	FI/B	LEGO-HAR050	Myeongchon-dong, Buk-gu, Ulsan	35.547631, 129.357244	KR049016	VI/II
Laophontidae	Paralaophonte congenera	As	LEGO-HAR027	Jinha-ri, Seosaeng-myeon, Ulju-gun, Ulsan	35.382490, 129.345288	KR049011	1/11
Longipediidae	Longipedia kikuchii	FI/B	LEGO-HAR029	Yonghan-ri, Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	36.112305, 129.428881	KR049012	1/11
Miraciidae	Diosaccus ezoensis	As	LEGO-HAR032	Nampo-dong 1-ga, Jung-gu, Busan	35.096872, 129.032409	KR049013	VI/V
Thalestridae	Eudactylopus spectabilis	FI/B	LEGO-HAR041	Nampo-dong 1-ga, Jung-gu, Busan	35.096872, 129.032409	KR049015	VIII/X
Tisbidae	<i>Tisbe</i> sp.	FI/B	LEGO-HAR039	Hwadang-ri, Georyu-myeon, Goseong-gun, Gyeongsangnam-do	34.984309, 128.428012	KR049014	VI/II

PLOS ONE

Classification	Species	LS*	Voucher No.	Location	GPS	GenBank Acc. No.	PS**
Order Monstrilloida	1						
Monstrillidae	Cymbasoma sp.	FI	LEGO-MON002	Namhang-ro, Yeongdo-gu, Busan	35.089018, 129.036041	KR048989	VI/II
	Cymbasoma reticulatum	FI	LEGO-MON001-11	Yangpo-ri, Janggi-myeon, Nam-gu, Pohang-si, Gyeongsangbuk-do	35.876949, 129.516774	KR048990	1/11
			LEGO-MON001-13	Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	36.112305, 129.428881	KR048991	IV/V
	Monstrilla hamatapex	FI	LEGO-MON005-3	Gyewon-ri, Janggi-myeon, Nam-gu, Pohang-si, Gyeongsangbuk-do	35.870961, 129.530060	KR048992	IV/V
			LEGO-MON005-5	Yonghan-ri, Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	36.112305, 129.428881	KR048993	IV/II
			LEGO-MON005	Samjeong-ri, Guryongpo-eup, Nam- gu, Pohang-si, Gyeongsangbuk-do	36.004319, 129.574870	KR048994	1/11
	Monstrilla sp.	FI	LEGO-MON006-7	Wollae-ri, Jangan-eup, Gijang-gun, Busan	35.327013, 129.280212	KR048995	1/11
			LEGO-MON006-8	Jinha-ri, Seosaeng-myeon, Ulju-gun, Ulsan	35.382490, 129.345288	KR048996	1/11
	Monstrilla sp.3	FI	LEGO-MON008-17	Honghyeon-ri, Nam-myeon, Namhae- gun, Gyeongsangnam-do	34.748376, 127.909712	KR048997	1/11
			LEGO-MON008	Songjeong-ri, Mijo-myeon, Namhae- gun, Gyeongsangnam-do	34.733785, 128.038619	KR048998	1/11
	Monstrilla sp.4	FI	LEGO-MON009	Yonghan-ri, Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	36.112305, 129.428881	KR048999	VI/II
	Monstrillopsis sp.	FI	LEGO-MON010-8	Namhang-ro, Yeongdo-gu, Busan	35.089018, 129.036041	KR049000	VI/II
	Monstrillopsis sp.2	FI	LEGO-MON011	Korea Maritime Univ., Dongsam 2-dong, Yeongdo-gu, Busan	35.077358, 129.087972	KR049001	IV/V
	Maemonstrilla simplex	FI	LEGO-MON015-9	Korea Maritime Univ., Dongsam 2-dong, Yeongdo-gu, Busan	35.077358, 129.087972	KR049002	VI/II
			LEGO-MON015-10	Taejong-ro, Yeongdo-gu, Busan	35.077358, 129.087972	KR049003	VI/II
Order Poecilostom	atoida						
Bomolochidae	Bomolochus bellones	Ec	LEGO-POE041	Ganggu-ri, Ganggu-myeon, Yeongdeok-gun, Gyeongsangbuk-do	36.359633, 129.388916	KR049017	VIII/X
	Bomolochus decapteri	Ec	LEGO-POE001	Sacheonjin-ri, Sacheon-myeon, Gangneung-si, Gangwon-do	37.834125, 128.876106	KR049018	IV/V
	Nothobomolochus thambus	Ec	LEGO-POE002	Gumi-dong, Donghae-si, Gangwon- do	37.485592, 129.126643	KR049019	VI/II
Chondracanthidae	Acanthochondria spirigera	Ec	LEGO-POE003	Jeonchon-ri, Gampo-eup, Gyeongju- si, Gyeongsangbuk-do	35.790757, 129.492552	KR049020	VI/II
	Acanthochondria tchangi	Ec	LEGO-POE004	Jeongwang-dong, Siheung-si, Gyeonggi-do	37.329353, 126.673087	KR049021	VI/II
	Brachiochondria pinguis	Ec	LEGO-POE005	Gyeokpo-ri, Byeonsan-myeon, Buan- gun, Jeollabuk-do	35.623545, 126.467718	KR049022	/
	Chondracanthus distortus	Ec	LEGO-POE006	Yangpo-ri, Janggi-myeon, Nam-gu, Pohang-si, Gyeongsangbuk-do	35.876949, 129.516774	KR049023	VI/II
	Chondracanthus zei	Ec	LEGO-POE042	Yangpo-ri, Janggi-myeon, Nam-gu, Pohang-si, Gyeongsangbuk-do	35.876949, 129.516774	KR049033	VI/II
Clausidiidae	Hemicyclops ctenidis	Ec	LEGO-POE008	Hyangho-ri, Jumunjin-eup, Gangneung-si, Gangwon-do	37.912963, 128.815505	KR049024	111/11
	Hemicyclops gomsoensis	Ec	LEGO-POE009	Yangpo-ri, Janggi-myeon, Nam-gu, Pohang-si, Gyeongsangbuk-do	35.876949, 129.516774	KR049025	III/VII

PLOS ONE

Classification	Species	LS*	Voucher No.	Location	GPS	GenBank Acc. No.	PS**
	Hemicyclops spinosus	Ec	LEGO-POE011	Gwangjin-ri, Hyeonnam-myeon, Yangyang-gun, Gangwon-do	37.951220, 128.776601	KR049026	VI/V
	Hemicyclops tanakai	Ec	LEGO-POE050	Songnim-ri, Janghang-eup, Seocheon-gun, Chungcheongnam-do	36.028871, 126.666395	KR049027	1/11
Clausiidae	<i>Clausia</i> sp.	Ec	LEGO-POE012-71	Gyeonso-dong, Gangneung-si, Gangwon-do	37.769060, 128.950915	KR049028	VI/V
			LEGO-POE012	Gyeonso-dong, Gangneung-si, Gangwon-do	37.769060, 128.950915	KR049029	1/11
Ergasilidae	<i>Ergasilus</i> sp.	Ec	LEGO-POE13	Obong-ri, Jugwang-myeon, Goseong- gun, Gangwon-do	38.335302, 128.520282	KR049035	VI/VII
	Ergasilus wilsoni	Ec	LEGO-POE014	Obong-ri, Jugwang-myeon, Goseong- gun, Gangwon-do	38.335302, 128.520282	KR049036	VI/II
	Neoergasilus japonicus	Ec	LEGO-POE015	Jukheon-dong, Gangneung-si, Gangwon-do	37.779466, 128.859372	KR049037	VI/V
Taeniacanthidae	Anchistrotos kojimensis	Ec	LEGO-POE033	Nonhyeon-dong, Namdong-gu, Incheon	37.398895, 126.740576	KR049049	VI/II
	Taeniacanthus congeri	Ec	LEGO-POE034	Seo-dong, Sacheon-si, Gyeongsangnam-do	34.926445, 128.068893	KR049030	/V
			LEGO-POE034-1	Sinjindo-ri, Geunheung-myeon, Taean-gun, Chungcheongnam-do	36.682945, 126.138751	KR049031	111/11
	Taeniacanthus yamagutii	Ec	LEGO-POE035	Gyeokpo-ri, Byeonsan-myeon, Buan- gun, Jeollabuk-do	35.623545, 126.467718	KR049032	VI/II
Lichomolgidae	Synstellicola paracarens	Ec	LEGO-POE021	Seung-eon-ri, Anmyeon-eup, Taean- gun, Chungcheongnam-do	36.597743, 126.323065	KR049034	VI/II
	Herrmannella dentata	Ec	LEGO-POE017	Geumsong-ri, Samdong-myeon, Namhae-gun, Gyeongsangnam-do	34.830260, 128.011148	KR049038	VI/II
	Herrmannella hoonsooi	Ec	LEGO-POE029	Seoho-dong, Tongyeong-si, Gyeongsangnam-do	34.839944, 128.418257	KR049039	VI/II
	Lichomolgus similis	Ec	LEGO-POE037	Dueo-ri, Simwon-myeon, Gochang- gun, Jeollabuk-do	35.529463, 126.536684	KR049044	VI/II
	Modiolicola bifida	Ec	LEGO-POE018	Yongjeong-ri, Hyeongyeong-myeon, Muan-gun, Jeollanam-do	35.049275, 126.379666	KR049040	VI/II
	Zygomolgus dentatus	Ec	LEGO-POE022	Yangpo-ri, Janggi-myeon, Nam-gu, Pohang-si, Gyeongsangbuk-do	35.876949, 129.516774	KR049048	111/11
Myicolidae	Ostrincola japonica	Ec	LEGO-POE023	Hwayang-myeon, Yeosu-si, Jeollanam-do	34.709266, 127.619811	KR049041	VI/II
	Pseudomyicola spinosus	Ec	LEGO-POE025-21	Geumjin-ri, Okgye-myeon, Gangneung-si, Gangwon-do	37.642461, 129.043641	KR049042	VI/II
			LEGO-POE025	Gyeonso-dong, Gangneung-si, Gangwon-do	37.769060, 128.950915	KR049043	VI/II
Rhynchomolgidae	Critiomolgus vicinus	Ec	LEGO-POE027	Seung-eon-ri, Anmyeon-eup, Taean- gun, Chungcheongnam-do	36.597743, 126.323065	KR049045	111/11
	Zamolgus cavernularius	Ec	LEGO-POE028-1	Daebubuk-dong, Danwon-gu, Ansan- si, Gyeonggi-do	37.229179, 126.600490	KR049047	111/11
			LEGO-POE028	Daebubuk-dong, Danwon-gu, Ansan- si, Gyeonggi-do	37.282181, 126.540257	KR049046	111/11
Order Siphonoston	natoida						
Asterocheridae	Asterocheres lilljeborgi	Ec	LEGO-SIP002	Hyeonnae-myeon, Goseong-gun, Gangwon-do	38.492714, 128.427994	KR049050	VI/II
Caligidae	Lepeophtheirus salmonis	Ec	LEGO-SIP012	Sacheonjin-ri, Sacheon-myeon, Gangneung-si, Gangwon-do	37.834125, 128.876106	KR049052	1/11

PLOS ONE

			LEGO-SIP012-1	Ganggu-ri, Ganggu-myeon, Yeongdeok-gun, Gyeongsangbuk-do	36.359633, 129.388916	KR049053	VI/II
			-	Norway (Tjensvoll et al. 2006)	-	AY602766	-
Classification	Species	LS*	Voucher No.	Location	GPS	GenBank Acc. No.	PS**
	Lepeophtheirus goniistii	Ec	LEGO-SIP009	Gosan-ri, Hangyeong-myeon, Jeju-si, Jeju-do	33.307396, 126.163262	KR049054	VI/II
	Lepeophtheirus parviventris	Ec	LEGO-SIP010	Gajin-ri, Jugwang-myeon, Goseong- gun, Gangwon-do	38.368210, 128.512220	KR049055	111/11
			-	Cananda (Jones and Prosperi-Porta 2011)	-	HM800840	-
	Caligus fugu	Ec	LEGO-SIP014	Gyeokpo-ri, Byeonsan-myeon, Buan- gun, Jeollabuk-do	35.623545, 126.467718	KR049056	VI/II
	Caligus punctatus	Ec	LEGO-SIP006	Tappo-ri, Nambu-myeon, Geoje-si, Gyeongsangnam-do	34.713457, 128.627793	KR049057	VI/II
	Caligus hoplognathi	Ec	LEGO-SIP021	Sinheung-ri, Jocheon-eup, Jeju-si, Jeju-do	33.548669, 126.640348	KR049058	VI/V
	Caligus quadratus	Ec	LEGO-SIP020	Ganggu-ri, Ganggu-myeon, Yeongdeok-gun, Gyeongsangbuk-do	36.359633, 129.388916	KR049059	VI/II
			-	Norway (Oines and Schram, 2008)	-	EF065619	-
Pandaridae	Pandaridae sp.	Ec	LEGO-SIP015	Ganggu-ri, Ganggu-myeon, Yeongdeok-gun, Gyeongsangbuk-do	36.359633, 129.388916	KR049060	1/11
Hatschekiidae	Hatschekia japonica	Ec	LEGO-SIP019	Gosan-ri, Hangyeong-myeon, Jeju-si, Jeju-do	33.307396, 126.163262	KR049051	VIII/X
Lernaeopodidae	Haemobaphes pannosus	Ec	LEGO-SIP016-8	Gajin-ri, Jugwang-myeon, Goseong- gun, Gangwon-do	38.368210, 128.512220	KR049061	VI/II
			LEGO-SIP016	Ganggu-ri, Ganggu-myeon, Yeongdeok-gun, Gyeongsangbuk-do	36.359633, 129.388916	KR049062	1/11

* LS: Life style (adult): FI = Free living, B = Benthic, As = Associated, Ec = Ectoparasitic.

** PS: PCR primer set used for amplifying COI from each individual.

Refer to <u>Table 2</u> for primer sequences and lengths corresponding to the primer numbers I–X.

doi:10.1371/journal.pone.0157307.t001

The partial fragment of *COI* was amplified using the universal *COI* primer pair, HCO2198 and LCO1490 (<u>Table 2</u>) [<u>33</u>]. For specimens or species that did not amplify with this primer set, different specific forward and/or reverse primers were used (<u>Table 1</u>). The Bio-Rad Dyad

Table 2. Ten primers used for PCR amplification of partial *COI* from 133 individuals of 94 copepod species in this study. Primer sequences are given in 5' to 3' direction. Amplification difficulty caused by sequence variation of primer binding sites was resolved with mixed bases; R is a mixture of A and G, Y is a mixture of C and T, W is a mixture of A and T, D is a mixture of G, T and C. References are given for each primer.

No.	primer name	sequence (5'-3')	T _a (°C)	Reference
1	LCO1490	GGT CAA CAA ATC ATA AAG ATA TTG G	48	Folmer et al. [33]
II	HCO2198	TAA ACT TCA GGG TGA CCA AAA AAT CA	48	Folmer et al. [33]
	LCO1384	GGT CAT GTA ATC ATA AAG A	42	Machida et al. [34]
IV	cop-COI-1498F	GGG TGA CCA AAA AAT CAR AA	45	Bucklin et al. [28]
V	cop-COI-2198R	AAY CAT AAA GAY ATY GGD AC	45	Bucklin et al. [28]
VI	cop-COX1+20	GAC TAA TCA TAA AGA TAT TGG TAC	45	Chang and Min, [35]
VII	HCO2612	AGG CCT AGG TGT ATW GGG AAA	42	Machida et al. [34]
VIII	Coxf	GGT CCT GTA ATC ATA AAG AYA TYG G	45	Cheng et al. [<u>36</u>]
IX	Coxr1	GCG ACT ACA TAA TAA GTR TCR TG	45	Cheng et al. [36]
Х	Coxr2	TCT ATC CCA ACT GTA AAT ATR TGR TG	45	Cheng et al. [36]

doi:10.1371/journal.pone.0157307.t002

Peltier thermal cycler was used to perform amplification using the following parameter: 2 min at 95°C, 34 cycles of 20 sec at 95°C, 40 sec at 42–48°C (Table 1) and 40 sec at 72°C, and 5 min at 72°C. PCR amplification was carried out in a 20 μ L reaction volume composed of 10–45 ng DNA extract, 0.75 mM of each deoxynucleotide, 0.25 mM of each forward and reverse primer, 3 mM MgCl₂, 1 × PCR buffer, and 0.25 units of *Taq* DNA polymerase (Solgent Co., South Korea). PCR products were tested by electrophoresis on a QIAxcel Advanced (QIAGEN Co., Germany). The PCR products with the expected sized band were purified using QIAquick PCR purification kits (QIAGEN Co. Hilden Germany) along the manufacturer's protocols. The PCR products were sequenced by the same set of primers used for the PCR amplifications, with ABI PRISM BigDye Terminator system and an ABI3700 automatic sequencer (Genotech Co., South Korea).

Sequence analyses

Chromatogram evaluation, editing, and assemblage were performed using BioEdit 7.0.9 [37]. The edited sequences were blasted against the GenBank nucleotide database (http://www.ncbi.nlm.nih.gov/). Subsequently, all sequences were aligned using Clustal X ver. 2.0.5 [38–39]. To check for the presence of pseudogenes or nuclear translocated mitochondrial sequences [40] in the *COI* dataset, sequences were carefully inspected for whether there were any stop codons or very divergent sequences [41]. The nucleotide sequences were translated to amino acids using EMBOSS Transeq (http://www.ebi.ac.uk/Tools/st/emboss_transeq/) based on the invertebrate mitochondrial genetic code. ClustalX ver. 2.0.5 was used to align each of these translated amino acids sequences with a gap opening of 10 and gap extension penalty of 0.2. The nucleotide sequence was then aligned with the amino acid alignment information using a scripted pipeline (convert-nuaa).

Genetic distances within species, genera, families and orders were calculated in MEGA 6 using Kimura two-parameter (K2P) models [42] for the alignments. Unrooted neighbor-Joining (NJ) trees were established using MEGA under the K2P evolutionary model with 1,000 bootstrapping replicates. The cluster analysis was shown in a radial tree topology, with node confidence values supported only by greater than 50% values.

Results

The partial *COI* sequences from 133 individuals of 94 copepod species were determined and aligned. Although the size of the *COI* fragments amplified in the present study varied from 650 to 1,024 bp, the nucleotides at both ends were trimmed to only use high-quality, well matched data. A final sequences alignment of 575 bp was used in the analyses. Among the sequences, no sign of indels was revealed. Neither frame-shift mutations nor premature stop codons were detected during translation of the sequences into amino acids, supporting evidence that all of the sequences used were functional. Among the 575 bp of *COI*, 425 (74%) were polymorphic, of which 395 (69%) were parsimoniously informative. The average GC contents of all the sequences analyzed were 37.7%.

Mean divergences at various taxonomic levels are given in Table 3. As expected, the genetic divergence increases with higher taxonomic rank: 0.62% to 2.42% within species, 2.42% to 36.95% within genus, 13.00% to 56.94% within family, and 32.61% to 56.94% within order. Across copepod samples (N = 133), mean K2P divergence was 2.42% within species, 15.85% within genus, 24.22% within family, and 42.69% within order (Table 3). K2P distances within genus were highly variable, ranging from 2.42 (Siphonostomatoida) to 36.95 (Monstrilloida), though this type of comparison may not be reliable due to highly different sample sizes among copepod orders examined in this study (Table 3). Although these distance variability ranges

	Mean K2P distance (%)							
Order	Species	Genus	Family	Order				
Calanoida	0.92	9.59	16.58	32.61				
Cyclopoida	1.10	4.17	22.38	40.95				
Monstrilloida	1.93	36.95	56.94	56.94				
Harpacticoida	1.42	22.07	41.67	49.70				
Poecilostomatoida	0.62	17.95	25.75	42.85				
Siphonostomatoida	1.63	2.42	13.00	33.09				
All groups	2.42	15.85	24.22	42.69				

Table 3. Mean genetic divergences at various taxonomic levels (species, genus, family, and order) inferred from nucleotide sequences of COI along the six copepod orders based on the Kimura-2-parameter (K2P) distances.

doi:10.1371/journal.pone.0157307.t003

were partially overlapped among specific, generic, familial and ordinal levels ($\underline{Fig 2}$), it is likely that they were significantly different at a level sufficient to distinguish one copepod species from others.

The *COI* genetic distances within and between species of the six copepod orders were summarized in <u>Table 4</u> and <u>Fig 3</u> (Refer to <u>S1–S12</u> Tables and <u>S1–S6</u> Figs). Within-species K2P distances ranged from 0.00% to 17.14% (<u>Table 4</u>), whereas between-species K2P distance from 0.17% to 96.53% (<u>Table 4</u>). There exists a clear gap with ca. 20 fold difference between the averages of within-species sequence divergence (2.42%) and between-species sequence divergence (42.79%) in *COI*, as shown in <u>Table 4</u> and <u>Fig 3</u>, suggesting that the results of the present DNA barcoding of copepods could be effective in delimitating species. When we compared the *COI* barcoding data among 94 copepod species examined here, in most of them, a species could be distinguished from the others very clearly, only with the exceptions of four cases: *Mesocyclops dissimilis–Mesocyclops pehpeiensis* (0.26% K2P distance in percent) and *Oithona davisae– Oithona similis* (1.1%) in Cyclopoida, *Ostrincola japonica–Pseudomyicola spinosus* (1.5%) in Poecilostomatoida, and *Hatschekia japonica–Caligus quadratus* (5.2%) in Siphonostomatoida. A color heatmap representing the distribution of pairwise sequence divergence among 133

Fig 2. Distribution of pairwise genetic divergences estimated from nucleotide sequences of *COI* for 133 individuals of 94 copepod species including the six copepod orders based on the Kimura-2-parameter (K2P) distance matrix along four different taxonomic levels. The horizontal axis represents intervals of genetic distance in percentage and the vertical axis is the number of individuals associated with each distance interval. The flat box indicates zero value.

doi:10.1371/journal.pone.0157307.g002

Table 4. Mean Kimura-2-parameter (K2P) distances within species and between species estimated from nucleotide sequences of COI for 133 individuals of 94 copepod species along the six different orders.

		Mean K2P distance (%)								
Order		Within-species		Between-species						
	Mean	Min	Max	Mean	Min	Max				
Calanoida	2.17	0.00	17.14 ¹	34.06	25.10	48.38				
Cyclopoida	4.26	0.11	16.88 ²	43.28	0.26 ³	64.93				
Monstrilloida	1.93	0.35	5.36	64.67	27.14	96.53				
Harpacticoida	1.60	1.42	1.42	49.60	31.48	65.98				
Poecilostomatoida	0.78	0.00	1.95	43.17	0.17 ⁴	64.44				
Siphonostomatoida	3.37	0.52	10.32	35.45	3.60 ⁵	59.65				
Averages	2.42	0.00	17.14	42.79	0.17	96.53				

'1' and '2' are the distance values (%) shown within Paracalanus parvus and Macrocyclops albidus.

'3' is a distance value (%) shown between Mesocyclops pehpeinsis and Mesocyclops dissimilis.

'4' is a distance value (%) shown between Acanthochondria spirigera and Bornolochus bellones.

'5' is a distance value (%) shown between Lepeophtheirus goniistii and Caligus hoplognathi.

doi:10.1371/journal.pone.0157307.t004

copepod individuals examined in this study showed comparatively and clearly greater values in Monstrilloida indicated by a darker color (Fig 4).

The phylogenetic analysis of *COI* barcode sequences by a neighbor-joining method yielded an unrooted tree displayed in radial shape (Fig 5), which confidently showed a monophyletic clustering of individuals within a species in most of the copepod species examined here, albeit with the four exceptions indicated with asterisks (*) on the tree. In the four exceptional cases of *M. dissimilis–M. pehpeiensis* and *O. davisae–O. similis* in Cyclopoida, *O. japonica–P. spinosus* in Poecilostomatoida, and *H. japonica–C. quadratus* in Siphonostomatoida, the two closely related species were not clearly distinguished, respectively. Such exceptions are coincident with their lower between-species K2P distances inferred from the *COI* barcoding data. Also, each of

Fig 3. Boxplot distribution of pairwise genetic distances estimated from nucleotide sequences of COI for 133 individuals of 94 copepod species including the six orders based on the Kimura-2-parameter (K2P) distances. 'W' indicates genetic diversity within species and 'B' indicates that between species. The plot summarizes median (central bar), position of the upper and lower quartiles (central box), value of minimum (lower bar), and value of maximum (upper bar).

doi:10.1371/journal.pone.0157307.g003

Fig 4. Color heatmap showing distribution of pairwise genetic distances estimated from nucleotide sequences of COI for 94 copepod species covering the six orders based on the Kimura-2-parameter (K2P) distances.

doi:10.1371/journal.pone.0157307.g004

the copepod orders with multiple genera and families formed a monophyletic clade. However, we could not find significant bootstrap support values in most basal nodes of the tree, suggesting a lack of phylogenetic signals of partial *COI* at higher taxonomic levels (Fig 5).

Discussion

This study examined sequence variation of partial *COI* sequences and its utility as a DNA barcoding marker to identify and discriminate copepod species from six different copepod orders including Calanoida, Cyclopoida, Harpacticoida, Monstrilloida, Poecilostomatoida and Siphonostomatoida collected from the Korean Peninsula. Our results provide novel data with a wide sample range over the six copepod orders to confirm the validity of *COI* barcoding for copepod species identification. The ratio 21.9 of between-species to within-species sequence variation is more than twice of the threshold (= 10.0) proposed by Hebert et al. (2004) as a potential species' boundary [43].

However, in the four unexpected cases of *M. dissimilis–M. pehpeiensis* and *O. davisae–O. similis* in Cyclopoida, *O. japonica–P. spinosus* in Poecilostomatoida, and *H. japonica–C. quad-ratus* in Siphonostomatoida, the *COI* marker did not provide clear-cut resolution of species identification. As an extreme example, three sequences determined from the two individuals of *Oithona similis* and one individual of *Oithona davisae* turned out to be almost identical (1.1% K2P distance in percent), while the two species are easily classified by distinctive morphological characters. Likewise, the other three cases had extremely lower between-species K2P distances

Fig 5. Unrooted neighbor-joining (NJ) tree reconstructed with nucleotide sequences of COI from 133 individuals of 94 species of copepods including the six different copepod orders. The analysis was done with Kimura-2-Parameter (K2P) distance matrix and 1,000 bootstrapping replicates. Branches supported with less than 50% bootstrap values were collapsed. The rate variation among sites was modeled with a gamma distribution. The asterisks indicate four species pairs, within each of which the two closely related species are not distinguished from each other based on the COI DNA barcoding marker.

doi:10.1371/journal.pone.0157307.g005

(0.3–5.2%). Through further studies, it is necessary to be examined whether *COI* marker is appropriate for distinguishing such closely related species or not. On the other hand, *COI* sequences of *Paracalanus parvus* showed a relatively large difference among the three individuals within the species (S1 Table), although they formed a monophyletic groups (Fig.5). *P. par-vus* has been known as a cosmopolitan copepod species and often confused with other morphologically similar species. Accordingly, multiple cryptic species could be involved with respect to the species, as mentioned in [44], and thus it is possible that this species may be a member of a species complex. If more detailed DNA barcoding work is done with multiple individuals from a variety of collection sites, the implication of high sequence similarity of *COI* shown in those copepod species could be clearly interpreted.

PLOS ONE

The present analyses revealed that the higher taxonomic rank of copepods, the more divergent the *COI* sequence variation is. Such tendency implied that the *COI* maker could be a powerful tool for confirmation of species identification as well as examination of copepod classification system based on morphological taxonomy of copepods (Tables <u>3</u> and <u>4</u>, Figs <u>2–4</u>).

Interestingly, between-species diversity (mean 64.67) of the order Monstrilloida and withinspecies diversity (mean 4.26) of the order Cyclopoida showed the highest values of genetic distances compared to those of the other orders (Table 4, Figs 3 and 4). Within-species diversity shown in cyclopoids may be due to much larger sample size and diversity examined here. High degree of between-species diversity shown in monstrilloid copepods may be closely related to their parasitic lifestyle. The order Monstrilloida is a unique and puzzling group, known as endo-parasites of polychaetes and mollusks during larval stages, though they become free-living and non-feeding plankton in their adult stage [45-46]. Parasitic montrilloid species often causes considerable difficulty in taxonomic classification due to their ambiguity of morphological characters: their mouthparts are highly reduced or nearly absent in their adult stage. One of the most important difficulties is to match monstrilloid males to their females. The only reliable method to link the sexes of a species is the confirmation of particular apomorphies shared by both sexes, by finding both sexes in the same host or as a pre-copulatory male-female pair in the plankton, or by using molecular identification [46]. Thus, the resultant divergence of monstrilloid COI sequences presented here could be helpful for understanding accelerated evolutionary rate of these parasitic copepod species, and also for designing suitable PCR primers to successfully amplify the COI barcode for molecular identification of monstrilloid copepod species.

It should be noted that one of the most fundamental problems encountered with DNA barcoding of copepods is the lack of a stable universal *COI* primer set and insufficient reference sequences. During the study, frequent PCR failures have repetitively occurred with some universal primers for most of copepods examined here. It may not be surprising if we take into account the fact that taxonomically broad copepods may have an enormous degree of *COI* sequence divergence.

Although DNA nucleotide sequences or deduced protein amino acid sequences from complete mitochondrial genomes have been frequently used to elucidate enigmatic arthropod phylogeny in higher taxonomical levels above order [47-53], it is generally known that the *COI* barcode marker, which is ca. 500–600 bp in length, does not contain enough phylogenetic signal for higher taxonomical levels. Rather, it can be more informative for questions related to population differentiation or cryptic speciation [18-19, 54-60]. Despite the weak resolution of the *COI* marker in familial- and ordinal-level phylogenetic relationships [60], the *COI*-based NJ tree (Fig 5) can be quite meaningful in terms of evidently showing the monophylies of most of the *COI* barcoding results of 133 individuals from 94 copepod species including the six different orders at a glance.

It is known that mitochondrial genes evolve unusually rapidly in some copepods compared to those of other arthropods [61], with some closely related copepod species exhibiting unexpected gene order rearrangements [34, 62–64]. The previously known *COI* sequences are limited to a very small portion of copepods, which actually impedes the design of universal primers. Hopefully, as *COI* data of copepods grow, development of universal primers specific to copepods might be possible. Such group specific oligonucleotide sequences might be desirable to minimize contamination due to non-copepod PCR amplification, known as "the peril of universal primers" [65].

In summary, the present study including 133 individuals of 94 copepod species is the first attempt to establish a DNA barcoding system for a half dozen orders, which is the broadest

survey yet reported in the literatures. It was found that a high degree of *COI* sequence divergence among most species was clearly sufficient for species identification of copepods in most cases. Thus, it is concluded that *COI* can serve as a standard, powerful molecular marker for DNA barcoding of copepod species, even though universal PCR primers specific to *COI* for copepods should be developed through further studies.

Supporting Information

S1 Fig. Distribution of pairwise genetic distances (= Kimura-2-parameter, K2P) estimated from *COI* nucleotide sequences of 16 calanoid species (N = 39). (PDF)

S2 Fig. Distribution of pairwise genetic distances (= Kimura-2-parameter, K2P) estimated from *COI* nucleotide sequences of 17 cyclopoid species (N = 25). (PDF)

S3 Fig. Distribution of pairwise genetic distances (= Kimura-2-parameter, K2P) estimated from *COI* nucleotide sequences of 9 monstrilloid species (N = 15). (PDF)

S4 Fig. Distribution of pairwise genetic distances (= Kimura-2-parameter, K2P) estimated from *COI* nucleotide sequences of 12 harpacticoid species (N = 14). (PDF)

S5 Fig. Distribution of pairwise genetic distances (= Kimura-2-parameter, K2P) estimated from *COI* nucleotide sequences of 29 poecilostomatoid species (N = 33). (PDF)

S6 Fig. Distribution of pairwise genetic distances (= Kimura-2-parameter, K2P) estimated from *COI* nucleotide sequences of 11 siphonostomatoid species (N = 16). (PDF)

S1 Table. Mean genetic distances within each species estimated from *COI* nucleotide sequences of 16 calanoid species (N = 39) based on Kimura-2-parameter distances. (PDF)

S2 Table. Kimura-2-parameter pairwise distances between species estimated from COI nucleotide sequences of 16 calanoid species. (PDF)

S3 Table. Mean genetic distances within each species estimated from COI nucleotide sequences of 17 cyclopoid species (N = 25) based on Kimura-2-parameter distances. (PDF)

S4 Table. Kimura-2-parameter pairwise distances between species estimated from COI nucleotide sequences of 17 cyclopoid species. (PDF)

S5 Table. Mean genetic distances within each species estimated from COI nucleotide sequences of 9 monstrilloid species (N = 15) based on Kimura-2-parameter distances. (PDF)

S6 Table. Kimura-2-parameter pairwise distances between species estimated from *COI* nucleotide sequences of 9 monstrilloid species. (PDF) S7 Table. Mean genetic distances within each species estimated from *COI* nucleotide sequences of 12 harpacticoid species (N = 14) based on Kimura-2-parameter distances. (PDF)

S8 Table. Kimura-2-parameter pairwise distances between species e estimated from *COI* nucleotide sequences of 12 harpacticoid species. (PDF)

S9 Table. Mean genetic distances within each species estimated from *COI* nucleotide sequences of 29 poecilostomatoid species (N = 33) based on Kimura-2-parameter distances. (PDF)

S10 Table. Kimura-2-parameter pairwise distances between species estimated from *COI* nucleotide sequences of 29 poecilostomatoid species. (PDF)

S11 Table. Mean genetic distances within each species estimated from COI nucleotide sequences of 11 siphonostomatoid species (N = 16) based on Kimura-2-parameter distances.

(PDF)

S12 Table. Kimura-2-parameter pairwise distances between species estimated from *COI* nucleotide sequences of 11 siphonostomatoid species. (PDF)

Acknowledgments

The authors would like to thank to Prof. Ho-Young Suk, Yeungnam Univ. Kyungsan, Kyungpook Province for his kind advice and help with data analyses on the manuscript.

Author Contributions

Conceived and designed the experiments: SYB EHC SKK KHJ JMJ MHK CYC IHK UWH. Performed the experiments: SYB EHC JML JHL CYC IHK. Analyzed the data: SYB EHC YJL YSL JSH UWH. Contributed reagents/materials/analysis tools: SHR KHJ SKK UWH. Wrote the paper: SYB EHC BAVM UWH.

References

- 1. Humes AG. How many copepods? Hydrobiologia. 1994; 292/293:1-7.
- 2. Boxshall GA, Halsey SH. An introduction to copepod diversity. London: The Ray Society; 2004.
- 3. Boxshall GA. Copepoda. World Register of Marine Species [Internet]. 2015 Mar [cited 2015 Mar 2]. Available: <u>http://www.marinespecies.org</u>.
- 4. Huys R, Boxshall GA. Copepod Evolution. London: The Ray Society; 1991.
- Boxshall GA. Comparative limb morphology in major crustacean groups: the coxa-basis joint in postmandibular limbs. In, Fortey RA and Thomas RH, editors. Arthropod Relationships, Systematics Association Special Volume 55. London: Chapman and Hall; 1997. pp. 156–167.
- 6. Schminke HK. Entomology for the copepodologist. J Plankton Res. 2007; 29(1):149–162.
- 7. Costanza R, d'Arge R, deGroot R, Farber S, Grasso M, Hannon B, et al. The value of the world's ecosystem services and natural capital. Nature. 1997; 387:253–260.
- 8. Pond DW, Tarling GA. Phase transitions of wax esters adjust buoyancy in diapausing *Calanoides acutus*. Limnol Oceanogr. 2011; 56:1310–1318.
- 9. Ho J-s. Why do symbiotic copepods matter? Hydrobiologia. 2001; 453/454:1–7.
- 10. Mauchline J. The Biology of Calanoid Copepods. Adv Mar Biol. 1998; 33:1–710.

- 11. Bradford-Grieve JM, Boxshall GA, Ahyong ST, Ohtsuka S. Cladistic analysis of the calanoid Copepoda. Invert Systemat. 2010; 24:291–321.
- Blanco-Bercial L, Bradford-Grieve J, Bucklin A. Molecular phylogeny of the Calanoida (Crustacea: Copepoda). Mol Phylogenet Evol. 2011; 59:103–113. doi: <u>10.1016/j.ympev.2011.01.008</u> PMID: <u>21281724</u>
- Saiz E, Calbet A. Copepod feeding in the ocean: Scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia. 2011; 666:181–196.
- Soh HY, Kwon SW, Lee W, Yoon YH. A new *Pseudodiaptomus* (Copepoda, Calanoida) from Korea supported by molecular data. Zootaxa. 2012; 3368:229–244.
- Sukhikh NM, Souissi A, Souissi S, Alekseev VR. Invasion of *Eurytemora affinis* sibling species (Copepoda: Calaniformes) from North America into the Baltic Sea and European Atlantic coast estuaries. J Nat Hist. 2013; 47:753–767.
- Blanco-Bercial L, Cornils A, Copley N, Bucklin A. DNA barcoding of marine Copepods: assessment of analytical approaches to species identification. PLoS Curr. 2014; 6.
- Matthews B, Hausch S, Winter C, Suttle CA, Shurin JB. Contrasting ecosystem-effects of morphologically similar copepods. PLoS One. 2011; 6:e26700. doi: <u>10.1371/journal.pone.0026700</u> PMID: 22140432
- Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identification through DNA barcodes. Proc R Soc Lond B. 2003; 270:313–321.
- **19.** Hebert PDN, Ratnasingham S, de Waard JR. Barcoding animal life: Cytochrome *c* oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B. 2003; 270:S96–S99.
- Hebert PDN, Gregory RT. The promise of DNA barcoding for taxonomy. Syst Biol. 2005; 54:852–859. PMID: <u>16243770</u>
- Valentini A, Pompanon F, Taberlet P. DNA barcoding for ecologists. Trends Ecol Evol. 2009; 24:110– 117. doi: <u>10.1016/j.tree.2008.09.011</u> PMID: <u>19100655</u>
- Munch K, Boomsma W, Huelsenbeck J, Willerslev E, Nielsen R. Statistical assignment of DNA sequences using Bayesian phylogenetics. Syst Biol. 2008; 57:750–757. doi: <u>10.1080/</u> <u>10635150802422316</u> PMID: <u>18853361</u>
- Shearer TL, Coffroth MA. DNA BARCODING: Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour. 2008; 8:247–255. doi: <u>10.1111/j.1471-8286.2007.01996.x</u> PMID: <u>21585766</u>
- Lavrov DV, Pett W, Voigt O, Wörheide G. Forget L, Lang BF, Kayal E. Mitochondrial DNA of *Clathrina clathrus* (Calcarea, Calcinea): six linear chromosomes, fragmented rRNAs, tRNA editing, and a novel genetic code. Mol Biol Evol. 2013; 30:865–880. doi: <u>10.1093/molbev/mss274</u> PMID: <u>23223758</u>
- Machida RJ, Tsuda A. Dissimilarity of species and forms of planktonic Neocalanus copepods using mitochondrial COI, 12S, Nuclear ITS, and 28S Gene Sequences. PLoS One. 2010; 5:e10278. doi: <u>10.</u> <u>1371/journal.pone.0010278 PMID: 20442767</u>
- Cepeda GD, Blanco-Bercial L, Bucklin A, Berón CM, Viňas MD. Molecular systematic of three species of *Oithona* (Copepoda, Cyclopoida) from the Atlantic Ocean: comparative analysis using 28S rDNA. PLoS ONE. 2012; 7:e35861. doi: <u>10.1371/journal.pone.0035861</u> PMID: <u>22558245</u>
- Aarbakke ONS, Bucklin A, Halsband C, Norrbin F. Comparative phylogeography and demographic history of five sibling species of *Pseudocalanus* (Copepoda: Calanoida) in the North Atlantic Ocean. J Exp Mar Biol Ecol. 2014; 461:479–488.
- Bucklin A, Ortman BD, Jennings RM, Nigro LM, Sweetman CJ, Copley NJ, et al. A "Rosetta Stone" for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean). Deep-Sea Res II. 2010; 57:2234–2247.
- 29. Castellani C, Lindley AJ, Wootton M, Lee CM, Kirby RR. Morphological and genetic variation in the North Atlantic copepod, *Centropages typicus*. J Mar Biol Assoc U K. 2012; 92:99–106.
- Laakmann S, Gerdts G, Erler R, Knebelsberger T, MartínezArbizu P, Raupach MJ. Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Mol Ecol Resour. 2013; 13:862–876. doi: <u>10.1111/1755-0998.12139</u> PMID: 23848968
- 31. Chen G, Hare MP. Cryptic diversity and comparative phylogeography of the estuarine copepod Acartia tonsa on the US Atlantic coast. Mol Ecol. 2011; 20:2425–2441. doi: <u>10.1111/j.1365-294X.2011.05079.</u> x PMID: <u>21521392</u>
- 32. Kozol R, Blanco-Bercial L, Bucklin A. Multi-Gene analysis reveals a lack of genetic divergence between Calanus agulhensis and C. sinicus (Copepoda; Calanoida). PLoS ONE. 2012; 7:e45710. doi: <u>10.1371/journal.pone.0045710</u> PMID: <u>23118849</u>

- Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech. 1994; 3 (5):294–299.
- 34. Machida RJ, Miya MU, Nishida M, Nishida S. Large-scale gene rearrangements in the mitochondrial genomes of two calanoid copepods *Eucalanus bungii* and *Neocalanus cristatus* (Crustacea), with notes on new versatile primers for the srRNA and COI genes. Gene. 2004; 332:71–78. PMID: 15145056
- **35.** Chang CY, Min GS. Key to the korean freshwater cyclopoid copepods and their DNA taxonomy. Seoul: Jung-haeng-Sa Publishing Co. 2005.
- Cheng F, Wang M, Sun S, Li C, Zhang Y. DNA barcoding of Antarctic marine zooplankton for species identification and recognition. Adv Polar Sci. 2013; 24(2):119–127.35.
- Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. 1999; 41:95–98.
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997; 24:4876–4882.
- Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2. Bioinformatics. 2007; 23(21):2947–2948. PMID: <u>17846036</u>
- Lopez JV, Yuhki N, Masuda R, Modi W, O'Brien SJ. Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J Mol Evol. 1994; 39:174–190. PMID: 7932781
- Machida RJ, Miya MU, Nishida M, Nishida S. Complete mitochondrial DNA sequence of *Tigriopus japonicus* (Crustacea: Copepoda). Mar Biotechnol. 2002; 4:406–417. PMID: <u>14961252</u>
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980; 16:111–120. PMID: 7463489
- Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA. 2004; 101:14812–14817. PMID: 15465915
- 44. Cornils A, Held C. Evidence of cryptic and pseudocryptic speciation in the Paracalanus parvus species complex (Crustacea, Copepoda, Calanoida). Front Zool. 2014; 11(1):19. doi: <u>10.1186/1742-9994-11-19</u> PMID: <u>24581044</u>
- Suárez-Morales E. Taxonomic report on some monstrilloids (Copepoda, Monstrilloida) from Toulon Bay, France. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Biologie. 2000; 70: 107– 118.
- Suárez-Morales E. Diversity of the Monstrilloida (Crustacea: Copepoda). PLoS ONE. 2011; 6:e22915. doi: <u>10.1371/journal.pone.0022915</u> PMID: <u>21853055</u>
- Hwang UW, Park CJ, Yong TS, Kim W. One-step PCR amplification of complete arthropod mitochondrial genomes. Mol Phylogenet Evol. 2001; 19(3): 345–352. PMID: <u>11399145</u>
- Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W. Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 2001; 413(6852): 154–157. PMID: <u>11557978</u>
- 49. Hwang UW. On the debates of arthropod phylogeny. Korean J Syst Zool. 2002; 18(1): 165–17.
- Lim JT, Hwang UW. The complete mitochondrial genome of *Pollicipes mitella* (Crustacea, Maxillopoda, Cirripedia): Non-monophylies of Maxillopoda and Crustacea. Mol Cells. 2006; 22(3): 314–322. PMID: 17202860
- Woo HJ, Lee YS, Park SJ, Lim JT, Jang KH, Hwang UW. Complete mitochondrial genome of a troglobite millipede Antrokoreana gracilipes (Diplopoda, Juliformia, Julida), and juliformian phylogeny. Mol Cells. 2007; 23(2): 182–191. PMID: <u>17464195</u>
- Park SJ, Lee YS, Hwang UW. The complete mitochondrial genome of the sea spider Achelia bituberculata (Pycnogonida, Ammotheidae): arthropod ground pattern of gene arrangement. BMC Genomics. 2007; 8(1):343.
- Jang KH, Hwang UW. Complete mitochondrial genome of Bugula neritina (Bryozoa, Gymnolaemata, Cheilostomata): Phylogenetic position of Bryozoan and phylogeny of lophophorates within the Lophotrochozoa. BMC Genomics. 2009; 10:167. doi: 10.1186/1471-2164-10-167 PMID: 19379522
- Edmands S. Phylogeography of the marine copepod *Tigriopus californicus* reveals substantially reduced interpopulation divergence at northern latitudes. Mol Ecol. 2001; 10:1743–1750. PMID: <u>11472541</u>
- Lee CE. Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate "populations." Evolution. 2000; 54:2014–2027. PMID: <u>11209778</u>

- Caudill CC, Bucklin A. Molecular phylogeography and evolutionary history of the estuarine copepod, Acartia tonsa, on the Northwest Atlantic coast. Hydrobiologia. 2004; 511:91–102.
- Goetze E. Global population genetic structure and biogeography of the oceanic copepods, *Eucalanus hyalinus* and *E. spinifer*. Evolution. 2005; 59(11):2378–2398. PMID: <u>16396179</u>
- Eyun SI, Lee YH, Suh HL, Kim S, Soh HY. Genetic identification and molecular phylogeny of *Pseudo-diaptomus* species (Calanoida, Pseudodiaptomidae) in Korean waters. Zool Sci. 2007; 24(3):265–271. PMID: <u>17551247</u>
- 59. Thum RA, Harrison RG. Deep genetic divergences among morphologically similar and parapatric Skistodiaptomus (Copepoda: Calanoida: Diaptomidae) challenge the hypothesis of Pleistocene speciation. Biol J Linn Soc. 2009; 96:150–165.
- Hwang UW, Kim W. General properties and phylogenetic utilities of nuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematics. Korean J Parasitol. 1999; 37(4): 215–228. PMID: 10634037
- Shao R, Barker SC. Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology. 2007; 134:153–167. PMID: <u>17032475</u>
- Machida RJ, Miya MU, Nishida M, Nishida S. Molecular phylogeny and evolution of the pelagic copepod genus *Neocalanus* (Crustacea: Copepoda). Mar Biol. 2006; 148:1071–1079.
- Burton RS, Ellison CK, Harrison JS. The sorry state of F2 hybrids: consequences of rapid mitochondrial DNA evolution in allopatric populations. Am Nat. 2006; 168:S14–S24. PMID: <u>17109325</u>
- Burton RS, Byrne RJ, Rawson PD. Three divergent mitochondrial genomes from California populations of the copepod *Tigriopus californicus*. Gene. 2007; 403:53–59. PMID: <u>17855023</u>
- Vrijenhoek RC. Cryptic species, phenotypic plasticity, and complex life histories: assessing deep-sea faunal diversity with molecular markers. Deep Sea Res Part II: Topical Studies in Oceanography. 2009; 56:1713–1723.