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Abstract

Background and 
Aims

Emerging evidence supports artificial intelligence–enhanced electrocardiogram (AI-ECG) for detecting acute myocardial in
farction (AMI), but real-world validation is needed. The aim of this study was to evaluate the performance of AI-ECG in 
detecting AMI in the emergency department (ED).

Methods The Rule-Out acute Myocardial Infarction using Artificial intelligence Electrocardiogram analysis (ROMIAE) study is a pro
spective cohort study conducted in the Republic of Korea from March 2022 to October 2023, involving 18 university-level 
teaching hospitals. Adult patients presenting to the ED within 24 h of symptom onset concerning for AMI were assessed. 
Exposure included AI-ECG score, HEART score, GRACE 2.0 score, high-sensitivity troponin level, and Physician AMI score. 
The primary outcome was diagnosis of AMI during index admission, and the secondary outcome was 30 day major adverse 
cardiovascular event (MACE).

Results The study population comprised 8493 adults, of whom 1586 (18.6%) were diagnosed with AMI. The area under the receiver 
operating characteristic curve for AI-ECG was 0.878 (95% CI, 0.868–0.888), comparable with the HEART score (0.877; 95% 
CI, 0.869–0.886) and superior to the GRACE 2.0 score, high-sensitivity troponin level, and Physician AMI score. For  
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predicting 30 day MACE, AI-ECG (area under the receiver operating characteristic, 0.866; 95% CI, 0.856–0.877) performed 
comparably with the HEART score (0.858; 95% CI, 0.848–0.868). The integration of the AI-ECG improved risk stratification 
and AMI discrimination, with a net reclassification improvement of 19.6% (95% CI, 17.38–21.89) and a C-index of 0.926 
(95% CI, 0.919–0.933), compared with the HEART score alone.

Conclusions In this multicentre prospective study, the AI-ECG demonstrated diagnostic accuracy and predictive power for AMI and 
30 day MACE, which was similar to or better than that of traditional risk stratification methods and ED physicians.

Structured Graphical Abstract

Does artificial intelligence-enhanced electrocardiography (AI-ECG) provide more effective risk stratification of acute myocardial infarction 
(AMI) in the emergency department (ED) setting compared to existing clinical scores?

AI-ECG demonstrated effective discrimination and risk stratification for AMI, performing comparably to the HEART score, and
surpassing other tools. Its integration with HEART score further enhanced risk stratification.

AI-ECG can rapidly and accurately stratify AMI risk in EDs, matching or surpassing risk stratification based on traditional methods. These 
findings could impact on the management of patients with suspected AMI.
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Introduction
Cardiovascular disease remains the leading cause of mortality world
wide, with acute myocardial infarction (AMI) being a significant con

tributor.1,2 The conventional protocol for patients presenting to the 

emergency department (ED) with signs suggestive of AMI includes im
mediate acquisition of an electrocardiogram (ECG), with a target time
frame of within 10 min of arrival.3 The interpretation of these ECGs by 
a specialist is crucial for the early risk stratification of ST-elevation myo
cardial infarction (STEMI) and non–ST-elevation acute coronary 
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syndromes (NSTE-ACS). Nevertheless, the prompt and precise ana
lysis of ECG findings is a complex task in practical settings. Although 
the presence of STEMI might be discernible on the initial ECG, 
discrepant interpretations can occur among even well-trained 
physicians.4,5 Additionally, ECGs can present as normal upon 
expert review in 17%–33% of patients who are ultimately diagnosed 
with NSTE-ACS.3,6 Examinations can be delayed by ED overcrowding 
or during pivotal healthcare challenges, such as the COVID-19 
pandemic.7

Clinical decision support using artificial intelligence (AI) has recently 
been introduced into numerous medical fields, including emergency 
care.8,9 Despite advances, the translation of AI for practical clinical 
use remains limited,9–12 partly due to a dearth of rigorous clinical valid
ation studies. Several AI algorithms for ECG interpretation have been 
proposed, including for AMI detection,13,14 but prospective studies 
are needed to validate the utility of such AI systems for AMI diagnosis 
in clinical settings. This prospective multicentre study aimed to exter
nally validate the predictive performance of an AI-enhanced 12-lead 
ECG (AI-ECG) analytic model and compare its performance with exist
ing AMI risk stratification models. We hypothesized that AI-ECG, a 
low-cost and easily-implementable model, would have superior dis
crimination in comparison with existing models, warranting larger-scale 
implementation and subsequent clinical efficacy studies. This study in
volved comparing initial AI-ECG interpretations upon ED admission 
with established risk stratification tools, namely the HEART and 
GRACE scores, and clinical assessments that consider the initial ECG 
manifestations and patient presentation.

Methods
This study was a prospective multicentre external validation study con
ducted in 18 EDs (1 certified cardiovascular hospital and 17 university-level 
hospitals) in Korea from March 2022 to October 2023. The institutional re
view board at each of the 18 hospitals approved the study protocol. All par
ticipants provided written informed consent. A comprehensive study 
protocol, encompassing the eligibility criteria, AI-ECG model, and variable 
descriptions, was published previously15; we highlight key study design ele
ments according to the TRIPOD-AI checklist (see Supplementary data 
online, supplementary file). This study was registered on ClinicalTrials.gov
(NCT05435391).

Artificial intelligence–enhanced 
electrocardiogram model to estimate 
probability of acute myocardial infarction
This study evaluated an advanced algorithm based on the previously re
ported AI-ECG model, AiTiAMI version 1.00.00 (Medical AI Co., Ltd, 
Seoul, Republic of Korea; see Supplementary data online, Figure S1). 
AiTiAMI is built on a residual neural network and was trained using multi
centre 12-lead ECG raw data from Korea. Notably, the hospitals included 
in this validation study were not part of the training dataset. The sole input 
for the model is 500 Hz 12-lead ECG data, and it is agnostic to the ECG ma
chine manufacturer. Quality filtering is performed through an internal noise 
assessment module. In the initial retrospective external validation study, the 
model demonstrated an area under the receiver operating characteristic 
(AUROC) curve of 0.951 for STEMI and 0.901 for AMI [STEMI and 
non-STEMI (NSTEMI)].13 AiTiAMI ultimately derives AMI probability scores 
ranging from 0 to 100, stratifying patients into low- (score <3.0, corre
sponding to a sensitivity of 99%), intermediate-, and high-risk (score 
≥48.5, corresponding to a specificity of 90%) categories for having AMI. 
In this prospective observational study, physicians in the ED were blinded 
from AI-ECG output.

Study population
This study cohort encompassed adult patients (aged >18 years) who pre
sented to the ED with clinically suspected AMI. Patients who arrived at 
the ED within 24 h of their initial chest pain, those reporting worsening 
chest pain within 24 h prior to their ED admission, and those encountering 
recurrent symptoms within 24 h after ED admission were eligible for inclu
sion. Patients presenting with out-of-hospital cardiac arrest upon ED arrival, 
those who declined participation in the study, those experiencing traumatic 
chest pain, and those diagnosed with conditions clearly distinct from myo
cardial infarction (MI) (such as pneumothorax) were excluded. As described 
in the protocol paper, assuming a 10% dropout rate, the estimated sample 
size to detect totalled 8814 participants.

Data collection
Participation in this study did not impose any treatment restrictions on en
rolled patients; each ED provided standard care according to international 
guidelines. The 18 EDs adhered to the 0/1 h algorithm or the 0/3 h algo
rithm based on the guidelines.16,17 In accordance with sanctioned proto
col,15 we collected data prospectively without interfering with patients’ 
ED processes. Mandatory collection data comprised the initial 12-lead 
ECG, initial high-sensitivity troponin (hs-troponin) I or T, the 12-lead 
ECG machine manufacturer, cardiac biomarker assay manufacturer, centre- 
specific 99th percentile troponin upper reference limit, chief complaints 
(classified as typical, atypical, and non-typical), and ED physician-estimated 
AMI probability score after initial patient examinations with manual ECG re
view (Physician AMI score, ranging from 0 to 10). Follow-up ECG and car
diac biomarker assessments were not mandatory.

Outcomes
The primary outcome was an AMI diagnosis during the index admission, en
compassing both Type 1 and Type 2 MIs. We used the fourth universal def
inition of AMI.18 The types of AMI (Types 1, 2, 3, 4, and 5) and labelling of 
acute coronary syndrome (STEMI, NSTEMI, and unstable angina) were de
termined based on clinical information at the time of the ED visits and from 
further examinations, such as coronary angiography and echocardiog
raphy.3 Two board-certified emergency medicine specialists from each 
emergency centre were responsible for this task, and when their opinions 
did not align, a third board-certified emergency medicine specialist was con
sulted to reach a final decision. The secondary outcome was major adverse 
cardiovascular events (MACEs), defined as any instance of death, MI (index 
and recurrent), stroke, target vessel revascularization, or stent thrombosis 
within 30 days after the index admission.

Statistical analysis
Our primary analysis evaluated the predictive performance of the AI-ECG 
against the Physician AMI score, HEART score, GRACE 2.0 score, and initial 
hs-troponin level (AMI diagnosis threshold: 99% upper reference limit) for 
both the primary and secondary outcomes. We evaluated discrimination 
using accuracy, the AUROC, area under the precision-recall curve 
(AUPRC), sensitivity, specificity, positive predictive value (PPV), and nega
tive predictive value (NPV) at the best cut-off value based on Youden’s J 
statistic. The confidence intervals (CIs) for the thresholds are calculated 
using bootstrap resampling and the averaging methods.19

Furthermore, to evaluate the risk stratification potentials in clinical work
flow, the performance of the AI-ECG model and each conventional clinical 
risk stratification tool (HEART score and GRACE 2.0 score) were assessed 
at their pre-specified low- to intermediate-risk and intermediate- to high- 
risk thresholds. For the AI-ECG model, the thresholds were <3.0 for low 
risk and ≥48.5 for high risk. The HEART score thresholds were 0–3 for 
low risk and 7–10 for high risk, while the GRACE 2.0 score thresholds 
were <109 for low risk and >140 for high risk.20,21 The Physician AMI score 
and hs-troponin lack reference values for stratifying patients into three risk 
levels, so we only compared the AI-ECG model with the HEART score and 
GRACE 2.0 score in this evaluation. In addition to comparing the 
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performance of AI-ECG, HEART score, and GRACE 2.0 score individually, 
we also conducted clinical simulation to determine how patient clinical flow 
is affected when the hs-troponin or HEART score is applied following the 
AI-ECG assessment. We calculated C-index and the net reclassification im
provement (NRI) to evaluate whether the addition of AI-ECG to the 
HEART score enhanced its discriminatory capability.22 We developed a lo
gistic regression model incorporating both the AI-ECG and HEART scores 
to evaluate the incremental value in risk stratification. The clinical utility of 
the AI-ECG model was evaluated using decision curve analysis (DCA) to 
compare its net benefit against other modalities.23

We conducted pre-defined subgroup analyses15 according to the follow
ing items: demographics, past history, onset of chest pain, type of chest pain, 
ECG type and manufacturer, hospitals, type of MI (STEMI, NSTEMI, Type 1 
MI, and Type 2 MI), and culprit coronary artery. In the subgroup analyses, 
AI-ECG’s AMI discrimination performances were estimated using 
AUROC, AUPRC, sensitivity, specificity, PPV, and NPV at the best cut-off 
value based on Youden’s J statistic. For STEMI, NSTEMI, Type 1, and 
Type 2 MI, the performance of the AI-ECG model was compared with 
each conventional clinical risk stratification tool. For STEMI, since the initial 
risk stratification is typically made by the ED physician based on a single ECG 
and clinical judgement, the AI-ECG score was compared directly with the 
Physician AMI score alone.

The DeLong test was used to compare two AUROCs. We used the 
PRROC R package to compare AUPRC values with bootstrap resampling.24

Methods for comparing sensitivity, specificity, PPV, and NPV were chosen 
as appropriate.25,26 We compared demographic characteristics of patients 
who were and were not ultimately diagnosed with AMI (AMI and non-AMI 
groups, respectively) using Student’s t-test, Mann–Whitney U test, χ2 test, 
or Fisher’s exact test. For DCA, dcurves 0.5.0 R package was used. 
Statistical significance was assessed using a two-sided threshold of P < .05. 
During comparison analyses, we did not adjust the P-values for multiple 
comparisons because our primary objective was to explore and identify dif
ferences between each conventional risk stratification tool and the AI-ECG. 
We used R software version 4.3.2 and Python 3.9.7

Results
Study population
Between March 2022 and October 2023, 25,935 patients presented at 
the 18 EDs with suspected AMI, among whom 8493 comprised our 
study cohort (Figure 1). The median age of these patients was 62 
(51–72) years (male, 62.5%). Among the 1586 patients (18.6%) diag
nosed with AMI (Table 1), Type 1 and Type 2 MI comprised 94.8% 
and 5.1%, respectively, and STEMI and NSTEMI comprised 40.4% and 
59.5%, respectively. The baseline characteristics are presented in 
Table 1 and Supplementary data online, Tables S1 and S2. Initial 
12-lead ECGs and clinical risk score of the study population were all 
analysed and calculated using AiTiAMI and various risk stratification 
tools, with no missing data. In the AMI group, the Physician AMI score, 
HEART score, GRACE 2.0 score, and AI-ECG score (6.0, 7.0, 104.0, 
and 72.7, respectively) were significantly higher compared with the 
non-AMI group (2.0, 4.0, 79.0, and 14.0, respectively). Myocardial injury 
was present in the non-AMI group and AMI group at 1111 (16.0%) and 
1199 (75.6%), respectively. In the non-AMI group, unstable angina was 
present in 8.3%. Within 30 days, MACE occurred in 7.1% of the AMI 
group and 1.8% of the non-AMI group. Supplementary data online, 
Tables S1 and S2 compare other variables described in the study proto
col. Notably, more than 99% of AMI patients’ AI-ECG score were dis
tributed in the intermediate to high risk zone, and 92.6% of STEMI 
patients’ AI-ECG score were distributed in the high-risk zone. The 
AI-ECG score distribution is detailed in Supplementary data online, 
Figure S2.

Discrimination performance for 
diagnosing acute myocardial infarction
The performance metrics of AI-ECG score, Physician AMI score, 
HEART score, GRACE 2.0 score, and initial hs-troponin level were 
compared (Table 2; Figure 2). The difference in the AUROC between 
AI-ECG score and HEART score was not statistically significant 
(P-value .944), with values of 0.878 (95% CI 0.868–0.888) and 0.877 
(95% CI 0.869–0.886), respectively. The AUROC values for Physician 
AMI score, GRACE 2.0 score, and initial hs-troponin level were 0.846 
(95% CI 0.834–0.857), 0.711 (95% CI 0.698–0.724), and 0.798 (95% 
CI 0.783–0.812), respectively, all significantly lower than that of 
AI-ECG score (P-value <.001). The HEART score demonstrated slight
ly higher sensitivity than AI-ECG score (0.794 vs. 0.767; P = .035), but 
AI-ECG had significantly higher specificity (0.848 vs. 0.814; P < .001) 
and PPV (0.536 vs. 0.495; P < .001). The AUPRC for AI-ECG score 
was significantly higher than that for HEART score, with values of 
0.727 (95% CI 0.707–0.748) and 0.641 (95% CI 0.615–0.667), respect
ively. The precision-recall curves for AI-ECG, HEART, and Physician 
AMI scores are presented in Supplementary data online, Figure S2.

Discrimination performance for 30 day 
major adverse cardiovascular event
The difference in the AUROC between AI-ECG and HEART scores 
was again insignificant. The AUROC values for Physician AMI score, 
GRACE 2.0 score, and initial hs-troponin level were significantly lower 
than that of AI-ECG score (P < .001) (Table 2; Figure 2). Sensitivity did 
not differ significantly between AI-ECG score and the four comparison 
tests. The specificity of AI-ECG score was 0.852 (95% CI 0.844–0.861), 
which was significantly higher than that of HEART, Physician AMI, and 
GRACE 2.0 scores (P < .001). Among the five tests, the AUPRC for 
AI-ECG score was significantly higher than that of the others (0.720, 
95% CI 0.698–0.740).

Comparison of acute myocardial infarction 
risk stratification methods
For the primary outcome, AI-ECG, HEART, and GRACE 2.0 scores 
classified 697 (8.2%), 3106 (36.6%), and 6308 (74.3%) of the 8493 pa
tients, respectively, into the low-risk group (Figure 3). At the low to 
intermediate risk cut-off, the sensitivity of AI-ECG, HEART, and 
GRACE 2.0 scores was 99.6% (95% CI 99.3–99.9), 97.0% (95% CI 
96.2–97.9), and 46.0% (95% CI 43.6–48.5), respectively, and the NPV 
was 99.1% (95% CI, 98.5–99.8), 98.5% (95% CI 98.1–98.9), and 
86.4% (95% CI 85.6–87.3), respectively (see Supplementary data 
online, Figures S3 and S4 and Table S3). Artificial intelligence–enhanced 
electrocardiogram was the only model that met the accepted threshold 
of a missed AMI rate of <1%.27 AI-ECG, HEART, and GRACE 2.0 
scores categorized 1864 (22.0%), 1459 (17.2%), an d 595 (7.0%) of 
the 8493 patients, respectively, into the high-risk group (Figure 3). At 
the intermediate to high-risk cut-off, the specificity of AI-ECG, 
HEART, and GRACE 2.0 scores was 89.3% (95% CI 88.6–90.0), 
92.4% (95% CI 91.7–93.0), and 94.7% (95% CI 94.2–95.3), respectively, 
and the PPV was 60.4% (95% CI 58.2–62.6), 63.9% (95% CI 61.4–66.3), 
and 38.8% (95% CI 34.9–42.7), respectively (see Supplementary data 
online, Figures S3 and S4 and Table S3). The DCA demonstrated a most
ly positive and higher net benefit of the AI-ECG model compared with 
other scores for decision thresholds below 0.086 and above 0.385 (see 
Supplementary data online, Figure S9).
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Integration of an artificial intelligence– 
enhanced electrocardiogram with 
high-sensitivity troponin and HEART 
scores for enhanced clinical 
decision-making
The AI-ECG model categorized 8.2% of patients (n = 697) as low risk, 
yielding an AMI rate of 0.86%. This rate is significantly lower than that 
observed with the HEART score, which classified a larger cohort of pa
tients (n = 3016) as low risk with an AMI rate of 1.5%. Similarly, the 
GRACE 2.0 score identified 74.3% of patients (n = 6309) as low risk, 
but with a substantially higher AMI rate of 13.6% (Figure 3A). 
Furthermore, the AI-ECG model demonstrated superior performance 
in identifying high-risk AMI patients, recognizing 1126 cases, while the 
HEART score identified 932 cases and the GRACE 2.0 score identified 
just 231 cases.

In the clinical simulation where the AI-ECG was applied to the initial 
ECG in the ED and subsequently combined with the HEART score (de
signated as AI-ECG + HEART), the low-risk group identified by the 
AI-ECG remained classified as low risk. The intermediate- and high-risk 
groups identified by the AI-ECG were then reclassified based on the 
HEART score (Figure 3B). Artificial intelligence–enhanced electrocar
diogram + HEART resulted in a greater number of patients being strati
fied as low risk, yielding a reduced AMI rate of 0.77% among 3112 

patients (37.0%), compared with the HEART score alone, which en
compassed 3016 patients (36.6%) with an AMI rate of 1.5% 
(Figure 3B). Notably, the AI-ECG + HEART approach identified an add
itional 187 AMI patients classified as high-risk (n = 596, AMI rate 42.7%) 
or very high-risk (n = 717, AMI rate 82.4%) compared with the high- 
risk group identified solely by the HEART score. Moreover, the 
intermediate-risk group within the AI-ECG + HEART cohort (n = 3,116, 
36.6%; AMI rate 7.9%) demonstrated a decrease in both patient num
bers and AMI risk. The integration of AI-ECG resulted in a 19.6% 
(95% CI 17.38–21.89) increase in the NRI compared with the 
HEART score alone (Table 3). The combined AI-ECG + HEART mod
el demonstrated superior AMI discrimination with a C-index of 0.926 
(95% CI 0.919–0.933) vs. the HEART score alone (AUROC 0.877, 
95% CI 0.869–0.886).

In the clinical simulation of applying AI-ECG and hs-troponin meas
urement in the ED, the combined assessment further stratified patients 
identified as low or intermediate risk by the AI-ECG into subgroups 
characterized by differing AMI rates. Specifically, those with no 
hs-troponin elevation exhibited lower AMI rates of 0.5% in the low-risk 
group and 2.4% in the intermediate-risk group. Conversely, patients 
with hs-troponin elevation exhibited significantly higher AMI rates, 
with 8.6% in the low-risk group and 29.4% in the intermediate-risk 
group (Figure 3B). Notably, the high-risk group identified by the 
AI-ECG group consistently showed an elevated AMI rate, regardless 
of the hs-troponin results (Figure 3B).

Figure 1 Study flow. This illustrates the selection process for patient inclusion in this study, which was conducted in 18 emergency departments from 
March 2022 to October 2023
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Table 1 Baseline characteristics

Non-AMI AMI
(N = 6907) (N = 1586)

Demographics

Age, year 61 (49–71) 65 (56–74)

Male 4056 (58.7) 1251 (78.8)

History

Hypertension 3104 (44.9) 819 (51.6)

Diabetes mellitus 1603 (23.2) 514 (32.4)

Hyperlipidaemia 1902 (27.5) 411 (25.9)

Coronary artery disease 1432 (20.7) 330 (20.8)

AMI 605 (8.7) 221 (13.9)

Congestive heart failure 246 (3.5) 56 (3.5)

Chronic kidney disease 420 (6.0) 128 (8.0)

ECG device

GE 5991 (86.7) 1434 (90.4)

Philips 916 (13.2) 152 (9.5)

ED chief complaints

Typical chest pain 2060 (29.8) 1078 (67.9)

Atypical chest pain 2456 (35.5) 294 (18.5)

Non-cardiac chest pain 695 (10.0) 64 (4.0)

Other symptoms 1695 (24.5) 151 (9.5)

Chest pain onset to ED visit ≤3h 3529 (51.0) 827 (52.1)

Physician AMI score, mean (SD) 2.0 (1.0–3.0) 6.0 (4.0–9.0)

HEART score, mean (SD) 4.0 (2.0–5.0) 7.0 (6.0–8.0)

GRACE 2.0 score, mean (SD) 79.0 (56.0–103.0) 104.0 (84.0–127.0)

AI-ECG score, mean (SD) 14.0 (5.9–29.8) 72.7 (43.0–92.2)

Type 1 74.4 (44.7–93.0)

Type 2 43.9 (13.6–69.7)

STEMI 94.8 (77.8–98.0)

NSTEMI 54.1 (22.0–77.3)

Myocardial injurya 1111 (16.0) 1199 (75.6)

AMI type

Type 1 1504 (94.8)

Type 2 82 (5.1)

ACS type

STEMI 642 (40.4)

NSTEMI 944 (59.5)

Unstable angina 576 (8.3)

30 day MACE

Total MACE 125 (1.8) 113 (7.1)

Values are expressed as n (%) or median with interquartile range.
ACS, acute coronary syndrome.
aMyocardial injury is defined as an elevation of hs-troponin above the 99th percentile upper reference limit specific to each ED.
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Pre-defined subgroup analysis
The findings of pre-defined subgroup analysis indicate that the detec
tion capability of AI-ECG score diminished among individuals aged 65 
and older or those with coronary artery disease, heart failure, chronic 
kidney disease, or peripheral artery disease (see Supplementary data 
online, Table S4). There was no difference in performance based on bio
logical sex. Discrepancies were noted when comparing different types 
of ECGs, their features, and the institutions where they were per
formed. However, no significant differences in performance were 
noted based on the ECG device, ECG features, type, or onset of chest 
pain (see Supplementary data online, Table S4). The location of the cul
prit artery did not significantly affect the performance of AI-ECG (see 
Supplementary data online, Table S5).

When we evaluated the performance of AI-ECG score for STEMI 
and NSTEMI, the metrics were as follows. For STEMI, the AUROC 
was 0.971 (95% CI 0.965–0.977), with a sensitivity of 92.5% (95% 
CI 90.5–94.6), specificity of 89.9% (95% CI 89.2–90.6), PPV of 
45.9% (95% CI 43.2–48.6), and NPV of 99.2% (95% CI 99.0–99.4). 
For NSTEMI, the values were an AUROC of 0.814 (95% CI 0.799– 
0.830), sensitivity of 65.5% (95% CI 62.4–68.5), specificity of 82.9% 
(95% CI 82.1–83.8), PPV of 34.4% (95% CI 32.2–36.6), and NPV of 
94.6% (95% CI 94.0–95.2) (see Supplementary data online, 
Table S5). When comparing the risk stratification tools for the detec
tion of STEMI (see Supplementary data online, Table S6), we found no 
significant difference between the AI-ECG score and the Physician 
AMI score in terms of AUROC (0.971 vs. 0.965). However, the 
AI-ECG score demonstrated higher sensitivity (92.5% vs. 86.4%) 
and NPV (99.2% vs. 98.7%). Artificial intelligence–enhanced electro
cardiogram score’s performance for NSTEMI had lower sensitivity 
than HEART score and blood biomarker. Nonetheless, AI-ECG score 

exceeded Physician AMI score in terms of both AUROC and 
AUPRC. Notably, no STEMI patients were identified among those 
classified as low-risk by AI-ECG score. Consequently, the NPV for 
STEMI based on the low to intermediate risk cut-off was 100%. The 
NPV for NSTEMI based on the low-intermediate risk cut-off was 
99.1% (95% CI 98.5%–99.8%) (see Supplementary data online, 
Table S7).

The performance of AI-ECG for Type 1 MI and Type 2 MI was eval
uated, and the results were described in Supplementary data online, 
Table S5. When comparing the risk stratification performances, 
AI-ECG and HEART scores had the highest AUROC (0.887, 0.883) 
to detect Type 1 MI. Notably, AI-ECG demonstrated higher specificity, 
PPV, and AUPRC for Type 1 MI, while its sensitivity was comparable 
with other risk stratification tools. For Type 2 MI, all risk stratification 
tools showed lower discrimination performance. Detailed results are 
presented in Supplementary data online, Table S8.

Discussion
To our knowledge, this is the first prospective multicentre observation
al study to validate an AI-ECG model for AMI detection. The results 
demonstrate that the AI-ECG outperformed existing risk stratification 
tools, showing superior or similar accuracy for both early rule-out and 
rule-in of AMI. The overall diagnostic performance of AI-ECG score, as 
manifested by the AUROC, was comparable with that of the HEART 
score (Structured Graphical Abstract). Considering that HEART score in
cludes hs-troponin level, this is a noteworthy finding. The AI-ECG mod
el’s performance suggests its potential as a reliable digital biomarker for 
assisting clinicians in making timely decisions about patient management 
in emergency settings.

A B

Figure 2 Primary and secondary outcome analyses using receiver operating characteristic curves. (A) Receiver operating characteristic curve for the 
primary outcome (diagnosis of acute myocardial infarction at the index visit). (B) Receiver operating characteristic curve for the secondary outcome 
(prediction of 30 day major adverse cardiovascular events). Each curve represents a different diagnostic tool or score: Artificial Intelligence–Enhanced 
Electrocardiogram score, HEART score, Physician Acute Myocardial Infarction score, initial high-sensitivity troponin level, and GRACE score. The area 
under the receiver operating characteristic curve for each diagnostic measure is displayed with the corresponding 95% confidence intervals, indicating 
the performance of each test in terms of its sensitivity (true positive rate) vs. 1−specificity (false positive rate). *P < .05
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Figure 3 Risk stratification of acute myocardial infarction using Artificial Intelligence–Enhanced Electrocardiogram, hs-troponin, and HEART scores. 
(A) Classification of patients based on three acute myocardial infarction risk stratification tools: Artificial Intelligence–Enhanced Electrocardiogram, 
HEART score, and GRACE 2.0 score. Patients are categorized into low-, intermediate-, and high-risk groups for each tool. (B) Implementation scenario 
of Artificial Intelligence–Enhanced Electrocardiogram, evaluating patients based on initial Artificial Intelligence–Enhanced Electrocardiogram results, fur
ther stratified using high-sensitivity troponin levels and HEART scores. The HEART score is applied to patients initially classified as intermediate- or 
high-risk by Artificial Intelligence–Enhanced Electrocardiogram, further categorizing them into low-, intermediate-, high-, and very high-risk groups 
as depicted in the figure
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Prior research on AI-ECG for AMI detection has primarily focused 
on retrospective model development and the assessment of diagnostic 
performance. Those studies often use comparisons with traditional 
ECG device diagnosis and interpretations by physicians in their valid
ation process.13,14 In this study, we performed a multi-institutional pro
spective observational investigation of a pre-existing AI-ECG model13

and compared its performance with that of traditional risk stratification 
tools. This approach might facilitate the integration of AI-based clinical 
decision support into real practice.

Concern about the consequences of missing an AMI diagnosis is an 
important issue in emergency medicine. A systematic review has re
ported that the rates of missed AMI are ∼1%–2%.28 Furthermore, a 
large survey indicated that clinicians consider an AMI miss rate of 1% 
or less to be acceptable.27 When employing 0/1 h or 0/3 h algorithms, 
the occurrence of AMI ratio and MACE in low-risk groups has been re
ported to be below 1%.3,29 This implies that the sensitivity of any diag
nostic tool should ideally be 99% or higher. In our study, various 
diagnostic tools were evaluated, and the AI-ECG scoring system was 

Figure 3 Continued
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Table 3 Net reclassification improvement by integrating artificial intelligence–enhanced electrocardiogram with 
HEART score for acute myocardial infarction risk stratification

HEART AI-ECG + HEART

Low Intermediate High Total

AMI

Low 19 28 0 47

Intermediate 5 221 381 607

High 0 0 932 932

Total 24 249 1313 1586

Non-AMI

Low 2906 153 0 3059

Intermediate 175 2714 432 3321

High 7 0 520 527

Total 3088 2867 952 6907

Reclassified
aHigher aLower Net bNRI

409 25.79 (P up) 5 0.32 (P down) 25.47 19.64

585 8.47 (N up) 182 2.64 (N down) −5.83

Displays the NRI achieved by combining the AI-ECG score with the HEART score for risk stratification in patients with and without AMI. The values in the table represent the number of 
patients reclassified into different risk categories (low, intermediate, or high) before and after incorporating the AI-ECG score. Rows correspond to the initial HEART score classification, 
while columns indicate the reclassification after integrating AI-ECG.
aFor AMI (top row groups): ‘Higher’ refers to patients correctly reclassified into a higher-risk category, while ‘Lower’ refers to patients incorrectly reclassified into a lower-risk category. 
For non-AMI (bottom row groups): ‘Higher’ refers to patients incorrectly reclassified into a higher-risk category, while ‘Lower’ refers to patients correctly reclassified into a lower-risk 
category.
bThe NRI is calculated using the formula: NRI = (P up−P down) + (N down−N up).
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the only model to meet the 1% threshold. The pre-specified cut-off of 
the AI-ECG score (<3.0 from AiTiAMI version 1.00.00) demonstrated 
a sensitivity of 99.6% and a NPV of 99.1% for the primary outcome in 
the low-risk cohort. Consequently, we think that the NPV of the 
AI-ECG tool is sufficiently high for clinical application. Additionally, it 
is important to note that the HEART score requires troponin level as
sessment, which necessitates ∼1 h for result availability in real-world 
practice. In contrast, the diagnostic performance of AI-ECG, achieved 
through non-invasive analysis of 12-lead ECGs within a few minutes, un
derscores the potential value of AI-ECG for the early rule out of chest 
pain in ED patients.

In a recent pragmatic randomized controlled trial utilizing an AI-ECG 
model for detecting STEMI demonstrated a significant reduction in time 
to treatment.30 This finding suggests that real-time application of the 
AI-ECG could aid physician’s decision with identifying patients with 
STEMI. In this study, the AI-ECG model exhibited a performance de
tecting STEMI similar to Physician AMI score, but a higher sensitivity. 
In addition, previous studies demonstrated the ability of AI-ECG to suc
cessfully detect occlusive NSTEMI.27,28 In our study, the diagnostic per
formance of AI-ECG was higher than Physician AMI score in detecting 
NSTEMI. Non–ST-elevation myocardial infarction is considered to be 
harder than STEMI to diagnose with ECG, so this finding shows the po
tential merit of AI-ECG score. Interestingly, for Type 1 MI and any cul
prit artery MI, the AI-ECG demonstrated similar levels of performance 
compared with previous studies, highlighting the potential utility 
of AI-ECG in detecting occlusive NSTEMI.31,32 In the current 
Rule-Out acute Myocardial Infarction using Artificial intelligence 
Electrocardiogram analysis (ROMIAE) cohort, we additionally defined 
occlusive NSTEMI as NSTEMI patients who underwent percutaneous 
coronary intervention (PCI) or coronary artery bypass graft (CABG), 
achieving an AUROC of 0.832, a sensitivity of 71.6%, and a specificity 
of 80.4%, consistent with previous research findings.

To assess the value of early rule-in, we need to focus on the results 
that the AI-ECG score had a notably higher AUPRC than all other tools 
tested in this study. When considering a low-incidence variable, 
AUPRC is often more informative than AUROC because it focuses 
on the classifier’s performance on the positive (less prevalent) class.33,34

Moreover, considering the consequences of a false negative (patient’s 
life at risk) and false positive (unnecessary admission or invasive tests), 
AUPRC might be a more appropriate metric if the primary concern is 
to ensure that all cases of MI are caught (high recall) while also maintain
ing a reasonable level of precision to avoid over-treating patients (high 
precision). Indeed, both AI-ECG and AI-ECG + HEART identified more 
AMI patients as high risk compared with using the HEART score alone. 
This was true not only for STEMI but also for NSTEMI. Consequently, 
the AMI ratio in the intermediate-risk group for AI-ECG and AI-ECG +  
HEART was lower than that for the HEART score and GRACE 2.0 
score. In summary, AI-ECG demonstrated the potential for early rule- 
out and early rule-in capabilities.

The comprehensive discrimination performance (AUROC and 
AUPRC) of the AI-ECG, as well as the results of risk stratification at 
the pre-specified cut-off, is crucial. This is because the clinical needs ad
dressed by the AI-ECG model can vary depending on the healthcare 
setting. The current reliance on physician-dependent practices for 
AMI detection might be less appropriate in regions without 24/7 access 
to experienced physicians. In those areas, the value of the AI-ECG mod
el could be higher than in our participating institutions. In centres where 
full-time coverage by emergency medicine specialists is not available, 
the use of AI-ECG for early rule-in can help ensure that high-risk pa
tients with STEMI and NSTEMI are not missed. Conversely, AI-ECG 

can also be employed for early rule-out to efficiently allocate resources 
and alleviate ED overcrowding by quickly identifying low-risk patients.

In patients aged 65 years and older, those with obesity, and those 
with chronic illnesses, the performance of AI-ECG showed a tendency 
to decrease. In addition, it decreased in the presence of left ventricular 
hypertrophy, bundle branch block, atrial fibrillation, and pacemaker 
rhythm. The variation in AI-ECG performance based on demographics, 
comorbidities, and ECG characteristics was similar to reports on 
AI-ECG models predicting left ventricular systolic dysfunction.35,36

When healthcare professionals use AI-ECG for diagnostic assistance 
and screening for AMI, they should consider the individual patient’s 
baseline ECG and underlying medical conditions.

We implemented an explainable AI (XAI) framework to incorporate 
heatmap-based methodologies such as saliency mapping9 and a genera
tive counterfactual-based ECG XAI that was previously used in re
search37 to confirm the AI-ECG’s ability to detect ECG alterations 
associated with the coronary territory implicated in pathologic inci
dents. The application of XAI will assist physicians and researchers in 
the future by fostering transparent decision-making and providing 
new insights.

Future technical advancements aimed at further reducing the missed 
rate of AMI may be necessary, potentially involving the use of AI-ECG 
alone or in combination with other clinical scoring systems, such as the 
HEART score. This study demonstrates that the implementation of a 
protocol wherein AI-ECG was utilized prior to assessing the HEART 
score resulted in improved rule-out performance compared with reli
ance on the HEART score alone. Furthermore, the AI-ECG system has 
the potential for application in the pre-hospital phase, enabling patients 
with suspected occlusive AMI to be directly transferred to the angio- 
room, similar to the protocols for patients with STEMI employed in 
some developed countries. This approach could enhance the timely 
intervention for patients at risk of AMI and ultimately improve patient 
outcomes.

Limitations
This study has limitations to discuss. First, its external validity might be 
confined to the Republic of Korea, necessitating further validation in di
verse populations and healthcare settings through international colla
borations. We plan to conduct external validation both domestically 
(using data from Sejong Hospital and other participating hospitals 
that were unable to obtain consent) and internationally. A demo 
page is available for reference (https://aitia-demo.medicalai.com/). 
Second, this study evaluated short-term outcomes (AMI diagnosis 
during index ED admission and 30 day MACE), so an assessment of 
long-term outcomes, including recurrent cardiovascular events and 
long-term mortality, is essential for a comprehensive understanding 
of the AI-ECG model’s prognostic value. Third, this study did not inves
tigate the clinical impacts of AI-ECG model implementation. Future 
research should focus on user experience and clinical workflows to 
evaluate the AI-ECG’s influence on decision-making, time efficiency, 
and patient outcomes. Specifically, we found that the performance of 
the AI-ECG combined with the HEART score was superior in discrim
ination compared with conventional tools. Even when used alone, the 
AI-ECG was comparable with the HEART score, which could signifi
cantly reduce the 1–2 h waiting time for results. Additionally, its strong 
discrimination performance for Type 1 MI and occlusive NSTEMI 
patients who underwent PCI or CABG was confirmed. These findings 
will help design future randomized controlled trials using AiTiAMI and 
evaluate patient safety and outcomes. Fourth, the GRACE score was 
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originally developed to predict in-hospital and 6-month mortality in pa
tients with acute coronary syndromes,38 rather than in patients pre
senting with chest pain in the ED. The use of the GRACE score as a 
comparator in the primary outcome may be inherently inferior in terms 
of purpose when compared with AI-ECG to detect index AMI. 
Nonetheless, we employed the GRACE score in this context, as there 
was no objective scoring system available for the detection of AMI in 
the ED other than the HEART score. Moreover, reasoning or causality 
research regarding high-risk AI is still incomplete. Even with explainable 
AI-ECG, it remains challenging to intuitively trust or fully grasp the 
‘black box’ nature of AiTiAMI version 1.00.00, which is a key feature 
of this product. Therefore, we believed that conducting explorative 
comparisons across various clinical proven risk stratifying tools would 
help in understanding the characteristics of AI-ECG. Additionally, pre
vious studies39,40 have applied the GRACE score with similar objectives, 
providing some precedent for its use in this analysis. Fifth, our dropout 
criteria and exclusion due to missing or noisy data might have intro
duced bias, so their effects on result generalizability should be carefully 
considered.

Conclusions
The ROMIAE study contributes significant evidence supporting the po
tential of AI-ECG for early AMI detection. The AI-ECG model’s super
ior performance suggests a promising future for AI applications in EDs. 
Addressing the limitations of this study, validating our results in diverse 
populations, and ensuring ethical considerations are crucial for the suc
cessful integration of AI technologies into routine clinical practice.

Supplementary data
Supplementary data are available at European Heart Journal online.
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