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Abstract: Background: Alzheimer’s disease (AD) as the most common cause of dementia among 
older people has aroused the universal concern of the whole world. However, until now there is still 
none effective treatments. Consequently, the development of new drugs targeting this complicated 
brain disorder is urgent and needs more efforts. In this review, we detailed the current state of 
knowledge about new candidate drugs targeting the pathological proteins especially the drugs which 
are employed using the combined methods of in vitro and in silico.  

Methods: We looked up and reviewed online papers related to the pathogenesis and new drugs 
development of AD. Then, articles up to the requirements were respectively analyzed and summa-
ried to provide the latest knowledge about the pathogenic effect and the new candidate drugs targeting 
Aβ and Tau proteins.  
Results: New candidate drugs targeting the Aβ include decreasing the production, promoting the 
clearence and preventing aggregation. However these drugs have mostly failed in Phase III clinical 
trial stage due to the unsuccessful of reversing cognition symptoms. As to tau protein, the preven-
tion of tau aggregation and propagation is a promising strategy to synthesize/design mechanism-
based drugs against tauopathies. Some candidate drugs are under research. Moreover, because of 
the complex pathogenesis of AD, multi-target drugs have also shed light on the treatment of AD. 
Conclusion: Given to the consecutive failure of Aβ-directed drugs and the feasibilities of tau-
targeted therapy, more and more researchers suggested that the AD treatment should be moved 
from Aβ to tau or focused on considering the soluble form of Aβ and tau as a whole. Moreover, the 
novel in silico methods also have great potential in drug discovery, drug repositioning, virtual 
screening of chemical libraries. No matter how many difficulties and challenges in prevention and 
treatment of AD, we firmly believe that the effective and safe drugs will be found using the com-
bined methods in the immediate future with the global effort. 
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1. INTRODUCTION 

 Since the discovery of AD by Dr. Alzheimer in 1906, the 
disease has become the most common cause of dementia 
among older adults. AD, which is a progressive and irre-
versible neurodegenerative disorder, slowly destroys memory,  
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thinking skill and eventually the ability to behavior. It is 
pathologically characterized by the amyloid beta (Aβ) depo-
sition in the brain with subsequent formation of neuritic 
plaques and neurofibrillary tangles composed of hyperphos-
phorylated tau protein [1, 2]. Virtual experiments using 
computer modeling show that if a therapeutic intervention 
delaying progression from mild to moderate dementia just by 
2 years, changes in severity-specific prevalence could de-
crease by 3% for moderate and severe dementia [3]. Until 
now, because of lacking effective treatment strategies, AD 
has become a leading cause of the damage for the individual 
health and social economy. Drugs approved by the Food and 
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Drug Administration (FDA, USA) are limited to acetylcho-
linerase (AChE) inhibitors (tacrine, galantamine, donepezil, 
rivastigmine) and an N-methyl-D-aspartate (NMDA) an-
tagonist (memantine) [4, 5]. These five approved agents are 
used for symptomatic therapy which can only temporarily 
ameliorate thinking and memory problems. However, they 
cannot treat the underlying cause of AD or slow the rate of 
dementia, and thus fail to achieve a definite cure [6]. So, it is 
urgent to develop new drugs for the therapy of this compli-
cated brain disorder with no identified cause. With the goal 
to prevent or effectively treat AD, the focus of drug discov-
ery and development efforts has shifted toward disease-
modifying therapies (DMTs) for AD. The main aim of 
DMTs is to affect the underlying pathological process by 
impacting one or more of the numerous characteristic 
changes of AD [7]. 

 In silico is a coined phrase which is used to describe an 
experiment carried out in a computer. In recent years, this 
method has taken its place alongside the in vitro and the in 
vivo methods [8]. In fact, in silico biology is more than a 
computer game [9]. It depends on the usage of information 
to setup computational models or simulations which can be 
used to predict, hypothesize, and eventually provide discov-

eries or advances in medicine and therapeutics [10]. The 
project of in silico drugs ranges from the research of the 
structure-activity relationship until toxicology and pharma-
cokinetic studies. Methods are used for pharmacodynamics 
evaluation containing homology modeling and molecular 
docking. Homology modeling is dependent on the basis of 
the homology between amino acid sequences, which gathers 
useful information about the structure and function similari-
ties [11]. Molecular docking relies on the prediction of bio-
active conformation of ligand ( a small molecule) in a bind-
ing site of target protein (a macromolecule) [12]. Moreover, 
virtual screening mainly scores and ranks molecules in large 
chemical libraries according to their likelihood of having 
affinity for a certain target [13, 14]. Regarding in silico 
pharmacokinetic, both data-based approaches such as simi-
larity searches quantitative structure-activity relationship 
(QSAR) and structure-based methods such as pharma-
cophore modeling and ligand- protein docking have been 
performed to describe the mode of drugs that interact with 
living system [15, 16]. Once the promising candidate drugs 
are found, in vitro tests are conducted to evaluate the bio-
logical activity. Given the rapid development of in silico 
approaches, it could be desired that biomedical investiga-
tions in virtual reality eventually lead to tremendous changes 

 

Fig. (1). Summary of different pathological processes (by no means exhaustive) occurring in the AD disease and how they putatively interact 
to lead to the same clinical phenotype. The figure was adapted from Geerts Hg et al. 2016 (doi:  10.1016/j.jalz.2016.04.008). 
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in the pharmaceutical research landscape by optimizing the 
drug development process, decreasing the number and cost 
of animal experiments, and smoothing the path to personal-
ized medicine [17]. In this review, we are focusing on new 
drugs targeting the pathological processes using combined in 
silico and in vitro approaches. 

2. AD PATHOGENESIS  

 AD is inherently a complex and multifactorial brain dis-
order, and individual patients display a wide variety of pa-
thologies, depending on age, life history, comorbidities, and 
genotypes (Fig. 1) [18]. In order to explain this complicated 
syndrome, several hypotheses, including the cholinergic hy-
pothesis, Aβ hypothesis, tau proteins hypothesis, and neu-
roinflammation hypothesis, have been proposed during the 
last two decades [19]. Numerous AD researches have pre-
sented substantial evidence that accumulation of abnormally 
folded Aβ and tau proteins in amyloid plaques and neuronal 
tangles are directly associated with neurodegerative proc-
esses in patients’ brain [20]. According to the Aβ hypothesis, 
the amyloid precursor protein (APP) is commonly cleaved 
by the action of β-secretase and γ-secretase producing two 
types of Aβ peptides named Aβ40 and Aβ42. The Aβ40 con-
tain 40 amino acids while the Aβ42 is longer by two amino 
acid at the C-terminus [21]. As a consequence of the imbal-
ance in production and clearance of Aβ peptides, they aggre-
gate into soluble oligomers and coalesce to form fibrils in-
soluble beta-sheet conformation and are finally deposited in 
diffuse senile plaques [22]. It has been reported that Aβ42 
oligomers would increase tau hyperphosphorylation and lead 
to oxidative damage, which further generate toxic effects on 
synapses and mitochondria and attract microglial [23]. Dur-
ing the course of AD, the hyperphosphorylated tau proteins 
aggregate to form neurofibrillary tangles and neuropil 
threads. Tau, a microtubule binding protein principally found 
in axons, is to stabilize microtubules [24]. These misfolded 
and aggregated proteins bind to pattern recognition receptors 
on microglia and astrocyte and induce an innate immune 
response releasing inflammatory mediators [25]. These in-
flammatory mediators play significant role in the processes 
of disease progression and deterioration [26]. Moreover, the 
accumulation of Aβ and tau at the synapse may result in syn-
apse dysfunction, loss and the propagation of pathological 
proteins through synaptic connections which has important 
contribution to dementia in AD [27]. So, the present article 
primarily reviews the current drug discovery and develop-
ment targeting the AD pathological proteins Aβ and tau us-
ing the in silico and in vitro methods. 

3. TARGETING THE Aβ PROTEIN 

 The formation and aggregation of Aβ peptides into fibril-
lar plaques around neurons in the brain is the hallmark of 
AD [28]. But how the Aβ directly cause or just contribute to 
AD is not well known. Hotltzman and Musiek claimed that 
Aβ acts as an initiator of other downstream processes espe-
cially tau aggregation. Aβ seems to be necessary, but not 
sufficient to cause AD. Its primary role may play in the very 
early stage of AD [29]. In transgenic mouse model, the ac-
cumulated Aβ oligomers in the absence of fibrillar plaques 
could also induce cognitive impairment, neuroinflammation 

and synaptic alteration [23, 30, 31]. In human, The Aβ oli-
gomers appear to aggregate with age and relate with devel-
opment of tau pathology [32, 33]. The Aβ oligomers provide 
a substantive molecular basis for the origin, treatment and 
diagnosis of AD [34]. Genetic mutation of the APP and pre-
senilin (PS1 and PS2) induces Aβ overproduction and subse-
quently accumulation into plaques in the brain of AD pa-
tients [35, 36]. From Fig. (2), we observed that the Aβ42 
differed from Aβ40 only in two residues Ile 41 and Ala42 at 
C-terminus. The researchers using the combined in silico and 
in vitro approaches found that the hydrophobic residue at the 
position 42 is the major contributor to the increased fibril 
formation rates and neurotoxicity [37]. Although the cause 
of Aβ oligomers is not clear, factors mentioned above can 
affect the formation. Supplementary to the vitro and in vivo 
studies, computer stimulations are important tools to provide 
more useful information on structure, stability and the self-
assembly of fibril mechanism of the Aβ proteins and the mo-
lecular mechanism of inhibitors [38, 39].  

3.1. New Candidate Drugs for Decreasing Aβ Production 

 In the brain, the membrane APP is cleaved by β-secretase 
forming the N-terminus and by γ-secretase forming the C-
terminus to produce the Aβ peptide (Fig. 3). The α-secretase 
cleaves APP at the side within Aβ that decreases its produc-
tion. Therefore, the inhibition of β and γ-secretase and the 
activation of α-secretase are considered as prime therapeutic 
strategy to reduce the concentration of Aβ peptide in patients 
of AD [40]. Especially the β-secretase with 501 amino acids 
which is widely named as β-site amyloid precursor protein 
cleaving enzyme 1 (BACE1), is the first and rate-limiting 
step in Aβ production [41]. In the in silico fragment-based 
molecular design approach, an x-ray crystal structure of the 
BACE-1 enzyme was used to design new potential ligand 
structures via the precise docking of molecular fragment into 
the chosen regions of the target site. These fragments are 
then joined together in ways dictated by the user to produce 
synthetically approachable ligand scaffolds which are pre-
dicted to show good affinity for the targeted enzyme. Subse-
quently, the in vitro cell viability assay is used to evaluate 
the potential toxicity of designed inhibitors with high bind-
ing affinity [42, 43]. In order to discover nonpeptide BACE1 
inhibitors, the researchers applied the de novo fragment-
based molecular design program SPROUT which is based on 
upoetamide scaffold. The results showed that the compound 
15 (C6F5), the most potential within this series of inhibitors, 
was cell-active and had relatively low toxicity [44]. Kiso and 
his colleagues used in-silico conformational structure-based 
design to formulate and synthesize non-peptidic and small-
sized BACE-1 inhibitors which possessed a heterocyclic 
scaffold at P2 position. They validated that the σ-π interac-
tion of an inhibitor with the BACE-1-Arg235 side chain 
played key role in the inhibition of BACE-1. Therefore, they 
also designed and synthesized a series of peptides that were 
modified at the P2 position and found that some of these 
peptides exhibited a potent BACE-1 inhibitory effects de-
spite their structural similarity to the BACE1 substrate [45]. 
Using R-group search and molecular docking to study 3D-
QSAR and binding mode of BACE-1 inhibitors, the results 
shows that the following residues ASP93, THR133, 
GLN134, ASP289, GLY291, THR292, THR293, ASN294, 
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Fig. (2). Amino acid sequence of human amyloid beta 1-42 peptide (A_1-42) and schematic representation of a molecule of A_1-42 in a hair-
pin shape. The residues 1-17 comprise the disordered region. The residues 18-42 comprise the β_-sheet region. The figure was adapted from 
Masman M F et al. 2009 (doi: 10.1021/jp901057w). 

 

Fig. (3). Depiction of amyloid related potential targets along with various therapeutic strategies. The symbol (Ͱ) indicates the inhibitory effect 
of therapeutic molecules while (△) indicates activating effect. AβMR: Aβ monomer region; AβM: Aβ monomer; sAPP: soluble amyloid pre-
cursor protein. The figure was adapted from Awasthi M et al. 2016 (doi: 10.1016/j.jns.2016.01.008). 
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ARG296 and SER386 of BACE-1 are tightly interacted with 
the inhibitors [46]. More than 300000 small molecules were 
docked and about 15000 prioritized applying the linear inter-
action energy model with evaluation of solvation by contin-
uum electrostatic method. Then 88 compounds were tested 
in vitro, and 10 of these compounds shared a triazine scaf-
fold [47]. This in silico high-throughput screening approach 
is a cost-effective alternative to high-through in vitro screen-
ing campaigns. In conclusion, the computer-based in silico 
approaches are taken not only to design, synthesize, and 
screen the candidate drugs and the lead compounds, but also 
to study the structure, intermolecular interactions and bind-
ing sites of the protein [48-51]. γ-secretase, an integral mem-
brane protein complex, can cleave hundreds of type-1 trans-
membrane proteins such as the Notch receptor and APP [52]. 
With a direct route from the membrane to nucleus, the Notch 
signaling pathway plays role in many different developmen-
tal and homestatic processes [53]. The effective γ-secretase 
complex is a 1:1:1:1 heterotetrameric composed of presenilin 
1 (PS1), nicasrin, PEN-2 and APH1 with a mass of 174 kDa 
[54]. These complexes are bilobed. The head contains nicas-
trin ectodomain. The membrane-embedded base has a central 
channel and a lateral cleft. Perhaps this section is initial sub-
strate docking site. Upon the inhibitor binding, its structure 
will widespread change including rotation of the head and 
closure of the lateral cleft [55]. Molecular dynamics simula-
tion study reveals potent entry path into γ-secretase/PS1 
[56]. By molecular descriptors and machine learning (ran-
dom forest) methods, the virtual screening of γ-secretase 
inhibitors against the ZINC database discovered 386 poten-
tial hit candidates [57]. Because of α-secretase cleaving 
within the Aβ domain, its activation can possibly prevent the 
production of Aβ and prompt the generation of soluble frag-
ments of APP to protect neurons. The M1-agonist talsacli-
dine is thought to activate α-secretase and inhibit β and γ-
secretase to reduce CFS-levels of Aβ42 in 40 AD patients 
[58].  

3.2. New Candidate Drugs for Promoting Aβ Clearance 

 The imbalance between Aβ monomer production and 
clearance in AD patients has been regarded as the base of Aβ 
plaque formation. Undoubtedly, enhancing the clearance of 
Aβ monomer and oligomers from the central nervous system 
is also a promising treatment approach. The clearance system 
mainly includes the following methods [59]. Firstly  several 
key enzymes participating in the Aβ degradation have been 
identified including neprilysin, and insulin-degrading en-
zyme [60]. Then it is more challenging and difficult to find 
candidate drugs to activate these enzymes. If we could not 
stimulate the degradation, we may try to move the Aβ out 
from the brain. Two potential targets have been reported to 
modulate Aβ transport at the blood-brain barrier. One is the 
receptor for advanced glycation end products (RAGE) medi-
ating the influx of Aβ into the brain. The other one is the 
low-density lipo-protein receptor-related protein (LRP-1) 
regulating efflux of Aβ from the brain [61, 62]. Finally, both 
active and passive immunization approaches have been used 
to clear the monomeric and aggregated Aβ to inhibit their 
pathological processes. However, the new drug development 
studies are prone to focus on the Aβ immunological strate-

gies. Nevertheless, the removal of the high concentration Aβ 
peptides to avoid the adverse effects remains challenging 
[25, 63]. Up-regulation of P-glycoprotein (P-gp) which is a 
member of the ATP binding cassette transport family could 
increase the clearance of Aβ. Around 125 indian medicinal 
plants have been screened to find their binding affinity to-
wards the Pgp receptor. Then researchers designed and opti-
mized the bioactives under ligand based pharmacophore de-
velopment, virtual screening, molecular docking and mo-
lecular dynamics stimulation studies to make sure acceptable 
ADME properties [64]. Bexarotene is approved by the U.S. 
Food and Drug Administration to treat non-Hodgkin’s lym-
phoma. It has been reported that bexarotene would boost the 
clearance of Aβ, which is validated by the in silico study 
especially in the early stage of AD [65]. The transgenic mice 
were immunized with human Aβ all lifelong protecting them 
against cognition impairment [66]. 

3.3. New Candidate Drugs for Preventing Aβ Aggregation 

 Several researches have shown that the Aβ dimer, oli-
gomers and protofibrils do more harm to AD patients than 
the plaques [67]. The dimers can block the synaptic Long-
Term Potentiation, enhance long-term-depression and re-
duced dendritic spine density in normal rodent hippocampus 
[68]. Intracerebroventricular passive immunization with anti-
oligo Aβ antibody significantly decreased Aβ and almost 
completely restored SNP-25 immunoreaction up to 8 weeks 
postinjection in transgenic mice brain [69]. So the agents 
prevent Aβ aggregation would be a potential and more effec-
tive therapy for AD patients. Structural isomorphs of Aβ 
Gly25-Ser26 dipeptide induce distinct Aβ42 conformational 
dynamic and assembly characteristics, which provide useful 
therapeutic strategies targeting formation of Aβ oligomers 
and high-order assemblies [70]. A replica exchange molecu-
lar dynamics (REMD) simulation was performed with Aβ10-
35 dimer, trimer, and tetramers. If the side of the oligomer 
increased from a trimer to a tetramer, the number of configu-
rations was decreased. So the detailed structures of the oli-
gomers intermediate their folding and aggregation [71]. The 
polyphenol (-)-epigallocatechin gallate (EGCG) could inhibit 
Aβ aggregated into unstructured, off-pathway, oligomers 
[72]. Recently all-atom REMD study revealed that EGCG 
buried in the interface between the Aβ42 peptides and bind 
mostly to the hydrophobic residues of the central hydropho-
bic core and C-terminal region, and also bind to the N-
terminal amino acids [73]. Molecular dynamic researches of 
the interactions between inhibitors and oligomers revealed 
that the inhibitor acts not only by hampering the addition of 
successive layers at the ends of the oligomers but also by 
affecting the structure and stability of oligomers [74]. What 
to be noted is that Aβ protein has two primary Aβ alloforms 
Aβ40 and Aβ42. The Aβ42 is more strongly involved in the 
disease. Structure studies found that the C-terminal region 
played key roles in Aβ42 oligomerization while the Aβ40 
oligomer formation was mainly triggered by intermolecular 
interactions among the central hydrophobic regions [75].  

 In conclusion, therapeutic drugs which target the Aβ have 
been succeed in reducing production and aggregation but 
have mostly failed in Phase III clinical trial stage due to the 
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unsuccessful of reversing cognition symptoms [76]. The pos-
sible reason for failure maybe that Aβ initiates pathology at 
the early stage of the disease and only early anti- Aβ would 
be effective [29]. Together with decreasing number of Aβ to 
delay the disease progression, therapeutic drugs will be still 
needed to restore network-level and circuit-level function of 
patients with AD [77]. Several methodological issues can be 
attributed to the non-meaning clinical results. Perhaps it is 
timely to reconsiderate the Aβ hypothesis, which takes the 
amyloid plaques as the heart of AD pathogenesis. Especially 
after solanezumab’s failure in phase III clinical trial on Nov 
23th 2016, there is hugely increasing controversial around 
the Aβ hypothesis [78, 79]. Sloanezumab, developed by Eli 
Lilly, is a promising humanized amyloid antibody [80]. It 
binds to the central, more hydrophobic region of the human 
Aβ peptide (against the amyloid beta 13-28 residues) and 
preferred to bind to soluble amyloid beta, but not to fibrillar 
amyloid beta [81, 82]. However, the unbelievable and 
gloomy failure is a wake-up call to look elsewhere for an 
answer and therapy to AD. 

4. NEW CANDIDATE DRUGS TARGETING THE TAU 
PROTEIN  

 Tau is a microtubule-associated protein and an important 
regulator of microtubule. The hyperphosphorylated tau is a 
vital component of neurofibrillary tangles (NFT), which is a 
typical characteristic of AD patients [83]. In the AD brain, 
three different types of tau could be observed: normal phos-
phorylated, soluble and hyperphosphorylated, and hyper-
phosphorylated insoluble aggregates [84]. The AD related 
hyperphosphorylated tau disrupts the microtubules by segre-
gatin the binding of normal tau and could bind to other neu-

ronal microtubule-associated protein leading to aggregation 
[85]. tau, mainly an axonal protein, becomes mislocalized 
(missorted) into the somatodendritic compartment, which 
likely plays an important part in the pathology [86]. The ag-
gregation and missort of tau proteins gain toxic function and 
lose to function normally [87], which is central to many hu-
man neurodegeneration diseases. Although tauopathy is the 
dominant of AD, the first tau aggerates begin self propagat-
ing and spread to distant brain regions [88]. Neuropathologi-
cal studies of AD suggested that a close Association between 
tau deposits, decreased cognitive function, and neurodegen-
erative changes [89]. In fact, tau is usually regarded as the 
secondary AD pathogenesis (Fig. 4) and drug target. Interest 
in developing new drugs targeting the tau protein is on the 
rise recently, partly attributed to the consecutive failure in 
Aβ therapeutic. The prevention of tau aggregation and 
propagation is a promising strategy to synthesis/design 
mechanism-based drugs against tauopathies. 200000 com-
pounds were screened through in silico methods to identify 
potential hits to inhibit tau aggregation. A new phenylthia-
zolul-hydrazide (PTH) compound identified as possible hit 
was then designed and synthesized into 49 similar structures, 
representing a lead structure. These lead structures possessed 
strong interaction with the tau protein. The in vitro N2A cell 
model studies showed a low toxicity [90]. The main tau 
proline-directed protein kinases are primary glycogen 
sythase kinase-3β (GSK-3β), cyclin-dependent-like kinase-5 
(CDK5) and calcium/calmodulin-activated protein kinase II 
(CaMKII) and so on [91]. For the reason of increased activi-
ties in the AD brain and the involvement in tauopathy, these 
enzymes are also potential therapeutic targets against AD. 
Oral administration of the novel 2-(alkymorpholin-4-yl)-6- 
(3-fluoropyridin-4-yl)-pyrimidin-4(3H)-ones inhibited tau 

 

Fig. (4). Function of tau. a, Physiological functions of tau protein in normal, healthy neurons. b, In pathological conditions, loss of function, 
toxic gain of function and mislocalization lead to tau-mediated neurodegeneration. The figure was adapted from wang YP et al. 2016 (doi: 
10.1038/nrn.2015.1). 
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phosphorylation in mice. Molecular docking studies found 
that this compound has a higher affinity than the prototype 
drug UDA-680 [92]. The potential tau therapeutic strategies 
primarily include kinase inhibitors and phosphastase activa-
tors, immunotherapies, small molecular inhibitors of protein 
aggregation, and microtubule-stabilizing agents. Among all 
thees above mentioned therapeutic targets, the microtubule 
stabilization approach seems to be the most advanced and 
ready human trial due these drugs are used in cancer therapy 
[93]. Although the treatment of tauopathies is promising and 
induced accumulating interest, it still faced considerably 
severe challenge [94].  

5. NEW CANDIDATE MULTI-TARGET DRUGS  

 Due to the complex pathogenesis of AD, the available 
therapy for AD is limited and the efficacy remains unsatis-
factory. These drugs that regulate a single target can only 
relieve symptoms instead of curing or preventing the neu-
rodegeration [95]. One possible way to get out of this di-
lemma is the multi-target drugs (MTDs), which target sev-
eral factors of the disease pathology [96]. Until now, en-
largement of biological target for potential therapeutic has 
been identified containing the above discussed Aβ, tau, re-
ceptors (cholinergic, glutamatergic) and enzymes (AchE, 
BuChE, BACE1, monoamine oxidase A/B) [97]. The key 
MTD design methods include structure-based, in silico, and 
data-mining [98]. In silico techniques are used in computa-
tional pharmacology to better understand and predict how 
drugs affect biological system and in turn instruct clinical 
use [99]. ASS2324 is a multi-target directed propargylamine 
and is able to bind to all the AChE/BuChE and MAO A/B 
enzymes. As leading-compound, it entered in pre-clinical 
studies for AD and could inhibit Aβ-aggregation and pos-
sessing antioxidant and neuroprotective properties [100]. 
With the development of computational methods, integration 
of various cheminformatic, QSAR, virtual screening and 
docking protocols successfully applied in multi-target drugs 
design for AD such as novel donepezil-indolyl hybrids, N-
Methyl-N-((1-methyl-5(1-(2-methylbenzuyl)piperidin-4-
yl)propoxy)-1H-indol-2-yl)methyl)prop-2-yn-1-amine, and 
donepezil-pyridyl hybrids, as multi-target inhibitors of 
AChE/BuChe/MAO-A/MAO-B [101, 102]. Clausenalan-
stium, a small molecule compound originally isolated from 
the traditional Chinese herbal medicine, has been demon-
strated that its multi-target actions, which include mild ele-
vation of intracellular Ca+ concentrations, regulation of the 
cholinergic system and synaptic plasticity, and activation of 
cellular and molecular signaling pathways participated in 
learning and memory [103].  

CONCLUSION 

 Alzheimer’s disease is a multifactorial and complicated 
syndrome with a progressive loss of memory and cognition, 
for which there is still no cure. Given to the consecutive fail-
ure of Aβ-directed drugs and the feasibilities of tau-targeted 
therapy, Gold suggested that AD treatment should be moved 
from Aβ to tau [104]. In addition, more and more researchers 
prefer to regard the soluble form of Aβ and tau together, in-
dependent of their accumulation into plaque and tangles, as 
the main cause leading to normal neurons into the structure 

and function loss state. Aβ is the upstream of the tau in AD 
pathogenesis and induce the transformation of tau from a 
normal state to a toxic state, and there are also studies which 
testified that toxic tau improved the toxicity of Aβ through 
the feedback loop [105, 106]. The novel in silico methods 
also have great potential in drug discovery, drug reposition-
ing, virtual screening of chemical libraries [107-110]. As in 
silico is a relatively new approach, there is still a long way to 
go, which includes selecting appropriate simulation, model 
and avoiding false-positive, false-negative results. Undoubt-
edly, in vitro experiments mainly use related cells to further 
testify the pharmacological activity and toxicity. The com-
bined method of in silico and in vitro has already been used 
in new drugs discovery for AD as partly summarized in this 
review. No matter how many difficulties and challenges are 
in the prevention and treatment of AD, we firmly believe 
that the effective and safe drugs will be found using the 
combined method in the immediate future with the global 
effort. 
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