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Background: Stroke has a high disability rate, and 30% of stroke cases have an unknown cause. Accurate diagnosis and treatment of 
stroke requires consideration of several rare heritable and non-heritable factors.
Objective: This study aimed to evaluate the impacts of three genetic polymorphisms (rs369149111 in HTRA1, rs1803628 in GAS6 
and rs9808753 in IFNGR2) on stroke susceptibility among the Chinese Han population.
Methods: Three single nucleotide polymorphisms (SNPs) from 623 stroke cases and 572 healthy controls were genotyped by the 
Agena MassARRAY platform. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression analysis to 
evaluate the associations of three SNPs with stroke susceptibility. Additionally, SNP-SNP interactions were analyzed by multifactor 
dimensionality reduction (MDR).
Results: As demonstrated by the overall analysis, rs9808753 in IFNGR2 (allele: OR = 1.25, 95% CI = 1.06–1.47, p = 0.007; 
homozygous: OR = 1.59, 95% CI = 1.14–2.23, p = 0.007; dominant: OR = 1.31, 95% CI = 1.02–1.67, p = 0.032; recessive: OR = 1.42, 
95% CI = 1.05–1.91, p = 0.022; additive: OR = 1.26, 95% CI = 1.07–1.48, p = 0.007) was associated with an increased susceptibility 
to stroke. Besides, stratification analysis suggested that rs9808753 was associated with an increased risk of stroke in subgroup aged ≤ 
64 years, males and drinkers (p < 0.05). And rs1803628 in GAS6 was significantly associated with an increased susceptibility to stroke 
in non-smokers (p < 0.05).
Conclusion: A risk-increasing effect of IFNGR2 rs980875 on stroke was detected in this study, which further broadens the 
understanding of the relationship between genetic polymorphisms and stroke susceptibility.
Keywords: IFNGR2, polymorphisms, stroke, susceptibility, case-control

Introduction
Stroke, a kind of common cerebrovascular disease, is a major global health problem and the second leading cause of 
disability and death in the world nowadays.1–3 The main types of stroke include ischemic stroke (87%), cerebral 
hemorrhage (10%) and subarachnoid hemorrhage (3%).2 In addition, hypertension, atherosclerosis, or heart diseases 
possibly lead to complications such as stroke.4 Statistically, there were 12.2 million new strokes and 101 million 
epidemic strokes worldwide in 2019, and the number of cases will rise in the coming years.5 By 2050, there are 
projected to be approximately 200 million stroke survivors worldwide, with more than 30 million new strokes and 
12 million stroke deaths each year thereafter.6

In fact, as a highly heterogeneous disease, stroke can be caused by extremely diverse factors. A study on the Swedish 
Twin Registry has concluded that stroke is significantly inherited, and monozygotic twins are more likely to develop 
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strokes than dizygotic twins.7,8 The heritability of stroke is approximately 40%, as estimated by two related studies.9,10 

Currently, increasing evidence supports the role of genetic factors in determining stroke risk,11 and there is growing 
interest in identifying other genetic factors for stroke, such as single nucleotide polymorphisms (SNPs). However, few 
genetic loci for stroke have been found. Therefore, investigating the genetic risk factors for stroke is vital to promote the 
discovery of new therapeutic targets and optimize prevention strategies.12

The high temperature requirement serine peptidase A1 (HTRA1) gene, belonging to the HTRA protein family 
and located on chromosome 10 (10q26), encodes a thermostable serine protease.13 HTRA1 can be involved in 
a variety of physiological processes, including maintenance of mitochondrial homeostasis, cell signaling, and 
apoptosis.14 Meanwhile, as a serine enzyme mediating cell signaling, HTRA1 also plays an important role in 
vascular integrity, skeletal development and osteogenesis.15 Remarkably, previous studies have shown that HTRA1 
mutations are closely related to the occurrence of stroke, including small vessel ischemic stroke16 and lacunar 
stroke.17 Moreover, it has been reported that HTRA1 mutations may contribute to stroke susceptibility.14 However, 
at present, little is known about the specific role of the rs369149111 polymorphism of HTRA1 in stroke 
susceptibility.

Growth-arrest specific gene 6 (GAS6), containing fifteen exons and spanning 43.8 kb, is located on chromosome 
13q34.18 Related studies have elucidated that GAS6 can be expressed in vascular smooth muscle cells (VSMCs) and 
involved in the regulation of vascular homeostasis.19 VSMCs are key regulators in maintaining vascular homeostasis, and 
VSMC dysfunction is a common cause of stroke.20 Therefore, we speculated that GAS6 may affect stroke susceptibility 
by regulating VSMC function. At present, studies have revealed the relationship between GAS6 variants and disease risk, 
such as the role of rs1803628 in preeclampsia risk.21 However, little information reveals the relationship between 
rs1803628 and stroke susceptibility.

Interferon gamma receptor 2(IFNGR2), located on chromosome 21q22.11, is the second subunit of the IFN-γ 
receptor. Some studies have demonstrated that IFNGR2 gene polymorphisms are associated with the risk of many 
diseases, such as viremias22 and marginal zone B-cell lymphoma.23 And IFNGR2 (rs9808753) has been identified to be 
significantly related to the risk of multiple sclerosis (MS).24 An increased risk of stroke has been reported in MS patients. 
For example, one cohort study showed that the risk of stroke remained increased in the MS cohort compared with the 
control group after adjusting for confounding variables.25 However, little is known about the effect of IFNGR2 
rs9808753 on stroke susceptibility, especially in the Chinese population.

Consequently, a case-control study was carried out to explore the association between HTRA1-rs369149111, GAS6- 
rs1803628 and IFNGR2-rs9808753 and stroke susceptibility, trying to provide a new perspective for the prevention, 
diagnosis and treatment of stroke.

Materials and Methods
Study Subjects
Power analysis was performed to determine the required sample size with the relevant parameters (Effect size=0.2, 
α=0.05, Power=0.9 and case/control=0.995) before the study. Based on the power analysis, the case and control groups 
should consist of at least 526 and 528 individuals, respectively. All of 1195 unrelated participants (623 stroke cases and 
572 controls) were enrolled from Hainan General Hospital. Stroke cases were newly diagnosed based on the World 
Health Organization diagnosis criteria and were confirmed by professionals using cranial magnetic resonance imaging 
(MRI) or computed tomography. Patients with tumors, systemic inflammatory diseases or other serious illnesses were 
excluded. The controls were selected randomly from healthy subjects in Hainan General Hospital. At the same time, we 
conducted MRI for controls to exclude the asymptomatic stroke. The study was approved by the Ethics Committee of 
Hainan General Hospital. All participants signed informed consent forms and completed questionnaires about their basic 
information before entering the study.
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Data Collection, DNA Extraction and SNP Genotyping
In this study, three SNPs (rs369149111 in HTRA1, rs1803628 in GAS6, and rs9808753 in IFNGR2) were selected for 
genotyping. The minor allele frequencies (MAFs) of the above SNPs from the Southern Han Chinese population in the 
1000 Genomes Project (https://www.internationalgenome.org/) database were rs369149111-T = 0.186, rs1803628-A = 
0.219 and rs9808753-G = 0.433, respectively, which are all greater than 0.05. The peripheral blood (5 mL) was collected 
from patients and healthy controls in EDTA-coated tubes. The samples were centrifuged and stored at −80°C for 
following analyses. The demographic and clinical symptoms were obtained from medical records and questionnaires. 
Primer design was performed by Agena MassARRAY Assay Design 3.0 software. The GoldMag Genomic DNA 
Purification kit (GoldMag Co., Ltd., Xi’an, China) was utilized to extract genomic DNA. The DNA concentration was 
estimated by NanoDrop 2000 (Thermo Scientific, Waltham, Massachusetts, USA). Agena MassARRAY (Agena 
Bioscience, San Diego, CA, USA) was applied to genotype SNPs. Ten percent of the samples were genotyped repeatedly, 
and the concordance rate was 100%.

Statistical Analysis
The statistical analysis was conducted by SPSS 22.0 statistical package (SPSS, Chicago, IL, USA). Student’s t-test and 
the chi-square test were carried out to assess the differences of variables. Fisher’s exact test was used to evaluate Hardy- 
Weinberg equilibrium (HWE) in the control group. The potential functions of three SNPs were predicted by HaploReg 
v4.1. The association between polymorphisms and stroke susceptibility was assessed by odds ratios (ORs) and 95% 
confidence intervals (CIs) using logistic regression models with PLINK 1.07 (Harvard, Boston, MA, USA). Multifactor 
dimensionality reduction (MDR) software (version 3.0.2) was used to assess the effect of SNP-SNP interactions on 
stroke susceptibility. The p-value < 0.05 was thought of statistical significance.

Results
Features of Subjects
The characteristics of all subjects are illustrated in Table 1. A total of 623 stroke patients (64.05 ± 10.58 years) and 572 
healthy controls (64.12 ± 5.50 years) were included in the study. No significant differences in age (p = 0.884), gender 
(p = 0.111), drinking (p = 0.108), and smoking (p = 0.054) between cases and controls were found. The MAFs of all 
candidate SNPs were greater than 0.05 (Table 2). In addition, GAS6-rs1803628 and IFNGR2-rs9808753 were both 
functionally associated with SiPhy cons, Enhancer histone marks (Table 2).

Association Between Three Candidate SNPs and Stroke Susceptibility
The associations between the three SNPs and stroke susceptibility under different genetic models are presented in Table 2 
and Table 3. There were no significant associations of rs369149111 and rs1803628 with stroke susceptibility under the 
allelic and other genetic models. By contrast, the minor allele-G of rs9808753 was related to an increased risk of stroke 
(OR = 1.25, 95% CI: 1.06–1.47, p = 0.007). Furthermore, rs9808753 exerted an risk-increasing effect on stroke in the 
Chinese Han population under the homozygous (OR = 1.59, 95% CI: 1.14–2.23, p = 0.007), dominant (OR = 1.31, 95% 
CI: 1.02–1.67, p = 0.032), recessive (OR = 1.42, 95% CI: 1.05–1.91, p = 0.022), and additive (OR = 1.26, 95% CI: 1.07– 
1.48, p = 0.007) models.

Analyses Stratified by Age, Gender, Drinking Status and Smoking Status
To further examine the effects of three SNPs on stroke susceptibility, the stratification analyses based on age, gender, 
drinking status and smoking status were conducted (Table 4). For subjects aged ≤ 64 years, rs9808753 was correlated 
with an increased susceptibility to stroke under the homozygous model (OR = 1.65, 95% CI: 1.01–2.71, p = 0.046) and 
additive model (OR = 1.29, 95% CI: 1.01–1.65, p = 0.042). For males, the risk-increasing effect of rs9808753 on stroke 
susceptibility was found under the homozygous (OR = 1.82, 95% CI: 1.17–2.84, p = 0.008), recessive (OR = 1.61, 95% 
CI: 1.09–2.39, p = 0.017) and additive (OR = 1.33, 95% CI: 1.07–1.65, p = 0.009) modes. For subjects who drink 
alcohol, rs9808753 was correlated with the rising stroke susceptibility under the homozygous (OR = 2.21, 95% CI: 1.30– 
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3.74, p = 0.003), dominant (OR = 1.53, 95% CI: 1.08–2.17, p = 0.018), recessive (OR = 1.83, 95% CI: 1.13–2.95, p = 
0.014), and additive (OR = 1.46, 95% CI: 1.14–1.87, p = 0.003) modes. For non-smoking subjects, rs1803628 was 
correlated with an increased risk of stroke under the heterozygous (OR = 1.45, 95% CI: 1.01–2.07, p = 0.042), dominant 
(OR = 1.49, 95% CI: 1.06–2.09, p = 0.023) and additive (OR = 1.41, 95% CI: 1.05–1.89, p = 0.021) models. The 
analyses stratified by age, gender, drinking status and smoking status showed no significant association between 
rs369149111 and stroke susceptibility under all genetic models.

Table 1 Demographic Characteristic of the Cases with Stroke and Controls

Characteristic Cases (%) Controls (%) p

Total 623 572
Age Mean ± SD (years) 64.05 ± 10.58 64.12 ± 5.50 0.884

> 64 299 (48.0%) 222 (38.8%)

≤ 64 324 (52%) 350 (61.2%)
Gender Males 394 (63.2%) 336 (58.7%) 0.111

Females 229 (36.8%) 236 (41.3%)

Drinking Yes 310 (49.8%) 258 (45.1%) 0.108
No 313 (52.5%) 314 (54.9%)

Smoking Yes 331 (53.1%) 272 (47.6%) 0.054
No 292 (49.5%) 300 (52.4%)

ALT (U/L) Mean ± SD 26.03 ± 32.49 25.78 ± 18.45 0.880

AST (U/L) Mean ± SD 25.81 ± 24.38 25.88 ± 9.97 0.954
MONO (%) Mean ± SD 7.30 ± 1.69 7.06 ± 1.80 0.291

TBA (μmol/L) Mean ± SD 7.90 ± 8.65 5.78 ± 8.81 < 0.001
Cr (μmol/L) Mean ± SD 73.10 ± 23.75 67.01 ± 12.96 < 0.001
UA (μmol/L) Mean ± SD 272.90 ± 92.84 317.28 ± 76.45 < 0.001
TG (mmol/L) Mean ± SD 1.59 ± 1.27 1.69 ± 1.35 0.196

CHOL (mmol/L) Mean ± SD 3.91 ± 1.01 4.79 ± 1.02 < 0.001
HDL-C (mmol/L) Mean ± SD 1.12 ± 0.28 1.15 ± 0.24 0.171

LDL-C (mmol/L) Mean ± SD 1.94 ± 0.68 2.62 ± 0.77 < 0.001

Note: p < 0.05 in bold type indicates statistical significance. 
Abbreviations: SD, standard deviation; ALT, Alanine transaminase; AST, Aspartate aminotransferase; 
MONO, Monocytes ratio; TBA, Total bile acid; Cr, Creatinine; UA, Uric Acid; TG, Triglyceride; CHOL, 
Total cholesterol; HDL-C, High density lipid-cholesterol; LDL-C, Low density lipid-cholesterol.

Table 2 Basic Information About SNPs and Association with Risk of Stroke in Allele Model

SNP-ID Chr: 
Position

Genes(s) Alleles 
A/B

HWE MAF OR (95% CI) p Function

Case Control

rs369149111 10:122461711 HTRA1 T/C 0.431 0.091 0.088 1.03 (0.77–1.36) 0.853 ——

rs1803628 13:113827141 GAS6 A/G 0.556 0.185 0.172 1.09 (0.88–1.35) 0.418 SiPhy cons, Enhancer 

histone marks
rs9808753 21:33415005 IFNGR2 G/A 0.664 0.458 0.404 1.25 (1.06–1.47) 0.007 SiPhy cons, Enhancer 

histone marks, DNAse, 

Motifs changed, GRASP 
QTL hits, Selected eQTL 

hits

Notes: p values were calculated using Pearson's χ2 test. p < 0.05 in bold type indicates statistical significance. 
Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; A, minor alleles; B, major alleles; HWE, Hardy-Weinberg equilibrium; MAF, minor allele frequency; 
OR, odds ratio; 95% CI, 95% confidence interval.
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MDR Analysis of the Role of SNP-SNP Interaction in Stroke Susceptibility
The SNP-SNP interaction was analyzed by MDR. Figure 1 is a dendrogram about the analysis of the SNP-SNP 
interaction. Different colors represent the synergistic or redundant effects of SNP-SNP interaction on stroke suscept-
ibility. The brown line indicates that candidate SNPs have no synergistic or redundant effect in regulating stroke 
susceptibility. The blue line indicates that candidate SNPs have a redundant effect on stroke susceptibility (Figure 1). 
Additionally, as presented by Table 5, the rs9808753 single locus was regarded as the best model to predict stroke risk, 
with the highest testing balanced accuracy of 0.529 and good cross-validation consistency (10/10).

Difference in Indicators Based on the Genotypes of Selected SNPs
We also assessed the impact of three candidate SNPs on the level of indicators under different genotypes. As shown in 
Table 6, the levels of alanine transaminase (ALT, p < 0.001), aspartate aminotransferase (AST, p < 0.001), and monocytes 
ratio (MONO, p = 0.018) had significant differences under different genotypes of rs1803628. Differences in total 
cholesterol levels (CHOL, p = 0.014) under different genotypes of rs9808753 were also detected. Whereas, there was 
no significant difference between rs369149111 and the level of indicators (Table S1).

Discussion
To our knowledge, this study is the first to assess the relationship between three selected SNPs and stroke susceptibility 
in the Chinese Han population. Our results showed that rs369149111 was unrelated with stroke susceptibility in overall 
and stratification analyses. The rs1803628 was related to stroke susceptibility only in the non-smoking group. The 

Table 3 Genetic Model Analyses of the Association Between Three SNPs and the Risk of Stroke 
(Adjusted by Age and Gender)

SNP-ID Model Genotype Case (%) Control (%) OR (95% CI) p

rs369149111 

HTRA1
Genotype TT 5 (0.8%) 6 (1.1%) 0.77 (0.23–2.55) 0.673

TC 102 (16.5%) 89 (15.6%) 1.08 (0.79–1.47) 0.650
CC 511 (82.7%) 476 (83.4%) 1.00 0.819

Dominant TT+TC 107 (17.3%) 95 (16.6%) 1.06 (0.78–1.43) 0.728

CC 511 (82.7%) 476 (83.4%) 1.00
Recessive TT 5 (0.8%) 6 (1.1%) 0.76 (0.23–2.52) 0.659

TC+CC 613 (99.2%) 565 (99%) 1.00

Additive / / / 1.03 (0.78–1.37) 0.828

rs1803628 

GAS6
Genotype AA 24 (3.9%) 19 (3.3%) 0.77 (0.23–2.55) 0.673

AG 181 (29.2%) 158 (27.8%) 1.08 (0.79–1.47) 0.650

GG 414 (66.9%) 392 (68.9%) 1.00 0.819

Dominant AA+AG 205 (33.1%) 177 (31.1%) 1.09 (0.85–1.39) 0.508
GG 414 (66.9%) 392 (68.9%) 1.00

Recessive AA 24 (3.9%) 19 (3.3%) 1.19 (0.64–2.19) 0.588

AG+GG 595 (96.1%) 550 (96.7%) 1.00
Additive / / / 1.08 (0.88–1.33) 0.455

rs9808753 
IFNGR2

Genotype GG 130 (20.9%) 90 (15.8%) 1.59 (1.14–2.23) 0.007
GA 311 (49.9%) 280 (49.1%) 1.21 (0.94–1.57) 0.140

AA 182 (29.2%) 200 (35.1%) 1.00 0.024

Dominant GG+GA 441 (70.8%) 370 (64.9%) 1.31 (1.02–1.67) 0.032
AA 182 (29.2%) 200 (35.1%) 1.00

Recessive GG 130 (20.9%) 90 (15.8%) 1.42 (1.05–1.91) 0.022
GA+AA 493 (79.1%) 480 (84.2%) 1.00

Additive / / / 1.26 (1.07–1.48) 0.007

Notes: p values were calculated by Wald test under logistic regression. p < 0.05 in bold type indicates statistical significance. 
Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence interval.
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Table 4 Distribution of SNPs in Different Age, Gender, Smoking Status, Drinking Status and Its Association with Risk of Stroke

SNP-ID Model Genotype Case Control OR (95% CI) p Case Control OR (95% CI) p

Smoking status Smoking Non-smoking

rs1803628 Genotype AA 10 (3%) 10 (3.7%) 0.79 (0.32–1.94) 0.606 14 (4.8%) 9 (3%) 1.83 (0.77–4.34) 0.168

GAS6 AG 82 (24.9%) 78 (28.8%) 0.80 (0.56–1.16) 0.239 99 (34.1%) 80 (26.9%) 1.45 (1.01–2.07) 0.042
GG 237 (72%) 183 (67.5%) 1.00 0.463 177 (61%) 209 (70.1%) 1.00 0.068

Dominant AA+AG 92 (28%) 88 (32.5%) 0.80 (0.56–1.14) 0.215 113 (39%) 89 (29.9%) 1.49 (1.06–2.09) 0.023
GG 237 (72%) 183 (67.5%) 1.00 177 (61%) 209 (70.1%) 1.00

Recessive AA 10 (3%) 10 (3.7%) 0.84 (0.34–2.05) 0.695 14 (4.8%) 9 (3%) 1.63 (0.69–3.83) 0.263

AG+GG 319 (97%) 261 (96.3%) 1.00 276 (95.2%) 289 (97%) 1.00

Additive / / / 0.83 (0.62–1.13) 0.236 / / 1.41 (1.05–1.89) 0.021

Age Age ≤ 64 Age > 64

rs9808753 

IFNGR2
Genotype GG 70 (21.6%) 58 (16.7%) 1.65 (1.01–2.71) 0.046 60 (20.1%) 32 (14.4%) 1.50 (0.86–2.6) 0.152

GA 164 (50.6%) 167 (48%) 1.31 (0.88–1.93) 0.181 147 (49.2%) 113 (50.9%) 1.04 (0.69–1.57) 0.849
AA 90 (27.8%) 123 (35.3%) 1.00 0.125 92 (30.8%) 77 (34.7%) 1.00 0.316

Dominant GG+GA 234 (72.2%) 225 (64.7%) 1.40 (0.97–2.03) 0.076 207 (69.2%) 145 (65.3%) 1.14 (0.77–1.68) 0.504

AA 90 (27.8%) 123 (35.3%) 1.00 92 (30.8%) 77 (34.7%) 1.00
Recessive GG 70 (21.6%) 58 (16.7%) 1.41 (0.91–2.17) 0.122 60 (20.1%) 32 (14.4%) 1.46 (0.89–2.39) 0.132

GA+AA 254 (78.4%) 290 (83.3%) 1.00 239 (79.9%) 190 (85.6%) 1.00

Additive / / / 1.29 (1.01–1.65) 0.042 / / 1.19 (0.91–1.55) 0.201

Gender Females Males

rs9808753 
IFNGR2

Genotype GG 48 (21%) 43 (18.3%) 1.33 (0.79–2.24) 0.285 82 (20.8%) 47 (14%) 1.82 (1.17–2.84) 0.008
GA 111 (48.5%) 109 (46.4%) 1.21 (0.80–1.83) 0.366 200 (50.8%) 171 (51%) 1.22 (0.88–1.70) 0.232

AA 70 (30.6%) 83 (35.3%) 1.00 0.509 112 (28.4%) 117 (34.9%) 1.00 0.029

Dominant GG+GA 159 (69.4%) 152 (64.7%) 1.24 (0.84–1.83) 0.271 282 (71.6%) 218 (65.1%) 1.35 (0.99–1.85) 0.059
AA 70 (30.6%) 83 (35.3%) 1.00 112 (28.4%) 117 (34.9%) 1.00

Recessive GG 48 (21%) 43 (18.3%) 1.19 (0.75–1.88) 0.465 82 (20.8%) 47 (14%) 1.61 (1.09–2.39) 0.017
GA+AA 181 (79%) 192 (81.7%) 1.00 312 (79.2%) 288 (86%) 1.00

Additive / / / 1.16 (0.89–1.49) 0.257 / / 1.33 (1.07–1.65) 0.009
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Drinking status Drinking Non-drinking

rs9808753 

IFNGR2
Genotype GG 58 (18.7%) 29 (11.3%) 2.21 (1.30–3.74) 0.003 72 (23%) 61 (19.5%) 1.30 (0.83–2.03) 0.249

GA 161 (51.9%) 128 (49.8%) 1.38 (0.95–1.98) 0.089 150 (47.9%) 152 (48.6%) 1.08 (0.75–1.56) 0.667

AA 91 (29.4%) 100 (38.9%) 1.00 0.012 91 (29.1%) 100 (31.9%) 1.00 0.507
Dominant GG+GA 219 (70.7%) 157 (61.1%) 1.53 (1.08–2.17) 0.018 222 (70.9%) 213 (68%) 1.15 (0.81–1.61) 0.437

AA 91 (29.4%) 100 (38.9%) 1.00 91 (29.1%) 100 (31.9%) 1.00

Recessive GG 58 (18.7%) 29 (11.3%) 1.83 (1.13–2.95) 0.014 72 (23%) 61 (19.5%) 1.24 (0.84–1.82) 0.278
GA+AA 252 (81.3%) 228 (88.7%) 1.00 241 (77%) 252 (80.5%) 1.00

Additive / / / 1.46 (1.14–1.87) 0.003 / / 1.14 (0.91–1.41) 0.261

Notes: p values were calculated by Wald test under logistic regression with adjustment for gender and age. p < 0.05 in bold type indicates statistical significance. 
Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence interval.
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rs9808753 was significantly associated with a higher stroke susceptibility under the allelic, dominant, recessive and 
additive models, and the relationship between rs9808753 and stroke susceptibility was age-, gender- and drinking 
dependent. Collectively, the results broadened our knowledge on the effects of SNPs on stroke susceptibility, and 
provided new clues for the screening of high-risk groups and early detection and diagnosis of the disease.

The occurrence of stroke is related to many factors. In our results, rs1803628 was related to an increased stroke 
susceptibility only in the non-smoking subgroup. This is inconsistent with previous studies that has identified smoking as 
a risk factor for stroke.26 This may be related to the random selection of the study population. In addition, we also noticed 
that rs9808753 was significantly associated with a higher stroke susceptibility under the allelic, dominant, recessive and 
additive models. Particularly, the effect of rs9808753 on stroke susceptibility might be correlated with age, gender and 
drinking, according to the results of stratification analyses. It has been reported that age is a major risk factor for stroke 
occurrence, and the older the age, the higher the stroke risk.2 However, our results suggested that rs9808753 was associated 
with an increased susceptibility of stroke in people younger than 64 years of age, which may be related to study participants 
and their lifestyles. It could also mean that stroke is becoming more common at a younger age. Similar to our findings, Mao 
et al have pointed out that gene polymorphisms are associated with stroke risk in Chinese males27 and Caucasian males.28 

In addition, males are historically considered to be more susceptible to stroke than females,29 which is consistent with our 
findings. This is likely because of the higher risk of dyslipidemia, diabetes, myocardial infarction and peripheral artery 
disease in males, as well as their unhealthy living habits, such as smoking and alcohol consumption. Just as Millwood et al 
have found that alcohol consumption is a risk factor for stroke.30 All in all, these findings may suggest that genetic 
susceptibility to stroke differs by age, gender, drinking and smoking status in genetic association studies.

The detection of stroke-related clinical indicators is very important for the prevention, diagnosis and treatment of 
stroke. Our study found a significant difference in CHOL level under the different genotypes of rs9808753. As elucidated 

Figure 1 Dendrogram about the analysis of SNP-SNP interactions. Colors in the dendrogram indicate synergies or redundancies. Red indicates a high degree of synergistic 
interaction; Orange indicates a lesser degree, whereas brown represents the midpoint; blue represents the highest level of redundancy, followed by green. The shorter the 
distance between nodes, the stronger the interaction between them.

Table 5 Summary of SNP-SNP Interactions on the Risk of Stroke Analyzed by MDR Method

Model Training Bal. Acc Testing Bal. Acc CVC OR (95% CI) p

rs9808753* 0.529 0.529 10/10 1.31 (1.02–1.68) 0.036
rs369149111, rs9808753 0.534 0.504 10/10 1.39 (1.07–1.82) 0.015
rs369149111, rs1803628, rs9808753 0.540 0.490 10/10 1.38 (1.09–1.76) 0.008

Notes: p values were calculated using χ2 test. p < 0.05 in bold type indicates statistical significance. *The best model in MDR analysis. 
Abbreviations: MDR, multifactor dimensionality reduction; Bal. Acc, balanced accuracy; CVC, cross-validation consistency; OR, odds ratio; 95% CI, 95% 
confidence interval.
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Table 6 Clinical Characteristics of Stroke Patients Based on the Genotypes of Selected SNPs

Characteristics GAS6 rs1803628 IFNGR2 rs9808753

AA AG GG p AA AG GG p

ALT (U/L) 64.47 ± 112.44 21.88 ± 11.81 25.69 ± 27.73 < 0.001 27.81 ± 33.81 26.76 ± 37.25 21.66 ± 11.93 0.328

AST (U/L) 58.29 ± 95.53 22.02 ± 10.05 25.65 ± 17.49 < 0.001 26.50 ± 23.67 26.16 ± 27.17 23.97 ± 17.50 0.706
MONO (%) 5.12 ± 0.31 6.79 ± 1.63 7.71 ± 1.62 0.018 0.42 ± 0.17 0.41 ± 0.21 0.44 ± 0.20 0.636

TBA (μmol/L) 10.54± 9.62 8.16 ± 6.52 7.64 ± 9.42 0.376 8.08 ± 11.70 8.06 ± 7.17 7.21 ± 6.20 0.701

Cr (μmol/L) 77.75 ± 24.83 72.46 ± 28.81 73.16 ± 21.23 0.678 72.72 ± 21.71 72.79 ± 20.43 74.48 ± 33.08 0.832
UA (μmol/L) 245.23 ± 85.00 278.45 ± 95.22 272.15 ± 91.83 0.279 277.04 ± 97.29 271.04 ± 92.25 271.59 ± 88.34 0.800

TG (mmol/L) 1.51 ± 1.18 1.58 ± 1.56 1.59 ± 1.11 0.961 1.53 ± 0.79 1.70 ± 1.58 1.38 ± 0.88 0.113

CHOL (mmol/L) 3.97 ± 1.08 3.93 ± 1.05 3.89 ± 0.99 0.890 3.87 ± 0.98 4.03 ± 1.02 3.67 ± 0.98 0.014
HDL-C (mmol/L) 1.25 ± 0.33 1.13 ± 0.26 1.11 ± 0.28 0.083 1.08 ± 0.22 1.15 ± 0.30 1.13 ± 0.29 0.065

LDL-C (mmol/L) 1.92 ± 0.76 2.01 ± 0.71 1.91 ± 0.67 0.399 1.92 ± 0.65 2.00 ± 0.70 1.82 ± 0.67 0.096

Note: p < 0.05 in bold type indicates statistical significance. 
Abbreviations: ALT, Alanine transaminase; AST, Aspartate aminotransferase; MONO, Monocytes ratio; TBA, Total bile acid; Cr, Creatinine; UA, Uric Acid; TG, Triglyceride; CHOL, Cholesterol; HDL-C, High density lipid-cholesterol; 
LDL-C, Low density lipid-cholesterol.
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by Wang et al, CHOL value is associated with an elevated risk of incident stroke and ischemic stroke, which is partly 
consistent with our results.31 Furthermore, we found the levels of ALT, AST and MONO had significant differences 
under the different genotypes of rs1803628. However, no significant associations of AST and ALT with stroke were 
found,32 which may be related to the fact that rs1803628 was a risk factor for stroke only in non-drinking subjects.

It should be noted that this study has several limitations. First, all subjects were enrolled from the same hospital, so 
there is a selection bias. Second, due to missing information on smoking and alcohol consumption in some subjects, only 
age and gender were selected for adjustment in this study. Finally, the association of IFNGR2 rs9808753 with increased 
stroke susceptibility in this study was not functionally tested. In future studies, we will expand the sample size, improve 
the sample information, adjust the risk factors, and perform corresponding functional tests to further analyze the 
relationship between IFNGR2 rs9808753 and stroke susceptibility to make our study more convincing.

Conclusion
In summary, we found that IFNGR2-rs9808753 is significantly associated with an increased risk of stroke in the Han 
Chinese population, suggesting that IFNGR2 variants may be biomarkers for the early detection and diagnosis of stroke.
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