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ABSTRACT:    Intervertebral disc degeneration (IVDD) is a major cause of low back pain. Diabetes mellitus is a 

chronic inflammatory disease that may cause or aggravate IVDD; however, the mechanism by which diabetes 

induce IVDD is currently unclear. Compared to non-diabetic individuals, diabetic patients have higher levels of 

plasma cytokines, especially TNF-α, IL-1β, IL-5, IL-6, IL-7, IL-10, and IL-18. Due to the crucial role of cytokines 

in the process of intervertebral disc degeneration, we hypothesized that elevation of these cytokines in plasma of 

diabetic patients may be involved in the process of diabetes-induced IVDD. In this review, changes in plasma 

cytokine levels in diabetic patients were summarized and the potential role of elevated cytokines in diabetes-

induced IVDD was discussed. Results showed that some cytokines such as TNF-α and IL-1β may accelerate the 

development of IVDD, while others such as IL-10 is supposed to prevent its development. Apoptosis, senescence, 

and extracellular matrix metabolism were found to be regulated by these cytokines in IVDD. Further studies are 

required to validate the cytokines targeted strategy for diabetic IVDD therapy. 
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Globally, low back pain (LBP) is a common chronic 

disease that is associated with a significant financial 

burden [1]. Approximately 40% of the global population 

suffers from LBP during their lifetime [2]. In the US, it 

has been reported that from 1996 to 2013, low back and 

neck pain-associated treatment costs increased by an 

estimated $87.6 billion. Among the Chinese people, LBP 

is the leading cause of disability [3, 4]. The potential 

causes of LBP involve the pathological changes of the 

spinal column, including intervertebral disc and facet 

joints. Intervertebral disc degeneration (IVDD), which 

has a high global incidence, is a major risk factor for low 

back pain [5]. Clinically, IVDD is a complicated disease 

that is caused by multiple factors, including age, genetic 

and environmental factors. It is characterized by 

biochemical and cellular changes in the disc tissue [6-9]. 

Occupational habits such as heavy lifting and lifestyle 

habits like lack of exercises and driving cars for extended 

periods of time contribute to IVDD development [10]. 

Moreover, smoking and trauma are associated with the 

pathogenesis of IVDD [8-11]. However, the mechanisms 

involved in IVDD have not been clearly established. 
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The pathogenesis of intervertebral disc degeneration 

 

The intervertebral disc (IVD), an elegant structure, is 

composed of nucleus pulposus (NP), annulus fibrosus 

(AF) and cartilage endplate (CEP). The gelatinous 

nucleus pulposus, which is predominantly composed of 

Type II collagen (Col II) and proteoglycans with a high-

water content, is the major component of IVD. It is 

important in counteracting physiological stress due to 

human activities [12]. In addition, nucleus pulposus is 

important in stabilization and biomechanical maintenance 

of the disc. Nucleus pulposus cell necrosis and apoptosis 

is highly associated with degeneration of intervertebral 

discs [13]. The loss of nucleus pulpous impairs the 

balance between extracellular matrix (ECM) synthesis 

and degradation, leading to IVDD development. 

Clinically, IVDD is a degenerative disease that is mainly 

common among the elderly. Thus, studies have 

investigated the relationship between senescence and 

IVDD [14, 15]. Consistent with these studies, we found 

that nucleus pulposus cell senescence accelerated IVDD 

progression, which was ameliorated when NP cell 

senescence was inhibited [16, 17]. Therefore, NP cell 

apoptosis and senescence is involved in IVDD. Annulus 

fibrosus, a component of the intervertebral disc tissue, is 

a thick and dense structure, including the inner and outer 

annulus. It protects the nucleus pulposus by alleviating 

nucleus pulposus and vertebral body stress. During 

IVDD, collagen II levels gradually decrease, leading to 

annular disruption and IVDD progression [18]. The 

nucleus pulposus and annulus fibrosus play a significant 

role in IVDD progression. Moreover, the cartilage 

endplate is involved in IVDD progression. Due to its 

restrictive blood supply effects, the endplate is crucial in 

disc degeneration [19, 20]. Cartilage endplate apoptosis 

and senescence blocks blood nutrition supply and initiates 

IVDD [20]. IVDD is a complicated pathological process 

that involves various factors, such as nutrition, cell 

senescence, apoptosis, inflammation, cytokines and 

extracellular matrix degradation of the disc tissue. The 

definite etiology and pathophysiology of IVDD should be 

further investigated. 

 

Association between diabetes mellitus and 

intervertebral disc degeneration 

 

Diabetes mellitus, which is associated with elevated blood 

glucose levels, is a chronic disease. It results from insulin 

deficiency and insulin resistance and is classified as type 

1 diabetes (T1D) or type 2 diabetes (T2D). In 2013, the 

estimated overall prevalence of diabetes was 10.9% while 

that of prediabetes was 35.7% among adults in China [21]. 

Diabetes mellitus-associated complications, including 

neuropathy, nephropathy and cardiovascular diseases, 

significantly decrease the quality of life and increase 

mortality rates [22]. There is an association between 

diabetes mellitus and IVDD. First, Sakellaridis reported a 

significant increase in lumber disc surgery incidences 

among diabetes mellitus patients [23]. In Finland, a study 

involving 638 diabetic and 32510 non-diabetic 

individuals revealed that herniated disc incidences in 

diabetic patients were significantly higher than in non-

diabetic patients [24]. In Asia, a 4-year case follow-up 

study in Japan showed that diabetes was closely 

associated with upper lumbar disc degeneration 

(OR=6.83; 95% CI, 1.07 -- 133.7) [25]. A retrospective 

study reported that being an immune disease with an early 

onset time and difficult glucose control, T1D results in 

early IVDD [26]. Don-Kyu Kim et al. [27] documented 

that T2D is significantly associated with degenerative 

lumbar spine disorders, therefore, they postulated that 

diabetes is a predisposing factor for lumbar spine 

disorders. In our previous study, to exclude the effects of 

other interfering factors, we used animal models to 

evaluate the effects of diabetes on IVDD alone. We 

established that nucleus pulposus cell senescence and 

apoptosis in STZ-induced diabetic rats were markedly 

increased while the extracellular matrix was degraded, 

leading to IVDD [28]. It has also been suggested that T1D 

contributes to IVDD by promoting aggrecan degradation 

and apoptosis [29, 30]. In a previous study, T2D induced 

by leptin receptor-deficient knockout (db/db) led to IVDD 

by elevating MMP3 levels and promoting cell apoptosis 

[31]. In vivo and in vitro studies have supported the 

hypothesis that diabetes is a major risk factor for IVDD. 

Therefore, we defined diabetes-induced IVDD as 

Diabetic Intervertebral Disc Degeneration (DB-IVDD). 

Although clinical and animal studies have confirmed that 

diabetes can cause or worsen IVDD, the exact 

pathomechanisms have not been conclusively determined. 

Given the increasing diabetes incidences, it is important 

to investigate the potential pathomechanisms of diabetes-

induced IVDD.  

 

Mechanisms of diabetes-induced intervertebral disc 

degeneration 

 

Apoptosis, senescence, advanced glycation end products 

(AGEs) accumulation, microvascular damage, changes in 

the extracellular matrix (ECM) and direct impairment by 

hyperglycemia have been associated with diabetes-

induced IVDD. Cell death and ECM degradation are 

major mechanisms of IVDD, including diabetes-induced 

IVDD. Cell death, a functional biological process 

required for cellular development, is classified as 

apoptosis, necrosis or autophagy [32]. Cell death 

modulation is associated with various diseases and highly 

contributes to IVDD [33]. The main intervertebral disc 
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components are collagen II and aggrecans. Due to 

intrinsic regulation by growth and catabolic factors, 

anabolism and catabolism of ECM are in equilibrium [18]. 

When the balance is broken, IVDD development is 

initiated. Studies have principally focused on regulation 

of apoptosis, the autophagic pathway and ECM 

degradation in IVDD, including in diabetes-induced 

IVDD.  

High glucose, reactive oxygen species (ROS), 

accumulation of AGEs, inflammation and obesity are 

major factors that contribute to diabetes-induced IVDD 

[34, 35]. Diabetes-induced degenerative changes have 

been associated with decreased endplate porosity, 

increased thickness, and accumulation of advanced 

glycation end products (AGEs) [36]. In STZ-induced 

diabetic rats, AGEs accumulation in the nucleus pulposus 

accelerated disc degeneration by upregulating the levels 

of matrix degrading enzymes (MMP-2) [35]. In addition, 

AGEs accumulation in NP may promote disc 

degeneration-associated inflammation by disturbing the 

extracellular matrix via NLRP3 inflammasome activation 
[37]. An experimental study also suggested that AGEs 

induce AF cells apoptosis, which may provide a 

theoretical basis for diabetic IVD degeneration [38]. 

Chronic ingestion of AGEs has a significant effect of 

IVDD [39]. Mechanistically, AGEs may also enhance 

endochondral ossification in intervertebral discs, thereby 

aggravating IVDD. Endplate cartilage calcification plays 

a significant role in accelerating disc degeneration by 

blocking nutritional supply [40].  

Elevated blood glucose levels, a major characteristic 

of diabetes mellitus-related disease, have a direct or 

indirect influence on disc degeneration. High glucose 

upregulates ROS levels, which promotes the apoptosis of 

NP as well as CEP cells and enhances the catabolic 

activities of the ECM, aggravating IVDD [41, 42]. The 

pathogenesis of IVDD is tightly associated with ROS 
[43]. ROS modulates homeostasis through various 

signaling pathways, including the nuclear factor-κB 

(NF-κB) pathway, the mitogen-activated protein kinases 

(MAPKS) pathway, and the PI3K/AKT pathway [44]. 

Hyperglycemia-induced ROS promotes NP cell apoptosis 

through the mitochondrial apoptosis pathway [45]. The 

death of notochordal cells through the mitochondrial 

apoptosis and death receptor pathways marks the 

induction of IVDD [46]. Senescence, a cellular state that 

is characterized by cell cycle arrest, can be accelerated by 

oxygen free radicals’ accumulation. The p53/p21 and 

p16/pRB pathways are the two major pathways that 

modulate the senescent state. These two pathways are 

modulated by various factors, including oxidative stress 

and inflammation [47]. ROS-induced mitochondrial 

dysfunction and oxidative stress contributes to disc cell 

senescence, thereby promoting IVDD. High glucose 

affects the viability of nucleus pulposus cells and matrix 

degrading enzymes [48]. Moreover, high glucose 

significantly modulates the expressions of ECM-related 

proteins, including TIMPs downregulation and MMPs 

overexpression (1, 3, 13), resulting in rapid IVDD and 

fibrosis. Collagen II and proteoglycans were found to be 

suppressed in high glucose treated NP cells [36, 41]. Since 

the endplate cartilage is the main route for nutrition 

supply, cartilage endplate degeneration can block 

nutrition supply [49]. Nutritional deprivation leads to cell 

death and ECM degradation, which triggers IVDD [49]. 

Excess apoptosis and calcification of cartilaginous 

endplate cells accelerates cartilage endplate degeneration 
[20]. During IVDD, ROS is the main stimuli for cartilage 

endplate apoptosis and calcification [20]. Autophagy is a 

complicated process whose main function is to degrade 

damaged organelles and useless proteins [50]. Animal 

model studies reported that autophagy was enhanced by 

high blood glucose, which can be seen as a protective 

measure against apoptosis and senescence. Metformin 

protects nucleus pulposus cells from apoptosis and 

senescence by stimulating autophagy [16, 51]. The silent 

mating type information regulator 2 homolog1 (sirt1), an 

NAD+ dependent histone deacetylase is associated with 

various aging-related diseases and plays an important role 

in cellular senescence as well as disc cell apoptosis. Non-

restriction of calories in the nucleus pulposus due to high 

glucose degrades sirt1 activities, which enhances disc cell 

apoptosis [52].  

Diabetes mellitus is a chronic inflammatory disease. 

Inflammation plays an important role in IVDD 

pathogenesis [53]. In addition, circulating levels of acute-

phase proteins as well as some cytokines have been shown 

to be elevated in diabetes patients [54, 55]. 

Hyperglycemia impairs β cell functions and directly or 

indirectly activates immune responses, thereby inducing 

the changes in levels of circulating cytokines and other 

proteins [54]. Vascular ingrowth in the nucleus pulposus 

is a vital pathological phenomenon of IVDD [56, 57]. LA 

Binch et al. [58] stated that cytokine secretion, 

particularly IL-1β, during IVDD progression facilitates 

vascular ingrowth, via which cytokines can  exert their 

effectiveness, implying that vascular ingrowth 

suppression may be a potential therapeutic strategy [59]. 

However, the effects of dysregulated cytokine levels in 

DB-IVDD have not been conclusively determined. 

 

Potential roles of elevated cytokines in DB-IVDD 

 

In this section, we elucidate on some cytokines that are 

differentially expressed between diabetic and healthy 

individuals (Table 1). Studies have reported that IL-6 is 

significantly elevated in both T1D and T2D (Table 1) and 

is a proven risk factor and an independent predictor for 

javascript:;
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T2D [60-62]. Due to IL-6-induced HS-CRP production, 

plasma IL-1β levels have been shown to be elevated in 

T1D and T2D [55, 63]. However, recent studies have 

reported that differences in IL-1β levels between T2D and 

healthy people are not significant (p>0.05; Table1) [60, 

61]. Compared to healthy people, IL-10, an anti-

inflammatory factor released to ameliorate inflammation, 

is elevated in T1D and T2D patients (Table1) [64, 65]. 

Levels of IL-18, a cytokine in the interleukin-1 family that 

is involved in the development and progression of diet-

induced cardiac dysfunctions, are elevated in T2D 

patients (Table 1) [66]. In addition, compared to healthy 

individuals, plasma TNF-α levels are significantly 

elevated in both types of diabetes patients (Table 1). As a 

pro-inflammatory cytokine, TNF-α may have an 

important role in IVDD [60]. Moreover, TNF-α levels are 

also increased in diabetes (Table 1), where it may enhance 

the production of inflammatory factors by T cells. 

Compared to healthy individuals, hepatocyte growth 

factor (HGF) and vascular endothelial growth factor 

receptor (VEGFR-1/2) levels are higher in diabetic 

patients (Table 1) [67]. In pre-diabetics, IL-5 and IL-7 

levels were found to be elevated, compared to controls 

(Table 1). Elevations of IL-7 in T1D is a risk factor for 

diabetic nephropathy [68], which has potential 

associations with IL-5 [69]. Various factors have been 

attributed to the development of diabetic nephropathy, 

which may share similar mechanisms with IVDD [70]. 

Therefore, IL-5 and IL-7 may have a potential impact on 

IVDD. 

 

Table 1. Plasma concentrations of some cytokines in diabetic patients and healthy individuals. 

 
 Control T1D T2D Prediabetes   p Reference 

IL-1β(pg/ml) 3.2 6.4   0.0104 [55] 

IL-1β(pg/ml) 0.47±0.79       0.57±0.93  0.1959 [60] 

IL-2(pg/ml) 4.2 7.6   0.0087 [55] 

IL-2R (pg/ml) 50.80±7.269     121.4±22.75  0.049 [67] 

IL-4(pg/ml) 9.37±2.98     12.42±2.86 0.32 [68] 

IL-5(pg/ml) 0.40±0.11   1.19± 0.26 0.01 [68] 

IL-6(pg/ml) 1.9±0.6 5.0±1.3   ＜0.02 [62] 

IL-6 (pg/ml) 1.67±1.59  2.45±1.80  ＜0.0001 [60]  

IL-7(pg/ml) 2.8 7.1   0.0034 [55] 

IL-7 (pg/ml) 1.43±0.38   2.85±0.53 0.01 [68] 

IL-10(pg/ml) 7.6 33.4   ＜0.05 [65] 

IL-10 (pg/ml) 1.76±0.94  3.02±2.27  0.0163 [64] 

IL-16 (pg/ml) 105.2±20.43  112.2±21.62  0.08198 [67] 

IL-18 (pg/ml)   34.75±4.82  88.47±12.13  0.0073 [67] 

IFN-α(pg/ml)    4.233±0.489  4.845±4.845  0.72 [67] 

IFN-γ (pg/ml) 2.24±0.45   3.57±0.59 0.21 [68] 

TNF-α(pg/ml) 11.3 24.2   ＜0.05 [55] 

TNF-α (pg/ml) 1.79±1.28  2.03±1.51  ＜0.0094 [60] 

TNF-αR2(pg/ml) 2383  2646.5  ＜0.001 [134] 

HGF (pg/ml)   589.1±47.02  863.1±126.9  0.045 [67] 

VEGFR-1(pg/ml) 643.8  2044  0.0001 [67] 

VEGFR-2 (pg/ml) 7103  19190  0.0005 [67] 

sIL-6R (pg/ml) 35040 35370   0.13 [135] 

SIL-6Ra (pg/ml) 45900  65900  0.032 [67] 
 

Data are displayed as median (IQR) or mean ±SEM. T1D: type 1 diabetes mellitus. T2D: type 2 diabetes mellitus.  

Cytokines are important regulators of diabetes 

mellitus and IVDD [71]. As degeneration proceeds, 

elevated inflammatory cytokine levels accelerate the 

process of IVDD by enhancing aggrecan as well as 

collagen degradation and promoting phenotypic changes 

of disc cells [5]. Moreover, inflammatory cytokines can 

induce the death of disc cells and ECM degradation, 
thereby contributing to IVDD [53]. Diabetes is a chronic 

inflammatory disease that is associated with alterations in 

various inflammatory factors [72]. Several cytokines are 

elevated in diabetes patients, where they accelerate IVDD. 

Therefore, we summarized some of the elevated cytokines 

in diabetes and briefly discussed the mechanisms through 

which these cytokines accelerate IVDD in diabetics. 

 

TNF-α in DB-IVDD  

 

Tumor necrosis factor (TNF-α), an important member of 

the TNF superfamily of ligands, secreted by 

macrophagocytes, T cells and some non-immune cells, is 
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a pro-inflammatory cytokine. As previously mentioned, 

TNF-α is elevated in type 1 and 2 diabetes patients. 

Bachmeier reported that degenerative and herniated 

human IVD tissues have higher TNF-α levels, compared 

to non-degenerative IVD tissues [73]. Through cell 

apoptosis, senescence, autophagy, ECM degradation and 

inflammation, elevated TNF-α plays a significant role in 

DB-IVDD progression [74]. Evidence supports the 

hypothesis that TNF-α is involved in IVD cell apoptosis. 

TNF-α elevates the apoptotic rate and up-regulates p53 as 

well as cleaved-caspase 3 levels in various cells. [75]. 

Cytochrome C, which is involved in apoptosis, is also 

associated with TNF-α-induced IVDD [76]. TNF-α 

enhances apoptosis in IVDD by activating JNK/ERK-

MAPK and NF-κB signaling pathways [77]. In addition, 

autophagy is involved in TNF-α-induced IVDD, as a 

catabolic mechanism against cell stress. Annulus fibrosus 

(AF) plays an important role in IVDD. After treatment 

with TNF-α, autophagy-related proteins, such as 

autophagy modulator p62 and WIPI49, in AF cells were 

increased, suggesting that TNF-α activates autophagy but, 

at the same time, blocks the autophagy flux [78]. Using 

mice models, Risbud found that systemic TNF-α 

elevation was not enough to promote complete disc 

degeneration, however, it caused spontaneous disc 

herniation [79]. Cheng Wang showed that TNF-α 

stimulated NP and AF cells to synthesize many pro-

inflammatory cytokines, such as IL-6, IL-8, IL-1β, IL-8 

and IL-17, thereby amplifying inflammatory responses in 

inflammation-induced IVDD [74]. Given that ECM 

degradation is tightly associated with DB-IVDD 

progression, TNF-α also promotes ECM degradation by 

inducing the production of various enzymes such as 

MMPs and ADAMTSs, which are responsible for ECM 

degradation,[74, 80, 81] we believe that TNF-a plays a 

facilitating role in DB-IVDD. 

 

IL-1β in DB-IVDD 

 

IL-1β is a pro-inflammatory cytokine whose over-

production exerts deleterious effects on peripheral insulin 

signaling and β-cell functions [82].  IL-1β is a critical 

effector molecule in non-obese diabetic (NOD) mice 

models of T1D, and it’s also an important inflammatory 

mediator of type II diabetes [83, 84]. Inflammatory 

responses are induced by overexpression of inflammatory 

cytokines, mainly IL-1β, and are highly involved in IVDD 

progression [85]. IL‑1 stimulates the production of several 

metalloproteinases, leading to connective tissue 

breakdown and suppression of proteoglycan as well as 

type II collagen levels, thereby exerting a global negative 

effect on articular cartilage. In addition, IL‑1 exerts direct 

and indirect stimulatory effects on osteoclast maturation, 

and therefore, participates in the development of bony 

erosions in arthritis [86]. Qiu-Hui Pan demonstrated that 

disc cells pre-treated with IL-1β increased their apoptotic 

rates in response to FasL in vitro [87]. Risbud MV et al. 

[88] concluded that IL-1β regulates SDC4 expressions, 

which play a key role in the pathogenesis of degenerative 

disc diseases by promoting aggrecan degradation via 

ADAMTS-5 in the nucleus pulposus. In our previous 

study, we found that IL-1β induced the expressions of 

senescence-associated secreted phenotype (SASP) factors, 

which might influence the microenvironment in NP 

tissues and lead to local dysfunctions [89]. Cao Yang 

reported that reactive oxygen species (ROS) induced NF-

κB pathway activation promotes NLRP3 inflammasome 

activation and IL-1β release, both of which enhances NP 

degeneration [90]. Therefore, specifically elevated IL-1β 

in diabetes may promote the occurrence of DB-IVDD.   

 

IL-5 in DB-IVDD 

 

IL-5 was first discovered as a "T-cell replacing factor" 

that is secreted by T cells to stimulate antibody production 

by B cells [91]. The major biological function of IL-5 is 

to promote eosinophil activation, proliferation and 

migration. It exerts its effects on target cells via the IL-5 

receptor (IL-5R), which is composed of a unique α chain 

(IL-5R to CD125) and the common cytokine β-chain, 

which is essential for IL-5 signal transduction [92]. 

Immune responses in NP tissues lead to chronic 

inflammation and consistent pain in patients. Plasma IL-5 

levels have been shown to be elevated in prediabetes 

patients, compared to healthy volunteers. However, the 

significance of IL-5 in IVDD has not been conclusively 

determined. As previously reported, JAK2 and STATs are 

indispensable in IL-5 dependent signaling transduction in 

B cells, Th2 cells and eosinophils [93]. JAK2 and STATs 

signaling pathways are also involved in IVDD 

progression [94], suggesting that IL-5 participates in 

IVDD (including DB-IVDD) via the JAK2/STATs 

signaling pathway. Moreover, Ras GTPase extracellular 

signaling pathways are involved in IL-5 dependent cell 

death, proliferation and differentiation of eosinophils [93, 

95]. Ras is also associated with extracellular matrix 

degradation in the chondrocytes, suggesting that IL-5 

influences Collagen II and MMPs levels in intervertebral 

disc tissues in IVDD [96, 97]. Polarization of helper T 

lymphocytes (Th2) may be involved in IVDD via 

phenotypic shifts of macrophages [98], and IL-5-induced 

eosinophils can activate macrophages [99], suggesting 

that IL-5 influences IVDD progression through various 

immune responses in the disc tissue. Thus, the 

significance of IL-5 in DB-IVDD should be investigated. 
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IL-6 in DB-IVDD 

 

IL-6, a 25KDa protein, has a characteristic structure that 

is made up of four long α-helices arranged in an up-up-

down-down topology. It is a cytokine that promotes B cell 

maturation into antibody producing cells [100]. IL-6 plays 

a great role in various physiological functions as well as 

in immune regulation [101]. Moreover, it stimulates 

osteoclast formation and promotes bone resorption [102]. 

Signal transduction is activated by IL-6 via IL-6R and 

sIL-6R, which contains the signal-transducing component 

(gp130). Binding of IL-6 to the IL-6R/gp130 complex 

primarily signals through JAK/STAT, Ras and PI3K 

pathways and its function varies from growth and 

differentiation of B- and T- cells to acute-phase protein 

induction [53]. Many stimuli that activate IL-6 are 

associated with oxidative stress and damage [103]. IL-6 

levels in circulating blood were found to be elevated in 

acute hyperglycemia, high fat meals, physical activity and 

before/after surgery [104]. Plasma IL-6 levels were found 

to be elevated in type 1 and 2 diabetes and were associated 

with T2D development [60]. Moreover, IL-6 was highly 

expressed in degenerative discs, causing low back pain 

and presenting both pro-inflammatory and anti-

inflammatory functions [105, 106]. It regulates 

inflammatory responses by downregulating the levels of 

pro-inflammatory cytokines and upregulating anti-

inflammatory molecules, including IL-1 receptor 

antagonist protein, TNF-soluble receptor and extrahepatic 

protease inhibitors [107]. Inhibition of STAT alleviates 

the effects of IL-6 in the intervertebral disc, therefore, the 

IL-6/JAK/STAT3 pathway is a potential therapeutic 

target for IVDD [108]. IL-6 suppresses H2O2-induced cell 

death by elevating prohibiting levels, which is involved in 

cell apoptosis and senescence [109]. Moreover, IL-6 

promotes the expressions of proteins involved in IVDD, 

including COX-2 and MMP13. Higher ratios of IL-6/IL-

10 plasma levels augments the risk of causing 

symptomatic lumbar osteoarthritis and IVDD [105]. 

Therefore, IL-6 plays a complex role in DB-IVDD 

progression. 

 

IL-7 in DB-IVDD 

 

IL-7 is a member of the common γ chain (γc-CD132) 

cytokine family, which includes IL-2, IL-4, IL-9, IL-15 

and IL-21 [110]. In pre-diabetics and T1D, IL-7 levels 

were increased, compared to the control group. IL-7 

stimulates Janus kinase (JAK) and STAT signaling 

pathways, which subsequently activate the PI3K/Akt 

pathway to facilitate target gene transcriptions [110]. 

Even though IL-7 is rarely reported in IVDD, IL-5, IL-6, 

IL-7, IL-8 and MCP-2 were established to be significantly 

elevated in injured–IVD, compared to non-injury-IVD 

[111]. Senescence contributes to the development of 

various degenerative diseases, including osteoarthritis and 

IVDD [112, 113]. In cord blood cells, IL-7 increased 

telomere length and hTERT gene expressions [114], 

suggesting that it may also protect against cellular 

senescence in other degenerative diseases. Elevated IL-7 

enhances MMP-13 production in osteoarthritis patients, 

which has a significant effect in degenerative diseases 

[115]. It has been reported that IL-7 has comparable 

pathological characteristics in osteoarthritis and IVDD. 

However, the significance of IL-7 in IVDD is unknown. 

The JAK/STAT signaling pathway may be 

mechanistically involved in IL-7-related IVD 

degeneration. This is because, IL-7 stimulates the 

secretion of S100A4, which has been verified to be 

elevated in osteoarthritis and upregulates the expressions 

of MMP13 by activating the JAK/STAT pathway [116]. 

In addition, IL-7 can be stimulated by other cytokines, 

such as IL-1 and IL-6, and combine with other cytokines 

like TNF-α and IL-6 to  exert its effects in IVDD [117]. 

However, the specific roles of IL-7 in DB-IVDD have not 

been conclusively determined. 

 

IL-10 in DB-IVDD 

 

Interleukin-10, which is secreted by type 2 T-helper (Th2) 

cell clones, belongs to the IL-10 family of cytokines, 

including IL-19, IL-20, IL-22, IL-24, and IL-26 [118]. IL-

10, an anti-inflammatory cytokine, is a protective factor 

in various tissues, including the articular cartilage and disc 

tissues. It inhibits innate and acquired immune responses 

by suppressing the activities of monocytes and the 

development of activated T-cells. Moreover, IL-10 

modulates the functions and differentiation of various 

immune cells, such as B-cells, NK-cells, granulocytes and 

some related cells [119]. Elevated plasma IL-10 levels 

have been documented in type 1 and 2 diabetes patients as 

well as in degenerated intervertebral discs [64, 105]. In 

addition, IL-10 levels were up-regulated in rheumatoid 

arthritis and osteoarthritis models. This cytokine exerts 

anti-inflammatory, anti-catabolic as well as anti-apoptotic 

effects in chondrocytes, and is a potential target for curing 

arthritis [120]. The common characteristic of IVDD and 

osteoarthritis involves degradation of the extracellular 

matrix by regulating MMPs and other degrading enzymes 

to accelerate cell apoptosis [53, 121, 122]. Clinically, IL-

10 inhibits the catabolic effects of pro-inflammatory 

cytokines by down-regulating MMPs and pro-

inflammatory COX-2 [123]. IL-10 antagonizes matrix 

degrading enzymes and affects cartilage matrix gene 

expressions triggered by pro-inflammatory cytokines, 

such as TNF-α [123-125]. Behrendt reported that IL-10 

significantly reduced the expressions of ADAMTS-4, 

MMP-3, and MMP-13, which were closely associated 



 Li S., et al. Cytokines in Diabetic Intervertebral Disc Degeneration 

Aging and Disease • Volume 13, Number 5, October 2022                                                                              1329 

 

with ECM degradation, suggesting that IL10 has 

protective effects on chondrocytes [126]. Apoptosis 

significantly contributes to osteoarthritis and IVDD 

pathogenesis [33, 127]. IL-10 inhibits cell apoptosis by 

suppressing activated caspase-3 levels and the ratio of 

bax/bcl-2 to ameliorate the process of osteoarthritis. 

Moreover, it inhibits TNF-α-induced mitochondrial 

dependent apoptosis by increasing bcl-2 and down-

regulating cleaved- caspase3 levels [123, 126]. Therefore, 

IL-10 has a significant role in interrelations between 

diabetes mellitus and IVDD. 

 

 

 
Figure 1. The potential association between elevated cytokines and intervertebral disc degeneration in diabetic patients. The 

plasma levels of IL-1β, IL-5, IL-6, IL-7, IL-10, IL-18, and TNF-α are elevated in diabetic patients, leading to intervertebral disc 

degeneration due to infiltration of the nucleus pulposus (NP) cells, annulus fibrosus (AF) cells, and endplate chondrocytes from endplate 

microvascular. Diabetes may alter the function of immune cells which release specific cytokines in vivo and augment inflammatory 

response. Such cytokines may contribute to IVDD by enhancing inflammation response, directly or indirectly regulate intervertebral 

disc via modulating the ECM anabolism and catabolism, apoptosis, and senescence.  

IL-18 in DB-IVDD 

 

IL-18, a member of the IL-1 superfamily with a similar 

structure to IL-1β, is a highly regulated inflammatory 

cytokine that is cleaved by intracellular protease caspase-

1 to generate a biologically active molecule. IL-18 has 

been reported to be elevated in inflammatory diseases and 

conditions such as, T2D, obesity, Alzheimer's disease, 

and ischemic heart disease [70, 128]. However, the 

function of elevated IL-18 in diabetes-induced IVDD 

remains unknown. T2D, obesity, and stress can promote 

the release of IL-18 from microglia. Moreover, IL-18 

seems to increase ROS production in cells. The ROS in 

turn activates caspase-1 and inflammasome system 

leading to further production of IL-18 and neuronal 

apoptosis [129]. It has been shown that IL-18 can increase 
the protein level of anti-apoptotic BCL-2 and BCL-Xl, 

which are protective transmembrane proteins that inhibit 

the mitochondrial pathway of apoptosis in neurons [130]. 

A previous study revealed that IL-18 released from 

pyroptotic NPCs caused degeneration of the surrounding 

normal NPCs, thereby accelerating IVD degeneration 

[131]. IL-18 may also influence the endplate vascular 

endothelial cells, hence alter the environment around NP 

cells, AF cells, and endplate chondrocytes. The major 

pathological changes associated with IVDD include 

cartilage endplate degeneration and nucleus pulposus 

senescence or apoptosis. Calcification of the endplate 

cartilage is the major cause of endplate degeneration [20]. 

IL-18 can also induce inflammatory responses in 

synoviocytes and chondrocytes, and increase the 

expression of inflammatory factors, such as TNF-α, PGE2, 

and COX-2. In this way, it contributes to the cartilage 

degeneration and osteoarthritis [132]. Furthermore, 

studies have shown that IL-18 degrades the disc matrix 
and is elevated in serum of patients with IVD 

degeneration. Elsewhere, IL-18 up-regulated the 

expression of MMP13 and down-regulated the expression 
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of anabolic factors such as Collagen II and SOX6 in 

human nucleus pulposus [133]. Therefore, IL-18 may 

play an important role in diabetes-induced IVDD, 

although the detailed mechanisms need to be further 

investigated. 

It remains unclear how elevated cytokines in diabetes 

contribute to disc degeneration. Further research is 

advocated to reveal the mechanisms and develop novel 

treatments for disc degeneration targeting these cytokines.   

Conclusion 

Diabetes has been reported to induce intervertebral disc 

degeneration. As the increasing prevalence of diabetes, 

diabetes induced IVDD is becoming a burning issue. 

However, the mechanisms involved in diabetes-induced 

IVDD have not been clearly illustrated. Inflammation, one 

of the main characteristics of diabetes, is the main 

pathogenic factor for various kinds of diseases, including 

IVDD. Herein, we summarized cytokines that are 

specifically elevated in diabetic condition, also we 

discussed the role of these cytokines in IVDD, including 

ECM metabolism, apoptosis, senescence as well as 

vascular ingrowth (Fig. 1). IL-1β and TNF-α have been 

reported to aggravate IVDD; therefore, inhibition of them 

is considered to be effective therapy for IVDD. However, 

other elevated cytokines such as IL-5, IL-6, IL-7, IL-10 

and IL-18 may play different roles in IVDD, whose 

effects on IVDD are yet to be determined.  
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