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Controllability in an islet specific regulatory network identifies
the transcriptional factor NFATC4, which regulates Type 2
Diabetes associated genes
Amitabh Sharma 1,2,3,4, Arda Halu1,4, Julius L. Decano4, Megha Padi5, Yang-Yu Liu 1, Rashmi B. Prasad 6, Joao Fadista6,
Marc Santolini1,2, Jörg Menche 2,7, Scott T. Weiss1, Marc Vidal3,8, Edwin K. Silverman1, Masanori Aikawa4, Albert-László Barabási1,2,3,9,
Leif Groop 6,10 and Joseph Loscalzo11

Probing the dynamic control features of biological networks represents a new frontier in capturing the dysregulated pathways in
complex diseases. Here, using patient samples obtained from a pancreatic islet transplantation program, we constructed a tissue-
specific gene regulatory network and used the control centrality (Cc) concept to identify the high control centrality (HiCc) pathways,
which might serve as key pathobiological pathways for Type 2 Diabetes (T2D). We found that HiCc pathway genes were
significantly enriched with modest GWAS p-values in the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) study. We
identified variants regulating gene expression (expression quantitative loci, eQTL) of HiCc pathway genes in islet samples. These
eQTL genes showed higher levels of differential expression compared to non-eQTL genes in low, medium, and high glucose
concentrations in rat islets. Among genes with highly significant eQTL evidence, NFATC4 belonged to four HiCc pathways. We
asked if the expressions of T2D-associated candidate genes from GWAS and literature are regulated by Nfatc4 in rat islets. Extensive
in vitro silencing of Nfatc4 in rat islet cells displayed reduced expression of 16, and increased expression of four putative
downstream T2D genes. Overall, our approach uncovers the mechanistic connection of NFATC4 with downstream targets including
a previously unknown one, TCF7L2, and establishes the HiCc pathways’ relationship to T2D.
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INTRODUCTION
The pathobiological changes leading to a complex disease are
most likely to be influenced by the disease genes that perturb the
underlying biological networks in specific tissue types. Recent
evidence suggests that these perturbations are not scattered
randomly in the interactome; instead, they are localized in specific
neighborhoods, or ‘disease modules’.1,2 In order to identify this
disease-specific interactome neighborhood, we previously inte-
grated human islet gene expression data, genetics, and protein
interaction data to build a localized map of genes associated with
islet cell dysfunction in Type 2 Diabetes (T2D).3 Recently, we
identified an asthma disease module by a connectivity-based
model and validated it for functional and pathophysiological
relevance to the disease.2 Several tools based on the ‘guilt-by-
association principle’ predict potential candidate genes using
networks.4–6 Furthermore, inference tools such as ANAT identify
the highest-confidence paths between pairs of proteins by
viewing the local neighborhood of a set of proteins.7 Other
methods such as HotNet2 use the heat diffusion process to

analyze a gene’s mutation score and its local topology together to
find the subnetworks in cancer.8 Similarly, the NetQTL approach
combines eQTL and network flow to identify genes and
dysregulated pathways.9

Despite extensive interest in using topological features to
interpret the biological networks in human disease, an important
aspect that has been largely overlooked so far is the controllability
of these subcellular networks. In general, controllability can be
achieved by changing the state of a small set of driver nodes that
govern the dynamics of the entire network.10 Liu et al.11 proposed
an analytical framework to identify the minimum set of driver
nodes (MDS) of any complex network, whose time-dependent
control can guide the whole network to any desired final state.
They found that driver nodes tend to avoid hubs, i.e., highly
connected nodes. Furthermore, Milenkovic et al.12 suggested the
notion of domination and found dominating sets (DSs) in the
undirected protein interaction network. Wuchty identified the
minimum dominating sets (MDSets) that play a role in the control
of the underlying protein interaction network.9 It was observed
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that MDSet proteins were enriched with cancer-related and virus-
targeted genes.13 We recently showed that the application of
network controllability analysis helps in identifying new disease
genes and drug targets.14

Progress towards a robust network-based controllability
approach will ultimately lead to the identification of potential
key regulatory nodes that govern network function in health and
disease. As a first step in this direction, here, we asked whether the
set of genes that are predicted to control a biological directed
network would affect the functional pathophenotype. To assess
the controllability of the network, we used the control centrality
(Cc) measure,15 which quantifies the ability of a single node to
control an entire directed weighted network (see 'Methods'). Our
disease of interest, T2D, is a complex disease and therefore has the
potential to lend itself to this approach where controllability in a
regulatory network specific to it might reveal new knowledge
about the disease. T2D is characterized by insufficient insulin
secretion from the β-cells of islets in the pancreas.3 We
hypothesize that the high control centrality (HiCc) pathways,
representing specific gene sets in a T2D-regulatory network in
human pancreatic islets, might control other downstream path-
ways involved in disease manifestation (see Fig. 1). To test our
hypothesis we construct a pancreatic islet-specific EGRN, and use
Cc to identify HiCc pathways in the KEGG database. We validate
the disease relevance of these HiCc pathways using T2D-specific
-omics data. Next, we test whether the SNPs located in non-coding
regions of HiCc pathway genes in islet samples would influence
gene expression (eQTL). Finally, we perform extensive in vitro
silencing experiments on NFATC4, an eQTL-implicated gene found
in four HiCc pathways, and probe whether T2D-associated genes
from GWAS and literature are downstream targets of NFATC4.
Overall, our study provides a unique framework for integrating
control principles towards distinguishing pathways and genes that
are likely to contribute to T2D pathogenesis.

RESULTS
Extended gene-regulatory network (EGRN) from human islet cells
We start by building a gene-regulatory network (GRN) using gene
expression data from pancreatic islet samples of diabetic and non-
diabetic cadaver donors obtained through the Nordic Islet
Transplantation Programme (http://www.nordicislets.org). The
GRN consists of differentially expressed genes in diabetic and
high glycated hemoglobin (HbA1c) donors, highly varying genes
in all donor islets, and established T2D genes from genome-wide
association studies (GWAS). Directed edges in the GRN are inferred
using a combination of mutual information and prior knowledge
from the TRANSFAC database (http://www.gene-regulation.com/;
see 'Methods' for further details). The GRN specific to islet cells
consists of 896 genes with 1164 links between them. We next
include most of the signaling events by extending the GRN with
the addition of kinase and signaling pathways (see 'Methods' for
further details on the construction of the networks). The largest
connected component (LCC) of the EGRN with kinase-substrate
and signaling links consists of N= 3084 genes and M= 7935
edges. The average number of neighbors in the network is 5.14.
Compared to randomized networks constructed using degree-
preserving randomization, the EGRN has a significantly higher
average shortest path length <l>= 4.65 (z-score= 56) (Fig. 2a)
and a significantly higher clustering coefficient C= 0.055 (z-score
= 6.86) (Fig. 2b). Interestingly, irrespective of the difference in
network size and the degree distributions of GRN and EGRN
(Supplementary Figure 1a), their normalized Cc (cc= Cc/N)
distributions do not differ significantly (Supplementary Figure
1b). This indicates the robustness of the Cc measure to changes in
the size of the network. Moreover, EGRN’s normalized Cc is
significantly higher compared to randomized networks. The p-
values between randomized networks and EGRN using
Mann–Whitney U (100 p-values) are between 2.77e-15 and
9.76e-12 (Fig. 2c). This suggests that the overall structure of the
EGRN is more controllable than its randomized counterparts.

Fig. 1 Overview of the approach to identify the key pathways in T2D using control centrality approach. a Gene expression data: Pancreatic
islets from cadaver donors (54 nondiabetic and 9 diabetic) were used to construct the gene regulatory network (GRN) and extended by
adding kinase and signaling links. The largest connected component of the extended GRN (EGRN) consists of N= 3084 genes and M= 7935
edges. b The control centrality measure is used to quantify the relative importance of each gene in EGRN relative to T2D. c High control
centrality (HiCc) pathways are found by comparing the control centrality distribution of genes within the pathway vs the control centrality
distribution of all other genes in EGRN. Pathways with a significantly higher control centrality distribution compared to the background are
deemed HiCc pathways. For example, the Gap junction pathway emerges as a HiCc pathway, whereas the Huntington’s Disease pathway is
found to be a non-HiCc pathway. d In vitro silencing experiments are performed on genes implicated in a large number of HiCc pathways,
such as NFATC4, to discover novel mechanistic connections with known T2D genes
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Identifying the HiCc pathways in the EGRN
A complex disease such as T2D is likely to be the result of multiple
gene perturbations within pathways in a biological network,
where changes in one pathway might trigger alterations in other
downstream pathways. Hence, identification of ‘key driver path-
ways’ in the islet-specific EGRN should give us insights about the
molecular processes responsible for the disease. Here, we
compared the Cc distribution of the genes in each pathway in
the KEGG database with the Cc distribution of all other genes in
the EGRN, and observed 66 significant HiCc pathways with a p-
value < 0.05 (Mann–Whitney U test) (Supplementary Table 2) (for
details see 'Methods'). Overall, the genes representing T2D
pathways in the EGRN had higher Cc values compared to the
random distribution (Supplementary Figure 2), indicating that Cc
is able to capture the important pathways associated with T2D in
KEGG. To ensure that our observations regarding the role of Cc on
EGRN in teasing out biologically relevant pathway information
cannot be reproduced from randomized data, we repeated the
Cccalculations on degree-preserved randomized networks. We
found that the Cc values of the significant pathways are higher on
average for EGRN than randomized networks. The average of the
means of the Cc distributions for randomized networks was 72.49,
whereas the mean of the Cc distribution for the EGRN network
was 121.32. The Mann–Whitney U p-values were between 9.54e-24
and 6.78e-11 (Fig. 2d). This both proves the utility of using the
EGRN in conjunction with Cc and establishes Cc as an effective
metric for prioritizing pathways.
We next asked whether the genes within the high Cc pathways

were also hubs, i.e., highly connected genes. We, therefore,
compared the degree distributions of: (1) all genes in the EGRN, (2)
all genes that are in any of the 66 significant HiCc pathways, and

(3) all genes that are in any of the remaining 120 non-significant
Cc pathways. Overall, we did not observe any significant
differences between the three types of degree distributions as
shown in Fig. 3a. Thus, both the significant and the non-significant
pathways based on Cc values contain genes that have similar
degree distribution in the EGRN, indicating an absence of bias
towards hubs as high Cc genes.
To test the reliability and performance of the Cc approach as a

means to glean key drivers of T2D, we compared it to other
methods that identify the dysregulated subnetworks associated
with a specific phenotype. We found that Cc is comparable to or
higher performing than a number of established methods to find
the dysregulated pathways, such as HotNet28 in capturing “T2D-
related” pathways, which are pathways significantly enriched in
literature-mined T2D disease genes with experimental evidence
from the DISEASES database,16 both on the EGRN and on generic
networks (Supplementary Figure 3, see Supplementary Informa-
tion for details on comparisons with other methods).
To further assess the performance of Cc as a network centrality

measure, we carried out the T2D diabetes “T2D-related” pathway
assessment on other centrality measures applied on the EGRN. We
found that Cc is superior to all of the tested centrality measures in
terms of the significance of overlap with T2D-related pathways,
i.e., the HiCc pathways have a higher enrichment of T2D-related
pathways than pathways with high centrality according to other
centrality measures, including degree, closeness, eigenvector,
betweenness, and PageRank centrality (Supplementary Table 1).
The fact that Cc outperforms degree centrality also confirms our
observation that Cc, which is not biased towards highly connected
nodes, uncovers disease-related information that is independent
of the “hubness” of a node.

Fig. 2 Topological and control centrality-related properties of EGRN. a The average shortest path length of the EGRN is 4.65, which is
significantly higher that those of randomized networks (shown in orange) with a z-score of 56. b The average clustering coefficient of the
EGRN is 0.055, which is significantly higher that those of randomized networks (shown in orange) with a z-score of 6.86. c The normalized
control centrality distribution of the EGRN (shown in green) is significantly higher than those of randomized networks (shown in orange). d
The control centralities of the HiCc pathways derived from the EGRN (shown in green) are significantly higher than those of the HiCc pathways
derived from randomized networks
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T2D relevance of the HiCc pathways in the EGRN
We hypothesized that if HiCc pathways contribute to the control
of disease-related processes in T2D, they should be significantly
enriched within T2D-specific -omics data. To test this hypothesis,
we separated the HiCc pathways, i.e., pathways whose genes have
significantly higher Cc values than the rest of the genes in EGRN,
from those that are not HiCc. For both groups of pathways, as well
as for the reference set of all KEGG pathways, we calculated how
many of them are significantly enriched within (i) T2D (GOLD)
genes from the type 2 diabetes genetic association database
(T2DGADB)17 and (ii) a more recent and extended T2D GWAS
dataset from a genome-wide meta-analysis (see 'Methods'). We
observed a significant enrichment of HiCc pathways in the two
datasets. In particular, the fraction of enriched pathways in GOLD
data (50 pathways overall) was significantly higher for HiCc
pathways (24 out of 66 pathways) than for non-HiCc pathways (26
out of 120 pathways), with a two-tailed Fisher’s exact p-value of
0.038. Similarly, the fraction of enriched pathways in the GWAS
dataset (107 pathways overall) was significantly higher for HiCc
(48 out of 66 HiCc pathways) than for non-HiCc pathways (59 out
of 120 non-HiCc pathways), with a two-tailed Fisher’s exact p-value
of 0.0020 (Fig. 3b). Overall, 55 HiCc pathways were enriched in T2D
relevant omics data (Fig. 3c). Among the pathways that were the
most significantly enriched in the -omics data were several whose
relevance to T2D is well established, such as Type II diabetes

mellitus, PPAR signaling, insulin signaling, calcium signaling and
chemokine signaling pathways (Supplementary Table 2). The role
of chemokine signaling is known in T2D, as islet inflammation is
involved in the regulation of β-cell function and survival in T2D.18

This indicates that our approach captures pathways that have T2D
relevance in an unbiased way. We corroborated the disease
relevance of HiCc pathways on two other complex diseases:
asthma and chronic obstructive pulmonary disease (COPD)
(Supplementary Figures 4 and 5, see Supplementary Information
for details).

Validation of HiCc pathway genes
Among the genes in the significant HiCc pathways, we found 51
eQTLs that pass the FDR < 1% threshold and 10 k permutation, as
shown in Table 1, using an extended follow-up study to our
original islet data, which consists of 89 pancreatic islet donors.19 In
total, we observed a SNP within 250 kb up or downstream of the
genes in 33 pathways. The enrichment of 33 pathways with the
background distribution was significant (p- 6.618e-13, odds ratio:
7.49), which indicates that we were able to capture the genomic
signals among the HiCc pathways. We next tested the fold-change
difference of eQTL genes vs non-eQTL genes in the transcriptome
data of rat islets pre-cultured with 2, 5, 10, and 30mM glucose
levels (GSE12817).20 We found that the eQTL genes have
significantly higher fold change compared to non-eQTL genes in

Fig. 3 Properties and T2D relevance of high control centrality (HiCc) pathways. a Degree distributions P(k) of HiCc pathway genes, non-HiCc
pathway genes, and all other genes in the EGRN. b The fraction of enriched pathways in the T2D GOLD and GWAS datasets, for HiCc pathways,
non-HiCc pathways, and all pathways. c The 66 HiCc pathways and their enrichment in T2D-specific data sources

Controllability in an islet specific regulatory network
A Sharma et al.

4

npj Systems Biology and Applications (2018) 25 Published in partnership with the Systems Biology Institute



Ta
bl
e
1.

ci
s-
eQ

TL
in

H
iC
c
p
at
h
w
ay

g
en

es

SN
P

G
en

e
t-
st
at

p-
va
lu
e

FD
R

Pe
rm

u
ta
ti
o
n

p-
va
lu
e

Q
u
ar
ti
le

o
f

ex
p
re
ss
io
n

(e
Q
TL

g
en

e)

C
lo
se
st

=
eQ

TL
g
en

e?

C
lo
se
st

g
en

e
N
o
m
in
al

ar
ra
y

eQ
TL

G
en

es
o
n
th
e

ar
ra
y

eQ
TL

in
o
th
er

ti
ss
u
es
?

Pa
th
w
ay
s

Ex
-G
R
N

rs
26

44
98

7
A
B
C
C
6

4.
54

3
1.
82

E-
05

8.
41

E-
03

1.
00

E-
04

2
TR

U
E

A
B
C
C
6

Y
ES

Y
ES

ye
s

A
b
c_
tr
an

sp
o
rt
er
s

✔

rs
27

25
26

3
A
B
C
G
2

−
4.
51

8
2.
00

E-
05

9.
09

E-
03

1.
00

E-
04

2
TR

U
E

A
B
C
G
2

Y
ES

Y
ES

A
b
c_
tr
an

sp
o
rt
er
s

✔

rs
73

19
83

45
A
B
C
B
4

5.
21

4
1.
28

E-
06

9.
70

E-
04

1.
00

E-
04

2
FA

LS
E

A
B
C
B1

Y
ES

Y
ES

A
b
c_
tr
an

sp
o
rt
er
s

rs
16

19
56

1
A
B
C
B
9

−
4.
57

2
1.
63

E-
05

7.
74

E-
03

1.
00

E-
04

2
FA

LS
E

M
PH

O
SP

H
9

Y
ES

Y
ES

ye
s

A
b
c_
tr
an

sp
o
rt
er
s/
ly
so
so
m
e

rs
45

46
56

6
PR

K
A
G
2

−
4.
85

1
5.
50

E-
06

3.
25

E-
03

1.
00

E-
04

4
TR

U
E

PR
K
A
G
2

Y
ES

A
d
ip
o
cy
to
ki
n
e_

si
g
n
al
in
g
_p

at
h
w
ay
/

in
su
lin

_s
ig
n
al
in
g
_p

at
h
w
ay

rs
72

16
86

5
A
LO

X
12

4.
52

3
1.
97

E-
05

8.
96

E-
03

1.
00

E-
04

2
TR

U
E

A
LO

X
12

Y
ES

ye
s

A
ra
ch

id
o
n
ic
_a
ci
d
_m

et
ab

o
lis
m

✔

rs
37

53
75

4
G
PX

7
−
9.
67

0
2.
38

E-
15

2.
30

E-
11

1.
00

E-
04

3
TR

U
E

G
PX

7
Y
ES

Y
ES

ye
s

A
ra
ch

id
o
n
ic
_a
ci
d
_m

et
ab

o
lis
m

rs
17

44
29

46
C
Y
P2

C
9

4.
99

1
3.
15

E-
06

2.
07

E-
03

1.
00

E-
04

2
FA

LS
E

C
Y
P2

C
19

Y
ES

A
ra
ch

id
o
n
ic
_a
ci
d
_m

et
ab

o
lis
m

rs
10

42
03

2
EP

H
X
2

4.
61

1
1.
40

E-
05

6.
91

E-
03

1.
00

E-
04

4
TR

U
E

EP
H
X
2

Y
ES

Y
ES

ye
s

A
ra
ch

id
o
n
ic
_a
ci
d
_m

et
ab

o
lis
m

rs
10

13
01

07
A
D
C
Y
4

6.
07

6
3.
36

E-
08

4.
09

E-
05

1.
00

E-
04

2
FA

LS
E

C
M
A
1

Y
ES

C
al
ci
u
m
_s
ig
n
al
in
g
_p

at
h
w
ay

rs
72

98
36

83
H
TR

2B
5.
58

1
2.
79

E-
07

2.
54

E-
04

1.
00

E-
04

2
FA

LS
E

A
R
M
C
9

Y
ES

Y
ES

C
al
ci
u
m
_s
ig
n
al
in
g
_p

at
h
w
ay

rs
12

74
39

44
IT
PK

B
4.
85

8
5.
35

E-
06

3.
17

E-
03

1.
00

E-
04

2
FA

LS
E

PA
R
P1

Y
ES

C
al
ci
u
m
_s
ig
n
al
in
g
_p

at
h
w
ay

rs
80

66
43

4
C
C
L4

L1
+

C
C
L4

L2
5.
23

6
1.
17

E-
06

8.
96

E-
04

1.
00

E-
04

1
FA

LS
E

C
C
L4

C
h
em

o
ki
n
e_

si
g
n
al
in
g
_p

at
h
w
ay

rs
94

59
81

0
C
C
R
6

5.
26

6
1.
03

E-
06

8.
07

E-
04

1.
00

E-
04

1
FA

LS
E

R
N
A
SE

T2
Y
ES

C
h
em

o
ki
n
e_

si
g
n
al
in
g
_p

at
h
w
ay
/

cy
to
ki
n
e_

cy
to
ki
n
e_

re
ce
p
to
r_
in
te
ra
ct
io
n

✔

rs
12

08
68

29
SE

R
PI
N
C
1

5.
32

6
8.
08

E-
07

6.
49

E-
04

1.
00

E-
04

2
FA

LS
E

R
C
3H

1
Y
ES

ye
s

C
o
m
p
le
m
en

t_
an

d
_c
o
ag

u
la
ti
o
n
_c
as
ca
d
es

rs
80

01
16

93
IL
18

−
4.
92

5
4.
10

E-
06

2.
54

E-
03

1.
00

E-
04

3
TR

U
E

IL
18

Y
ES

Y
ES

ye
s

C
yt
o
ki
n
e_

cy
to
ki
n
e_

re
ce
p
to
r_
in
te
ra
ct
io
n

✔

rs
22

83
56

3
IL
21

R
−
5.
13

9
1.
74

E-
06

1.
26

E-
03

1.
00

E-
04

1
FA

LS
E

IL
4R

Y
ES

C
yt
o
ki
n
e_

cy
to
ki
n
e_

re
ce
p
to
r_
in
te
ra
ct
io
n

rs
22

49
49

2
SG

C
A

−
4.
80

2
6.
68

E-
06

3.
85

E-
03

1.
00

E-
04

2
FA

LS
E

M
IR
43

15
-2

+ PL
EK

H
M
1P

+
M
IR
43

15
-

1
+

PL
EK

H
M
1

Y
ES

ye
s

D
ila
te
d
_c
ar
d
io
m
yo

p
at
h
y

rs
35

98
27

61
PA

K
7

4.
66

1
1.
16

E-
05

5.
99

E-
03

1.
00

E-
04

2
TR

U
E

PA
K
7

Y
ES

Er
b
b
_s
ig
n
al
in
g
_p

at
h
w
ay
/f
o
ca
l_
ad

h
es
io
n

✔

rs
12

30
16

7
A
D
H
4

−
4.
65

0
1.
21

E-
05

6.
19

E-
03

1.
00

E-
04

1
FA

LS
E

M
ET
A
P1

Y
ES

Fa
tt
y_
ac
id
_m

et
ab

o
lis
m

✔

rs
46

56
16

5
FC

ER
1A

5.
10

5
1.
99

E-
06

1.
41

E-
03

1.
00

E-
04

1
FA

LS
E

C
A
D
M
3

Y
ES

Fc
_e

p
si
lo
n
_r
i_
si
g
n
al
in
g
_p

at
h
w
ay

rs
39

97
C
O
L2

A
1

−
5.
41

8
5.
52

E-
07

4.
66

E-
04

1.
00

E-
04

1
FA

LS
E

SE
N
P1

Y
ES

Fo
ca
l_
ad

h
es
io
n

rs
34

63
97

16
TU

B
A
8

4.
80

2
6.
68

E-
06

3.
85

E-
03

1.
00

E-
04

2
TR

U
E

TU
BA

8
Y
ES

Y
ES

G
ap

_j
u
n
ct
io
n

rs
72

64
23

46
G
N
R
H
R

4.
93

2
3.
98

E-
06

2.
49

E-
03

1.
00

E-
04

1
FA

LS
E

U
BA

6
Y
ES

ye
s

G
n
rh
_s
ig
n
al
in
g
_p

at
h
w
ay

rs
69

75
74

0
G
LI
3

4.
63

9
1.
26

E-
05

6.
38

E-
03

1.
00

E-
04

2
FA

LS
E

LO
C
28

59
54

Y
ES

Y
ES

H
ed

g
eh

o
g
_s
ig
n
al
in
g
_p

at
h
w
ay

rs
94

19
09

BT
R
C

−
4.
50

6
2.
09

E-
05

9.
41

E-
03

1.
00

E-
04

3
FA

LS
E

LB
X
1

Y
ES

H
ed

g
eh

o
g
_s
ig
n
al
in
g
_p

at
h
w
ay

rs
11

46
19

53
2

H
LA

-D
R
A

−
8.
96

4
6.
38

E-
14

4.
76

E-
10

1.
00

E-
04

2
FA

LS
E

BT
N
L2

Y
ES

H
em

at
o
p
o
ie
ti
c_
ce
ll_
lin

ea
g
e

✔

rs
92

71
46

6
H
LA

-D
R
B
5

−
12

.2
18

2.
07

E-
20

8.
05

E-
16

1.
00

E-
04

3
FA

LS
E

H
LA

-D
Q
A
1

Y
ES

Y
ES

ye
s

H
em

at
o
p
o
ie
ti
c_
ce
ll_
lin

ea
g
e

rs
67

58
86

72
H
LA

-D
R
B
1

−
9.
68

5
2.
22

E-
15

2.
15

E-
11

1.
00

E-
04

3
FA

LS
E

H
LA

-D
R
B
5

ye
s

H
em

at
o
p
o
ie
ti
c_
ce
ll_
lin

ea
g
e

rs
67

72
32

5
G
P5

4.
65

6
1.
18

E-
05

6.
08

E-
03

1.
00

E-
04

1
FA

LS
E

A
TP

13
A
3

Y
ES

H
em

at
o
p
o
ie
ti
c_
ce
ll_
lin

ea
g
e

rs
72

66
10

22
PL

A
2G

2A
4.
92

1
4.
16

E-
06

2.
57

E-
03

1.
00

E-
04

3
TR

U
E

PL
A
2G

2A
Y
ES

Y
ES

Lo
n
g
_t
er
m
_p

o
te
n
ti
at
io
n

✔

rs
11

13
17

99
A
G
A

5.
43

2
5.
22

E-
07

4.
43

E-
04

1.
00

E-
04

4
TR

U
E

A
G
A

Y
ES

Y
ES

ye
s

Ly
so
so
m
e

✔

Controllability in an islet specific regulatory network
A Sharma et al.

5

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2018) 25



Ta
b
le

1
co
nt
in
ue

d

SN
P

G
en

e
t-
st
at

p-
va
lu
e

FD
R

Pe
rm

u
ta
ti
o
n

p-
va
lu
e

Q
u
ar
ti
le

o
f

ex
p
re
ss
io
n

(e
Q
TL

g
en

e)

C
lo
se
st

=
eQ

TL
g
en

e?

C
lo
se
st

g
en

e
N
o
m
in
al

ar
ra
y

eQ
TL

G
en

es
o
n
th
e

ar
ra
y

eQ
TL

in
o
th
er

ti
ss
u
es
?

Pa
th
w
ay
s

Ex
-G
R
N

rs
49

32
26

3
A
P3

S2
+

C
15

o
rf
38

+
C
15

o
rf
38

-
A
P3

S2

−
9.
44

9
6.
65

E-
15

5.
93

E-
11

1.
00

E-
04

4
TR

U
E

A
P3

S2
Y
ES

Y
ES

ye
s

Ly
so
so
m
e

rs
22

96
17

6
A
P4

B
1

−
4.
79

9
6.
75

E-
06

3.
88

E-
03

1.
00

E-
04

3
FA

LS
E

B
C
L2

L1
5

Y
ES

Y
ES

ye
s

Ly
so
so
m
e

rs
46

74
29

9
SL
C
11

A
1

4.
69

4
1.
02

E-
05

5.
39

E-
03

1.
00

E-
04

2
FA

LS
E

C
2o

rf
62

Y
ES

Ly
so
so
m
e

rs
13

31
27

79
FG

F2
3

6.
90

2
8.
66

E-
10

1.
45

E-
06

1.
00

E-
04

1
TR

U
E

FG
F2

3
Y
ES

M
ap

k_
si
g
n
al
in
g
_p

at
h
w
ay

rs
47

70
21

6
FG

F9
4.
83

0
5.
98

E-
06

3.
50

E-
03

1.
00

E-
04

2
TR

U
E

FG
F9

Y
ES

Y
ES

M
ap

k_
si
g
n
al
in
g
_p

at
h
w
ay
/

re
g
u
la
ti
o
n
_o

f_
ac
ti
n
_c
yt
o
sk
el
et
o
n

✔

rs
24

07
61

6
C
A
B
39

L
−
4.
85

8
5.
36

E-
06

3.
18

E-
03

1.
00

E-
04

3
TR

U
E

C
A
B
39

L
Y
ES

Y
ES

M
to
r_
si
g
n
al
in
g
_p

at
h
w
ay

rs
14

72
32

27
6

M
IC
B

−
6.
25

2
1.
56

E-
08

2.
05

E-
05

1.
00

E-
04

1
TR

U
E

M
IC
B

Y
ES

ye
s

N
at
u
ra
l_
ki
lle
r_
ce
ll_
m
ed

ia
te
d
_c
yt
o
to
xi
ci
ty

✔

rs
73

05
84

00
K
LR

C
1

6.
99

5
5.
68

E-
10

9.
97

E-
07

1.
00

E-
04

1
TR

U
E

K
LR

C
1

Y
ES

N
at
u
ra
l_
ki
lle
r_
ce
ll_
m
ed

ia
te
d
_c
yt
o
to
xi
ci
ty

rs
12

13
43

04
N
LR

P3
5.
45

3
4.
78

E-
07

4.
10

E-
04

1.
00

E-
04

2
TR

U
E

N
LR

P3
Y
ES

Y
ES

N
o
d
_l
ik
e_

re
ce
p
to
r_
si
g
n
al
in
g
_p

at
h
w
ay

rs
62

70
01

PT
TG

2
4.
54

8
1.
78

E-
05

8.
32

E-
03

1.
00

E-
04

1
TR

U
E

PT
TG

2
Y
ES

O
o
cy
te
_m

ei
o
si
s

✔

rs
71

32
33

94
C
D
C
25

A
4.
93

7
3.
92

E-
06

2.
46

E-
03

1.
00

E-
04

2
FA

LS
E

SP
IN
K
8

Y
ES

Y
ES

ye
s

Pr
o
g
es
te
ro
n
e_

m
ed

ia
te
d
_o

o
cy
te
_m

at
u
ra
ti
o
n

✔

rs
15

06
52

0
LD

H
C

−
25

.8
86

4.
44

E-
42

3.
86

E-
36

1.
00

E-
04

2
TR

U
E

LD
H
C

Y
ES

Y
ES

ye
s

Pr
o
p
an

o
at
e_

m
et
ab

o
lis
m

rs
12

63
55

31
SU

C
LG

2
4.
78

7
7.
06

E-
06

4.
03

E-
03

1.
00

E-
04

4
TR

U
E

SU
C
LG

2
Y
ES

Y
ES

ye
s

Pr
o
p
an

o
at
e_

m
et
ab

o
lis
m

rs
13

08
21

84
PC

C
B

−
4.
77

1
7.
52

E-
06

4.
21

E-
03

1.
00

E-
04

4
FA

LS
E

ST
A
G
1

Y
ES

Y
ES

Pr
o
p
an

o
at
e_

m
et
ab

o
lis
m

rs
65

40
45

0
IK
B
K
E

−
4.
96

6
3.
49

E-
06

2.
24

E-
03

1.
00

E-
04

2
FA

LS
E

R
A
SS

F5
Y
ES

Y
ES

R
IG
_i
_l
ik
e_

re
ce
p
to
r_
si
g
n
al
in
g
_p

at
h
w
ay

✔

rs
13

91
57

98
7

TL
R
6

6.
55

3
4.
14

E-
09

6.
14

E-
06

1.
00

E-
04

2
TR

U
E

TL
R6

Y
ES

Y
ES

To
ll_
lik
e_

re
ce
p
to
r_
si
g
n
al
in
g
_p

at
h
w
ay

rs
12

27
49

92
M
M
P7

4.
91

4
4.
29

E-
06

2.
63

E-
03

1.
00

E-
04

4
FA

LS
E

M
M
P2

7
Y
ES

Y
ES

W
n
t_
si
g
n
al
in
g
_p

at
h
w
ay

✔

rs
79

58
45

46
N
FA
TC

4
5.
67

7
1.
86

E-
07

1.
78

E-
04

1.
00

E-
04

2
FA

LS
E

C
M
A
1

Y
ES

W
n
t_
si
g
n
al
in
g
_p

at
h
w
ay
/

B
_c
el
l_
re
ce
p
to
r_
si
g
n
al
in
g
_p

at
h
w
ay
/

M
A
PK

_s
ig
n
al
in
g
_p

at
h
w
ay
/

T_
ce
ll_
re
ce
p
to
r_
si
g
n
al
in
g
_p

at
h
w
ay

✔

Controllability in an islet specific regulatory network
A Sharma et al.

6

npj Systems Biology and Applications (2018) 25 Published in partnership with the Systems Biology Institute



5mM (Mann-Whitney test p= 0.009), 10 mM (p= 6.72e-05), and
30mM (p= 8.63e-06) glucose levels (Fig. 4a). This indicates the
potential role of eQTL genes in β-cell function as these cells are
regulated both acutely and chronically by the extracellular glucose
concentration. By applying a greedy algorithm (Steiner tree) in an
integrated network of EGRN and protein interaction network, we
observed a single connected component of eQTL genes with few
linkers (grey nodes) (Fig. 4b). This signifies that in reality a network
environment is better characterized by the local impact hypoth-
esis,1 indicating that perturbations are localized to the immediate
vicinity of the perturbed genes that carry the eQTLs.

New mechanistic connections in T2D
To find the connection between the HiCc pathways and T2D-
associated genes, we focused on an eQTL SNP (rs79584546)
associated with the expression of the gene NFATC4 (q-value=
1.78E-04), which is associated with four HiCc pathways: Wnt
signaling, B-cell receptor signaling, MAPK signaling, and T-cell
receptor signaling pathways (Fig. 5a). We asked whether the T2D-
related genes implicated in GWAS and literature are downstream
targets of NFATC4. This might help in explaining their role in four
HiCc pathways. The NFATC4 gene interacts with PPARG, and
different MAP kinases (MAPK1, MAPK3, MAPK8, MAPK9, MAPK14)
(Supplementary Figure 6). It is known that ablation of NFATC4
increases insulin sensitivity, in part, by sustained activation of the
insulin-signaling pathway.21 We, therefore, next explored the
downstream effect of transcriptional targets of NFATC4.
NFATC4 has been reported to be a possible target for up-

regulated transcription by TGF-alpha.22 Therefore, we used TGF-
alpha to augment or induce Nfatc4 mRNA transcription during a
glucose challenge in functional rat pancreatic beta islet cells
in vitro. Nfatc4 was effectively silenced (see 'Methods' for details
on the in vitro silencing experiments) as seen in real time qPCR
with four different rat-specific Nfatc4 probes (Supplementary
Figure 7a-d). In order to assess the downstream effect of Nfatc4,
we gathered putative T2D candidate genes regulated by the NFAT
family members from GWAS and literature.23 In particular, we
selected 13 highly up-regulated and down-regulated

transcriptional targets of Nfatc1 and Nfatc2, namely Etv1, Jazf1,
Pparg, Vegfa, Arl15, Pex5l, Rbm38, Rbms1, Slc44a3, Spry2, St6gal1,
Tcf7l2, and Wfs1, based on a recent report23 that they inhibit the
expression of the first four genes while promoting the expression
of the latter nine genes. We supplemented this list with seven
putative transcriptional targets of Nfatc4, namely Cox2 (Ptgs2),
Egr2, Igf2, Opn (Spp1), Ppp3ca, Sox9 and Wnt7a, through literature
search via the MetaCore platform [https://portal.genego.com/].
The silencing of Nfatc4 in rat islet cell lines resulted in increased
expression of, Etv1, Igf2, Jazf1, and Vegfa mRNA, compared to
control siRNA treatment. In contrast, Arl15, Cox2, Egr2, Opn, Pexl5,
Pparg, Ppp3ca, Rbm38, Rbms1, Slc44a3, Sox9, Spry2, St6gal1,
Tcf7l2, Wfs1, and Wnt7a, all resulted in decreased mRNA
expression post Nfatc4 silencing (Fig. 5b).
The silencing of Nfatc4 in rat islet cell lines, thus displays

reduced expression of 16 downstream T2D candidate genes and
increased expression of four downstream T2D candidate genes. To
complete the circle, we went back to the human islet data and
assessed correlation of Nfatc4 expression with the aforemen-
tioned genes. We found that NFATC4 expression was positively
correlated with ETV1, VEGFA, EGR2, RBM38, SOX9, ST6GAL1,
TCF7L2, WFS1, and WNT7A and negatively correlated with SPRY2
(Supplementary Figure 8 and Supplementary Table 6). This
indicated the potential influence of NFATC4 expression on the
expression of the above genes in human pancreatic islets as well.
NFATC4 expression also positively correlated with HbA1C levels,
indicative of some effect on glycemic status. The mechanistic
connection between NFATC4 and TCF7L2 is particularly of interest
as TCF7L2 has been established as a major T2D susceptibility
gene.23,24 TCF7L2 is also a member of two of our HiCc pathways,
namely B-cell receptor signaling and Wnt signaling pathways. This
indicates the possibility of finding further unexplored connections
between the members of HiCc pathways within the context of
specific diseases. Overall, the approach helps not only in
identifying the potential dysregulated pathways, but also estab-
lishes the downstream regulation by NFATC4 in four important
T2D pathways (Fig. 5).

Fig. 4 eQTLs and the functional network. a eQTL genes and glucose levels: we tested the fold change difference of eQTL genes vs non-eQTL
genes in the transcriptomic data of rat islets pre-cultured at 2, 5, 10, and 30mM glucose. eQTL genes are significantly changed in expression
compared to non-eQTL genes. b Integrating EGRN and gene interaction networks with the eQTL-gene relationship associated with T2D. Most
of the genes in the integrated module are up-regulated in T2D subjects (nodes in green)
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DISCUSSION
By exploiting the topological measures of cellular re-wiring
associated with disease progression, it is possible to identify
new disease genes and pathways.1,2,6 With the advances in control
theory, and control principles becoming an important considera-
tion in many disciplines, including disease biology and biological
network analysis,25–27 network dynamics and regulation also
provide opportunities to identify key regulatory genes in health
and disease. Here, we exploited the Cc measure to identify key
pathways that could drive the islet regulatory network in T2D. We
established a framework to find the pathways that might be
related to the underlying hierarchical structure of disease
regulation and might add a new dimension in finding

dysregulated pathways compared to a number of established
methods like HotNet2.8 We identified 66 pathways as statistically
significant in the analysis and were able to identify known T2D
pathways (p= 5.76E-05) among the top gene list in our analysis,
which validates the approach as a means to capture disease
relevant pathways. The pathways captured in our analysis were
also enriched in T2D relevant omics sources. Furthermore, eQTL
analysis helped in pruning the HiCc pathways genes by identifying
the variants actually affecting the gene expression levels of these
genes (i.e., cis-eQTLs). These eQTL genes showed glucose-induced
changes in the islets.
Moreover, the application of our approach to other complex

diseases (asthma and COPD) suggests that it can be generalized,

Fig. 5 Nfatc4 in vitro validation. a Nfatc4 is at the intersection of four HiCc pathways, namely B-cell receptor signaling pathway, T-cell receptor
signaling pathway, MAPK signaling pathway, and Wnt signaling pathway. b The effect of silencing of Nfatc4 on putative downstream genes.
Colors indicate the z-score, which was calculated across all samples per gene and is shown relative to the average z-score of the control
samples. p-values were obtained by a two-sided t-test for two independent samples. c The network of the putative downstream effect of
Nfatc4 validated by in vitro silencing experiments
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and could be used in the context of other diseases in the future to
identify the key driver pathways.
Finally, we experimentally validated the process by which a

particular eQTL gene (NFATC4) regulates the expression of
numerous putative downstream T2D candidate genes of two
other genes of the same family, NFATC1 and NFATC2, which were
also shown to regulate T2D related genes by previous studies.23 In
particular, Nfatc4 silencing results confirmed similar transcription
regulation pattern for these genes except for Igf2, which showed
an opposite effect relative to the siControl condition. Results also
demonstrated that Nfatc4 increases gene expression of Pparg,
Tcf7l2, and Wfs1 which are genes already reported to be
associated with T2D as well as activation of the Wnt pathway as
predicted by systems genetics approach that is subsequently
validated in vitro.28 However, silencing Nfatc4 also appears to
have a tendency to inhibit osteopontin (Opn). We have previously
demonstrated that glucose dependent insulinotropic polypeptide
(GIP) stimulates expression of OPN in human islets where OPN
exerts protection against cytokine-induced apoptosis.29 The
connection between NFATC4 and TCF7L2, which has not been
reported previously in the literature, is particularly important as it
adds to the mechanistic information on two pathways (Wnt
signaling and B-cell signaling pathways) that were found to have
HiCc in the T2D pathobiologic context. Owing to this new
connection, NFATC4 and TCF7L2 also emerge as potential players
in the pathway communication between the T-cell receptor
signaling, MAPK signaling, Wnt signaling, and B-cell signaling
pathways. Overall, the positive experimental validation of our
model shows the utility of the Cc approach in pathway
prioritization. In particular, it may pave the way for discovering
hitherto uncovered cross-talk between pathways.
These results might help us understand better the controll-

ability of complex networks and provide a basis for designing an
efficient strategy for optimizing (normal) network control. There
are, however, outstanding annotation and methodological chal-
lenges remaining, including low-resolution pathway-based knowl-
edge, limited cell type-specific information, and incomplete
annotation of next-generation pathways. Despite these hurdles,
as the number and type of functional annotations increase,
coupled with technological advances in analytical methods that
provide better guidance for the utility of pathway analysis,
confidence in the results will likely improve. Although the
approach has been demonstrated using pancreatic islet gene-
expression data, it can be used to interpret pathways for other
complex diseases. Overall, controllability-based network analysis
may be of broad use in dissecting complex diseases and in
discovering novel therapeutic targets in this coming era of
systems medicine.

METHODS
Construction of GRN
We constructed a disease GRN by integrating gene expression data from
human pancreatic islets together with known information about transcrip-
tion factor binding sites. We used gene expression data from islets from 63
cadaver donors provided by the Nordic Islet Transplantation Programme
(http://www.nordicislets.org) (Supplementary Table 3). Islets were obtained
from 54 nondiabetic donors (25 females, 29 males, age 59 ± 9, BMI 25.9 ±
3.5, HbA1c 5.5 ± 1.1) and nine T2D donors (four females, five males, age 57
± 4, BMI 28.5 ± 4.5, HbA1c 7.2 ± 1.1). All procedures were approved by the
ethics committee at Lund University. Purity of islets was assessed by
dithizone staining, while measurement of DNA content and estimation of
the contribution of exocrine and endocrine tissue were assessed as
previously described.3 Gene expression was assayed using Affymetrix
Human Gene 1.0 ST arrays. We normalized the data by robust multiarray
averaging (RMA) and a custom Chip Description File (CDF) from the
Michigan Microarray Lab (http://brainarray.mbni.med.umich.edu, Version
13) which helps estimate gene-level expression more accurately by
summarizing probe sequences using up-to-date gene annotations.

To construct the GRN, we first performed feature selection on the genes
using a three-step procedure. First, we computed the variance of the
expression of each gene on the array across all 63 samples, and selected
the top 2000 most variable genes to add tissue-specific genes that are
expressed and active in human islets. Next, we added the nearest genes of
the 48 risk SNPs that have been associated with T2D through GWAS
(Supplementary Table 4) and that were also represented on the array.
Finally, we supplemented these genes with differentially expressed genes.
To do this, we used the LIMMA package in R30 to compute the B-statistic
for differential expression between the following phenotypic groups: (1)
diabetic vs non-diabetic, and (2) low vs high levels of HbA1c. These
comparisons were carried out between 63 patients with and without T2D
for (1) and donors with HbA1c < 6% and >6% from the human islets mRNA
data set for (2). Because very few genes passed statistical significance after
Benjamini-Hochberg adjustment for multiple testing, we used a liberal p <
0.05 threshold for the nominal (unadjusted) p-value to obtain a permissive
list of potential disease signature genes, as has been done previously.2

These genes were ranked according to the average of the two B-statistics,
and the top 464 genes that were not already in the GWAS or high-variance
gene sets were chosen to supplement the gene list up to a total of 2500
genes.
The final list of 2500 genes, together with the corresponding gene

expression values over all 63 patients, was used as input to build the GRN.
To infer the network, we used the R/Bioconductor package predictionet to
combine a set of known regulatory interactions together with gene
expression data via mutual information and causality inference.31 Briefly,
predictionet first uses the maximum relevance minimum redundancy
(MRMR) approach to select the optimal non-redundant set of parents (or
likely regulators) for each gene. In the first iteration of MRMR, each target
gene is assigned a parent node by maximizing the mutual information
between the expression profiles of the target gene and the parent gene. In
each successive iteration, another parent is added by maximizing the
mutual information between the new parent and the target gene while
minimizing the mutual information of the new parent with the existing
parents. This process is repeated until the maximum number of possible
parents is reached for each target gene; we allowed a maximum of three
parents, which is the default value. Next, each parent node is assigned a
causality score, which ranges from −1 to 1, based on whether it exhibits
conditional mutual information with the other parent nodes, anchoring it
as part of a causal “v-structure.” In the last step, one computes a weighted
sum of the network of known regulatory interactions with the causality-
based network, with the weight parameter chosen by the user. All edges
with a final score greater than zero are retained to populate the inferred
network. In our case, as prior evidence we used known regulatory
interactions from the TRANSFAC database and applied a weighting
parameter of 0.75 to combine the MRMR and prior-based edges.

Extended gene-regulatory network (EGRN)
A gene can be involved in various interactions, and its role, and
consequently its centrality, can vary across different biological networks.
In order to obtain a higher resolution understanding of the signaling
relationship in the GRN, we added kinase (http://www.phosphosite.org)
and signaling events to the model (Signalink database).32 This addition was
done in order to add potential downstream signaling events by the nodes
in the GRN. We call the full network, including transcriptional edges and
signaling edges, the EGRN.

Ranking the KEGG pathways using the Cc measure—HiCc
pathways
We started with an un-weighted directed EGRN G= (V, E) with N= |V|
nodes and L= |E| links. The Cc of node i, denoted as Cc(i), is defined to be
the generic dimension of controllable subspace or the size of controllable
subsystems if we control node i only.15 Hence, Cc(i) captures the “power” of
node i in controlling the whole network. For example, a simple network of
N= 7 nodes is shown in Fig.1b. When we control node x1 only, the
controlled network is represented by a directed network with an input
node u1 connected to x1. The dimension of the controllable subspace by
controlling nodes x1 is six, corresponding to the largest number of edges in
all stem-cycle disjoint subgraphs (an example is shown in red in Fig. 1),
where “stem” is defined as a directed path starting from an input node, so
that no nodes appear more than once in it. Hence, the Cc of node x1 is
Cc(1)= 6. In general, the Cc of any node in a directed network can be
calculated by solving a linear programming problem.15,33,34 The
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assumption was that if a pathway or module includes genes with high Cc
values, it might be higher in the hierarchy and must regulate other
downstream pathways with on average, lower Cc values. To test this
hypothesis, for each pathway in the KEGG database, we identify the
pathways with significantly greater Cc values compared to others. To
calculate the statistical significance based on the Cc values of the genes
representing the particular pathway, we use the Mann–Whitney U test with
a cutoff p-value < 0.05. A typical problem with pathway analysis methods is
bias toward the enrichment of cancer-related pathways as these pathways
have been studied more intensively. We, therefore, focus only on the non-
cancer HiCc pathways.

T2D relevance of the HiCc pathways in the EGRN
We next evaluated the relative enrichment of HiCc pathways genes across
two T2D-specific datasets:

i. Disease gene set: T2D genetic association database (T2DGADB) aims
to provide specialized information on the genetic risk factors
involved in the development of T2D. Seven hundred one publica-
tions in the T2D case-control genetic studies for the development of
the disease were extracted,35 which was defined as the gold
standard gene set. Overall, this dataset contained 143 genes.

ii. Genomics: This genome-wide meta-analysis (“DIAGRAMv3”) includes
data from 12171 cases and 56,862 controls of European descent
imputed up to 2.5 million autosomal SNPs.36 We computed a single
p-value for each gene in the interactome by the VEGAS method
using the whole GWAS data set.37 We considered the genes with
uncorrected p-value < 0.01 in our analysis, resulting in 1308 genes.
There was little overlap between (i) and (ii) gene sets. Moreover, to
avoid circularity, we exclude the 48 genes implicated in GWAS that
were used in the construction of EGRN from this dataset.

The enrichment of HiCc, non-HiCc and all pathway genes with the above
gene sets was calculated through Fisher’s Exact test.

eQTL analysis of HiCc pathway genes
One of the major findings from the T2D GWAS is that most of the trait-
associated SNPs are located in intronic, intergenic, or other non-coding
regions of the genome.38 As many SNPs are located in noncoding regions,
suggesting they may influence gene expression, we analyzed whether any
SNP within 250 kb of HiCc pathway genes (cis) would influence their gene
expression (eQTL). We used a linear model adjusting for age and sex as
implemented in the R Matrix eQTL package. Genotyping was performed on
the Illumina HumanOmniExpress 12v1C chips, and all the samples passed
standard genotype QC metrics. Genotypes were imputed to 1000
Genomes data, using IMPUTE2 and SHAPEIT.
The transcriptomic data from rat pancreatic islet after culture in low,

intermediate and high glucose was retrieved from Gene Expression
Omnibus (GEO-GSE12817). We performed differential expression analysis
between 2 and 10, 2 and 30, 5 and 10, 5 and 30 or 10 and 30mmol/l
glucose. We used the limma R package (ver 3.10.1) for the differential
expression analysis. We compared the fold change (absolute log) of eQTL
genes to all other differentially expressed genes and computed the p-
values by applying Mann–Whitney U test.

Functional network and eQTL-HiCc pathway genes
To evaluate the impact of genes in the vicinity of eQTL in different sources
of network data, we used HumanNet gene-interaction data. HumanNet
uses a Näive Bayesian approach to weight different types of evidence
together into a single interaction score focusing on data collected in
humans, yeast, worms, and flies.39 The hypothesis we tested was that if the
gene products (e.g., proteins) linked to the same disease phenotype
interact with each other more often than randomly linked gene
products40–42 and cluster in the same network neighborhood, then eQTL
genes must be connected through a single component in the gene
interaction network. To find the minimum number of genes that can
connect the eQTL into a connected component in the gene-interaction
network, we applied the Steiner tree algorithm using the Klein-Ravi
approximation43 implemented in the GenRev Python package (https://
bioinfo.uth.edu/GenRev.html),44 which is a node-weighted variant of the
Steiner tree problem and uses a greedy search strategy to iteratively
merge the terminal (or seed) genes into one large tree by first mapping
terminals to the network to see if they have any direct interactions.

Nfatc4 silencing and stimulation experiments in vitro
To validate Nfatc4 effect on putative downstream T2D candidate genes,
Nfatc4 mRNA expression was silenced in clonally derived rat pancreatic β-
islet cell line INS-1 (832/13), a generous contribution from Dr. Rohit
Kulkarni. Cells were maintained on RPMI 1640, 10% fetal calf serum, 10mM
HEPES, 2 mM L-glutamine, 1 mM sodium pyruvate, and 0.05mM 2-
mercaptoethanol (Thermo Fisher) supplemented with penicillin (100 Units/
ml) and streptomycin (100 μg/ml) (Pen/Strep). We transfected rat specific
Nfatc4 siRNA (Rat Nfatc4 ON-TARGET Smart Pool siRNA, GE Dharmacon)
using Lipofectamine RNAiMAX (Thermo Fisher) as per manufacturer’s
recommendation. For controls, we employed ON-TARGETplus Non-
Targeting Control Pool (GE Dharmacon) using the same concentration as
the test siRNA. Silencing was carried out in each well containing 60%
confluent cells in culture and were exposed to transfecting medium for
48 h at 37 °C in a humidified atmosphere containing 95% air and 5% CO2 in
the presence of 20 pmol siRNA per well in 12-well cell culture microplates.
After silencing, cells were allowed to recover for 16 h in regular growth

media followed by stimulation of Nfatc4 signaling by TGF alpha (TGF-a) at
50 ng/ml as described in another publication22 for 6 h. Subsequently, cells
were washed with HBSS once, then exposed to 17.3 mM glucose in HBSS
for 1.5 h. RNA from cells were harvested using column isolation (GE
Healthcare Life Sciences). Putative genes downstream of Nfatc4 were
tested using probes from Taqman Gene Expression Assay system (Thermo
Fisher) listed in Supplementary Table 5. Real time PCR was done with
Biomark HD (Fluidigm) thermocycler. Quadruplicates were used per
condition.

Expression correlation of NFATC4 with putative downstream
genes in human islet cells
RNA sequencing was performed on the Hi-seq as described previously.19

Alignments were performed using STAR and gene counts were assessed
using featureCounts. Spearman correlation was used to assess the
relationships between NFATC4 expression and ETV1, IGF2, JAZF1, VEGFA,
PTGS2/COX2, EGR2, SPP1 (OPN), PPARG, PPP3CA, RBM38, RBMS1, SOX9,
SPRY2, ST6GAL1, TCF7L2, WFS1, and WNT7A.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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