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The expectation that lowering blood pressure with any
antihypertensive agent will have a beneficial outcome is now
open to question. In particular, the Antihypertensive and
Lipid-Lowering Treatment to Prevent Heart Attack Trial
(ALLHAT) collaborative research group discontinued
doxazosin from that study owing to a doubled incidence of
congestive heart failure, as well as a higher rate of angina,
and stroke, in patients receiving doxazosin.

ALLHAT is a randomized, double blind, active-controlled trial
sponsored by the National Heart, Lung, and Blood Institute
that was initiated in 1994. In two arms of the four-arm study,
participants were randomly assigned to receive either
chlorthalidone (12.5–25 mg/day) or doxazosin (2–8 mg/day)
for a planned follow-up of 4–8 years. In January 2000, the
decision was made to discontinue doxazosin. However, a
mechanism to explain the poor outcome of the study has not
been apparent. The ALLHAT collaborators speculated that
doxazosin, an α-adrenergic blocker, might increase plasma
volume and norepinephrine (noradrenaline) levels, but for the

most part they were puzzled by the results of their study [1].
Perhaps not coincidentally, another α-adrenergic blocker,
prazosin, has similarly been associated with a higher
cardiovascular mortality compared with other after-load
reducers, in the Vasodilator Heart Failure Trial (V-HeFT) [2].

The poor outcome of either study was not expected. In fact,
α-adrenergic blockers improve patient’s metabolic profile by
raising high-density lipoprotein levels, lowering triacylglycerol
levels and increasing sensitivity to insulin. They also improve
fibrinolysis and reduce left ventricular afterload [3].

A hypothesis to explain how α-adrenergic blockers confer
harm on the cardiovascular system is that it lowers an
important group of cytoprotective proteins, the heat shock
proteins (Hsps). Hsps protect cellular elements from injury by
refolding proteins, decreasing oxidation, suppressing the
production and activity of inflammatory cytokines, and
delaying apoptosis (programmed cell death). The Hsp
response to stress is one of the most highly conserved
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Abstract

An explanation for the higher incidence of cardiovascular disease and heart failure in the
Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) with doxazosin
and the Vasodilator Heart Failure Trial (V-HeFT) with prazosin might be decreased expression of heat
shock proteins. Heat shock proteins help to protect cells from ischemic injury by decreasing oxidation,
suppressing cytokine action, refolding damaged proteins, and decreasing apoptosis. I hypothesize that
α-adrenergic blockade decreases heat shock protein levels, thus making the heart and vascular system
vulnerable to injury from pathologic processes such as ischemia, hypertension, oxidation or
inflammation. Similarly, poor cardiovascular outcomes with calcium-channel blockers might be due to
decreased expression of heat shock proteins.
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adaptive responses in nature, and Hsps are found in all living
cells [4]. Although known to cell biologists for four decades,
Hsps have received little clinical attention.

Hsps are modulated by α-adrenergic activity. Prazosin has
been shown to block the expression of Hsps in response to
cold stress in rats [5]. Additionally, norepinephrine given
before inducing ischemia in isolated rat hearts induces Hsp
expression and protects against post-ischemic myocardial
dysfunction. Pretreatment with prazosin abolishes
norepinephrine-induced cardioprotection from ischemia,
leaving the heart vulnerable to an ischemic insult [6].
Similarly, the normally reduced infarct size induced by
ischemic preconditioning is lost when chloroethylclonodine,
an α1B-adrenergic antagonist, is administered prior to
inducing the transient ischemia; whereas 5-methylurapidil, an
α1A-adrenergic antagonist, does not block it [7]. The stress
of a failing heart normally increases the ‘protective’
expression of myocardial Hsps [8], and yet only when
myocardial Hsp levels decrease does the injured heart
demonstrate functional deterioration [9].

In contrast, augmentation of Hsp synthesis by a co-inducer of
Hsp, bimoclomol, protects myocytes from ischemia [10] and
the endothelium from hypertensive damage [11]. Similarly,
overexpression of Hsps in transgenic mice reduces
apoptosis and infarct size, in both heart and brain ischemic
models [12,13]. When Hsp expression is reduced by an
α-adrenergic blocker like doxazosin or prazosin, the
cardiovascular system might be left unprotected and
vulnerable to injury, as was observed in the ALLHAT and the
V-HeFT trials.

Is low Hsp expression a cardiovascular risk factor? No
prospective study has measured Hsp levels and followed
subsequent cardiovascular disease (CVD) outcome.
However, lower Hsp responses are observed in conditions
associated with CVD such as aging and diabetes, whereas
higher Hsp expression is associated with subjects with lower
CVD risk – those who regularly exercise or consume modest
amounts of alcohol [14].

α-Adrenergic blockers are also used therapeutically to improve
prostatic hypertrophy. Apoptosis in the prostate is thought to
be a major effect of these agents in their relief of the
symptoms of prostatic hypertrophy. A molecular mechanism
to explain the ability of α-adrenergic blockers to reduce
prostatic hypertrophy is via accelerated apoptosis of stromal
and epithelial prostatic tissue [15]. I hypothesize that low
Hsp levels induced by α-adrenergic blockers will promote
apoptosis which may benefit a person with an enlarging
prostate but may be harmful to the heart, resulting in an
unfavorable outcome. If the detrimental effects of prazosin
and doxazosin are the result of a class effect, then other
agents in this class, such as terazosin and tamsulosin, should
be studied for adverse outcome. Encouragingly, however,

tamsulosin targets α1A-adrenergic receptors in the prostate,
not vascular α1B-adrenergic receptors [16], and therefore,
theoretically, it should not cause vascular damage.

Are there other classes of drugs that lower blood pressure
effectively but produce disappointing outcomes in trials? As
a group, calcium-channel blockers have not proved to be
beneficial in reducing myocardial infarction or congestive
heart failure and yet are efficacious in treating hypertension.
In fact, a meta-analysis of nine major hypertension trials
suggested that calcium-channel blockers are inferior to other
types of antihypertensive drug in reducing the risk of heart
disease [17]. Consistent with the previously outlined thesis, a
study in vitro observed lower Hsp expression in myocytes
exposed to calcium-channel blockers [18]. In addition, the
higher incidence of gastrointestinal hemorrhage observed
with calcium-channel blockers [19] might have been the
result of lower levels of Hsps – which normally protect the
gastric mucosa from injury [20].

How can we test the hypothesis that α1B blockers put the
myocardium at risk through a decrease in Hsp levels? We
would start by examining both ischemic and hypertensive
animal models of congestive heart failure treated either with a
placebo, an α1A blocker, or an α1B blocker, and then study
the subsequent cardiac functional outcome with tissue
correlations to all of the major Hsps (Hsp 27, 60, 70, and
90). In humans, a trial is needed to study the effect that
different adrenergic blockers, used in the therapy of
hypertrophy benign prostatic hyperplasia (BPH), have on the
cardiovascular risk. Importantly, BPH is itself associated with
a two times higher CVD morbidity. Therefore, when studying
adverse cardiovascular effects of BPH therapeutic agents in
a nonrandomized fashion, it is essential to measure all
relevant CVD risk factors in the database and use the
information for statistical adjustment [21]. Unfortunately, a
simple blood test for Hsps is not currently available.

The need for health outcome studies to guide medical care
choices is clearly demonstrated by studies such as the
ALLHAT trial. Improvement in cardiovascular risk factors with
an α-adrenergic blocker would have predicted a smaller
number of cardiovascular events; however, the ALLHAT trial
observed the opposite result, prompting early termination of
the doxazosin arm of the study. Lower levels of Hsps might
explain why α-adrenergic blockers (particularly α1B blockers)
and, perhaps, calcium-channel blockers, have a less than
ideal effect on cardiovascular health.
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