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Colon cancer is the third and second most common cancer form in men and women worldwide. It is generally accepted that colon
cancer mainly results from diet. The aim of this study was to identify core pathways which elucidated the molecular mechanisms
in colon cancer. The microarray data of E-GEOD-44861 was downloaded from ArrayExpress database. All human pathways
were obtained from Kyoto Encyclopedia of Genes and Genomes database. In total, 135 differential expressed genes (DEG) were
identified using Linear Models for Microarray Data package. Differential pathways were identified with the method of attractor
after overlapping with DEG. Pathway cross talk network (PCN) was constructed by combining protein-protein interactions and
differential pathways. Cross talks of all pathways were obtained in PCN.There were 65 pathways with RankProd (RP) values < 0.05
and 16 pathways with Impact Factors (IF) values > 100. Five pathways were satisfied with 𝑃 value < 0.05, RP values < 0.05, and
IF values > 100, which were considered to be the most important pathways in colon cancer. In conclusion, the five pathways were
identified in the center status of colon cancer, which may contribute to understanding the mechanism and development of colon
cancer.

1. Introduction

Colon and rectal cancer are the third most common forms
of cancer in the United States [1]. Colon cancer is the third
and second most common cancer form in men and women
worldwide [1], causing appropriate 640 thousand deaths each
year. It is commonly known as colorectal cancer or large
bowel cancer. It is generally accepted that colon cancermainly
resulted from diet in one way or another [2]. Besides, it is
also correlated with genetic factors, such as family history
of colorectal cancer, and familial adenomatous polyposis [3].
Also, old age [4], gender [5], and presence of adenomatous
polyps [6] are risk factors related to colon cancer. Recently, a
SNP, rs5995355, in NCF4 was found significantly associated
with risk of colorectal cancer after adjustment for both
potential confounders and multiple comparisons, but the
change of expressionwas not found in either tumor or normal
tissue [7]. Thus, elucidating the molecular mechanisms is
critical to clinical diagnosis and treatment for colon cancer.

Our purpose of this study is to explore important pathways
that reflectedmechanism of the occurrence and development
of colon cancer by screening differential expressed genes
(DEGs) between colon cancer tissues and normal tissues and
analyzing the pathways using biological information.

Modernmolecular biology indicates that selective expres-
sion of genes controls the regulating mechanism in the biol-
ogy. DEG that has significant difference at expression level
between cancer tissues and normal tissues could conduce
to analyzing cancer mechanism. Altered pathways between
cancer tissue and normal tissue may help to understand
the disease status and suggest anticancer therapies. Based
on microarray data and Kyoto Encyclopedia of Genes and
Genomes (KEGG) database, numerous researches have ana-
lyzed biological processes with genes and pathways by using
a variety of statistical analysis strategies [8–10].

Attractor is an analytical approach for identifying and
annotating the gene sets that best discriminate between
cell phenotypes [11]. It can identify core pathways which
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best contrasted the cell types of interest. With this method,
differential pathways between cancer group and normal
group can be identified.

Protein-protein interactions (PPIs) provide valuable
information about how genes perform functions. Network-
based methods have been applied to gain insight into the
mechanism from the interaction data [12]. The pathways
overlapped with interactional genes are also considered to
interact with each other, known as cross talk. Pathways
can affect each other through cross talk, rather than work-
ing along. Cross talk is valuable in understanding disease,
especially cancers, and may play an important role in the
invasion and proliferation of cancer cells [13]. Pathway cross
talk network (PCN), constructed with pathways and protein
interactions according to Li et al. which was first developed to
search for colorectal cancer progression andmetastasis based
on transcriptional data, can be utilized to analyze genome-
wide expression profiling data by analyzing how pathways
affect each other and the difference between clusters cross
talk [14]. But the results were not sufficient since they did
not present pathway aberrance. By combining differential
pathway analysis and PCN, the analysis can be used for
pathways that not only are significantly altered but also
influence other pathways. And this has been applied in
breast cancer to analyze pathways conducted by Sun et al.
[15].

In this study, we tried to explore colon cancer mechanism
by analyzing pathways which not only were dysregulated in
colon tissues when compared with normal group but also
interacted with other pathways. To achieve this goal, gene
expression profiles were downloaded from ArrayExpress
database to detect differential expressed genes. Human-
related pathways were downloaded fromKEGGdatabase and
PPIs were downloaded from search tool for the retrieval
of interacting genes/proteins (STRING) database to identify
differential pathways and construct PCN.

2. Materials and Methods

2.1. Gene Expression Data

2.1.1. Data Resource. Microarray data of E-GEOD-44861 [7],
alongwith its annotation file, was downloaded fromArrayEx-
press database.Therewere 56 colon tumor tissues and 55 adja-
cent noncancerous tissues. The platform in this study was A-
AFFY-113-Affymetrix GeneChip HT Human Genome U133A
HT HG-U133A, and the title was “Affymetrix expression data
from colon cancer patient tissues.”

2.1.2. Gene Expression Data Preprocessing. Microarray ex-
pression data should be preprocessed because they are
measured as intensities. Linear Models for Microarray Data
(LIMMA) package was chosen to reprocess data with the
function of expresso [16]. And the background was corrected
with robust multichip average (RMA) [17]. Normalization
was performed with quantiles function. Then, we used MAS
for corrected perfect match (PM)/mismatch (MM) [18].
Medianpolish function was used for summarizing expression

data. After probe filtration with featureFilter function, 12493
genes were obtained.

2.1.3. Differential Expressed Genes (DEGs) Screening. DEGs
have become an importantmethod in studying tumor-related
genes.They contribute to illuminatingmechanismof a tumor.
In this study, LIMMA method was applied to screen DEG.
The values of |log FC| ≥ 1.5 and 𝑃 value ≤ 0.01 were selected
as the cut-off criteria.

2.2. Pathway Data. The common databases regarding biol-
ogy are Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (http://www.kegg.jp/) [19] and Reactome database
(http://www.reactome.org/) [20]. In this study, we down-
loaded pathways from KEGG database. After deleting the
pathways containing no genes, 294 pathways were obtained.

2.3. Protein-Protein Interaction (PPI) Data. PPI data has
become an important source of protein function and rela-
tionship information in microbiology, molecular biology,
computational biology, and medicine. And it can provide
valuable information regarding how genes carry out their
biological functions [14]. The PPI data can be downloaded
from search tool for the retrieval of interacting genes/proteins
(STRING) database [21]. In total, 787896 PPIs were obtained.

2.4. Differential Pathways Analysis. To screen differential
pathways, attractor method was applied [11].

Genes in normal group and disease group were treated
with KEGG enrichment analysis. Attractors were obtained
with GSEA-ANOVA, an analysis of variance-based imple-
mentation of a gene set enrichment algorithm.

From this model, 𝐹-statistic of gene was figured out with

𝐹
(𝑖)
=

MSS𝑖
RSS𝑖
, (1)

where MSS𝑖 denotes the mean treatment sum of squares

MSS𝑖 =
1

𝐾 − 1

𝐾

∑

𝑘=1

𝑟𝑘 [𝑦
(𝑖)

⋅𝑘
− 𝑦
(𝑖)

⋅⋅ ]
2

(2)

and RSS𝑖 denotes the residual sum of squares

RSS𝑖 =
1

𝑁 − 𝐾

𝐾

∑

𝑘=1

𝑟𝑗

∑

𝑗=1

[𝑦
(𝑖)

𝑗𝑘
− 𝑦
(𝑖)

⋅⋅ ]
2
. (3)

For pathway 𝑝 consisting of 𝑔𝑝 genes, the𝑇-statistic takes the
following form:
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where 𝐺 denotes the total number of genes in a pathway and
𝑆𝑝
2 and 𝑆𝐺

2 were defined as sample aberrances.
After performing 𝑇-test and adjusting by false discovery

rate (FDR) of Benjamini-Hochberg [22], 𝑃 values of each
pathway were obtained.
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2.5. Construction of Pathway Cross Talk Network (PCN). To
analyze interactions between pathways, a PCN was con-
structed as described by Li et al. [14].

2.5.1. Interactions. It is assumed that cancer-associated gene’s
dysregulation of expression can lead to the differential ex-
pression of its interacting genes when there is no network
rewiring.We used gene expression correlation tomeasure the
dynamic action of the PPIs.

In both disease group and background group, Spearman
correlation coefficient of each PPI was calculated with the
following formula [23]:

𝑟𝐸𝑖𝑗
=

∑𝑘 (𝑥𝑖𝑘 − 𝑥𝑖) (𝑥𝑗𝑘 − 𝑥𝑗)

√∑𝑘 (𝑥𝑖𝑘 − 𝑥𝑖)∑𝑘 (𝑥𝑗𝑘 − 𝑥𝑗)

, (5)

where 𝐸𝑖𝑗 is the PPI between gene𝑉𝑖 and gene𝑉𝑗; 𝑘 is the 𝑘th
sample; 𝑥𝑗𝑘 is the rank of 𝑉𝑖 of 𝑘th sample; 𝑥𝑖𝑘 is the rank of
𝑉𝑗 of 𝑘th sample; 𝑥𝑖 and 𝑥𝑗 are the average ranks of 𝑉𝑖 and 𝑉𝑗
in the samples, respectively:
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where 𝑟𝐸𝑖𝑗1and 𝑟𝐸𝑖𝑗2 represent the Spearman coefficients of 𝐸𝑖𝑗
in compared samples, respectively.

The gene pairs are considered to interact intensively if
|Δ𝑟𝐸𝑖𝑗
| ≥ 0.5. If |Δ𝑟𝐸𝑖𝑗 | < 0.5 but the two genes belong to

differential expressed genes, they are also considered to have
strong interactions and should be reserved.

2.5.2. Weight. Weight represents the number of PPI in the
network [24]. Only gene pairs with weight > 5 which are
considered to have strong interactions are recorded and used
to construct a disease-related PCN.

2.5.3. Degree. By analysis of the topological characteristics in
the network, all node degrees were obtained.The degree ratio
was defined as the degree of a node in disease-related PCN to
that in background PCN.

We introduced a concept of pathway score to examine the
pathway status in the disease. The formula was shown as

Pathway score =
Degree in disease
Degree in normal

. (7)

2.6. Comprehensive Analysis of Pathways. For a comprehen-
sive analysis of disease-related genes and pathways, we intro-
duced nonparametric rank product (RankProd) approach
[25] to find important pathways. The formula was shown as

RP = (Rank inter
Total

) × (

Rank outer
Total

) , (8)

where inter indicated attracting 𝑃 value of a pathway and
outer indicated degree of a pathway.

Table 1: Differential pathways with 𝑃 value < 0.05.

KEGG ID Term 𝑃 value
05219 Bladder cancer 2.23𝐸 − 05

04080 Neuroactive ligand-receptor
interaction 7.08𝐸 − 05

00071 Fatty acid degradation 0.000163
04740 Olfactory transduction 0.000239

04932 Nonalcoholic fatty liver disease
(NAFLD) 0.000372

00190 Oxidative phosphorylation 0.002173
05322 Systemic lupus erythematosus 0.004022
03010 Ribosome 0.008739
01212 Fatty acid metabolism 0.009654
00920 Sulfur metabolism 0.011812
05012 Parkinson’s disease 0.012836
05033 Nicotine addiction 0.012936
05034 Alcoholism 0.012936
04728 Dopaminergic synapse 0.020141
05206 MicroRNAs in cancer 0.025966

00860 Porphyrin and chlorophyll
metabolism 0.032464

00520 Amino sugar and nucleotide
sugar metabolism 0.035002

04110 Cell cycle 0.035002

An impact factor (IF) concept was also introduced to
examine the significance of a pathway, which was shown as

IF = outer × (1 − inter) . (9)

3. Results

3.1. DEGAnalysis. Based on themicroarray data of E-GEOD-
44861, 135 DEGs between colon cancer tissues and normal
tissues were screened out with |log FC| ≥ 1.5 and 𝑃 value ≤
0.01 by using the method of LIMMA.

3.2. Differential Pathways Analysis. Compared with normal
group, a total of 18 differential pathways with 𝑃 value <
0.05 were obtained in the cancer group as shown in Table 1.
These pathways were colon cancer-related pathways, such as
“bladder cancer” pathway and “neuroactive ligand-receptor
interaction” pathway, and five pathways were correlated with
metabolism. The top nine ranked pathway with significant
levels (𝑃 value < 0.01) were identified, which were signifi-
cantly different between normal group and cancer group.

3.3. Pathway Cross Talk Network Analysis. Pathways and
protein interactions were integrated to a global PCN. In
the network, nodes represented as pathways and edges
denoted cross talk between pathways. We analyzed node
degrees of the network, which indicated the connections
among pathways. Cross talks in background were shown in
Supplemental Data 1 (in Supplementary Material available
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Table 2: Top ten pathways ranked by pathway scores.

Pathways BG
degree

Test
degree

Pathway
score

PI3K-Akt signaling
pathway 291 192 0.659794

Pathways in cancer 293 193 0.658703
Cytokine-cytokine receptor
interaction 289 172 0.595156

Proteoglycans in cancer 290 172 0.593103
HTLV-I infection 292 171 0.585616
Viral carcinogenesis 289 167 0.577855
Focal adhesion 291 167 0.573883
Tuberculosis 291 165 0.567010
Rap1 signaling pathway 291 163 0.560137
MAPK signaling pathway 292 163 0.558219
BG: background, pathways in normal group; degree ratio: the ratio of degree
in test group to that in BG group; HTLV: human T-cell leukemia virus;
MAPK: mitogen-activated protein kinase.

online at http://dx.doi.org/10.1155/2016/2619828) and cross
talks test groups were shown in Supplemental Data 2.

Pathways owning more connections with others indicate
that they are more important in the network. In the cancer-
related PCN, the pathways with large degree indicated they
were more important in the case of cancer.

Degree ratio of node degree in test group to that in normal
group, named as pathway score, was computed and the scores
were ranged from 0 to 0.7. There were 80 pathways with
degree ratios < 0.01, of which 58 pathways were with degree
ratios = 0, which indicated that the pathway connections
with others were vanished when people were suffering from
colon cancer.The important pathways were those with higher
pathway scores. Top ten ranked pathways with pathway
scores and pathway degree were listed in Table 2.

Degrees of pathways were compared between test group
and BG group, as shown in Figure 1. Degrees of pathways in
test group were much less than degrees of pathways in BG
group.

3.4. Comprehensive Analysis of Pathways. There were two
definitions that illuminate the status of a pathway in colon
cancer, RP value, and IF value.

According to the ranks of degree and𝑃 value in a pathway,
RP value was computed, ranging from 0 to 1. There were 65
pathways with RP values < 0.05. On the basis of 𝑃 value <
0.05, 18 pathways were eligible, as shown in Figure 2, and they
were considered to be important pathways.

IF value indicates the significance of a pathway that
performs in colon cancer. Figure 3 displayed all the IF values
of pathways. There were 16 pathways with IF values > 100,
whichwere considered to be important pathways.The top five
ranked pathways with large values were “neuroactive ligand-
receptor interaction” pathway, “microRNAs in cancer” path-
way, “pathways in cancer” pathway, “cell cycle” pathway, and
“human T-cell leukemia virus (HTLV-I) infection” pathway.
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values.

After comparing pathways with RP values, 𝑃 values, and
IF values, five pathways were obtained which were identi-
fied important in all three factors: “bladder cancer” path-
way, “alcoholism” pathway, “dopaminergic synapse” pathway,
“microRNAs in cancer” pathway, and “cell cycle” pathway.

4. Discussion

Due to the fast development of bioinformatics, network-
based approaches have become increasingly important to
search for cancer mechanisms [26], such as coexpression
network and PPI. PCN, based on pathways and PPI, plays
a key role in identifying important pathways. To explore
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mechanism of colon cancer, PCN was applied to search for
core pathways.

The microarray data of E-GEOD-44861 was selected to
explore mechanism of colon cancer, since it was a represen-
tative study in recent years. In the study of Ryan et al. [7],
the focus point was NADPH-related pathways, while, in this
study, we mainly focused on searching for core dysregulated
pathways in colon cancer from all human-related pathways.

With gene expression profiles of 56 cancer tissues and 55
normal adjacent tissues, 18 differential pathways were iden-
tified by attractor procedure. These pathways were greatly
changed in cancer tissues compared with normal tissues.

As pathways function with each other and do not work
alone, cross talk in pathways is needed for analysis. In the
pathway-based PCN, degree indicates connections between
pathways. RankProd method was applied to rank pathways
in degree and 𝑃 value, generating two factors, RP value and
impact factor. After comprehensive analyses of 𝑃 value, RP
value, and IF values, we identified 5 pathways as impor-
tant pathways. They were not only with significant changes
between cancer and normal tissues but also with many
connections with other pathways. Once 1 of the 5 pathways
changed, pathways connected with it will be influenced.

“Bladder cancer” pathway was identified to be asso-
ciated with colon cancer. This pathway mainly partici-
pated in urothelial carcinoma. Urothelial tumors arise and
evolve through divergent phenotypic pathways. Some tumors
progress from urothelial hyperplasia to low-grade noninva-
sive superficial papillary tumors. More aggressive variants
either arise from flat, high-grade carcinoma in situ (CIS) and
progress to invasive tumors or arise as invasive tumors. Low-
grade papillary tumors frequently show a constitutive activa-
tion of the receptor tyrosine kinase-Ras pathway, exhibiting
activating mutations in the HRAS and fibroblast growth
factor receptor 3 (FGFR3) genes. In contrast, CIS and invasive
tumors frequently show alterations in the TP53 and RB
genes and pathways. Invasion and metastases are promoted
by several factors that alter the tumor microenvironment,
including the aberrant expression of E-cadherins (E-cad),

matrix metalloproteinases (MMPs), and angiogenic factors
such as vascular endothelial growth factor (VEGF) [27].

“Alcoholism” pathway is a chronic relapsing disorder
related pathway. Alcoholism is progressive and has serious
detrimental health outcomes. As one of the primary media-
tors of the rewarding effects of alcohol, dopaminergic ventral
tegmental area (VTA) projections to the nucleus accumbens
(NAc) have been identified. Acute exposure to alcohol stim-
ulates dopamine release into the NAc, which activates D1
receptors, stimulating PKA signaling and subsequent CREB-
mediated gene expression, whereas chronic alcohol exposure
leads to an adaptive downregulation of this pathway, in
particular, of CREB function. The decreased CREB function
in the NAc may promote the intake of drugs of abuse to
achieve an increase in reward and thus may be involved in
the regulation of positive affective states of addiction. PKA
signaling also affects NMDA receptor activity and may play
an important role in neuroadaptation in response to chronic
alcohol exposure [28].

“Dopaminergic synapse” pathway is correlated with ner-
vous system. Dopamine (DA) is an important and prototyp-
ical slow neurotransmitter in the mammalian brain, where it
controls a variety of functions including locomotor activity,
motivation and reward, learning andmemory, and endocrine
regulation. Once released from presynaptic axonal terminals,
DA interacts with at least five receptor subtypes in the
central nervous system (CNS). Through diverse cAMP- and
Ca2+-dependent and Ca2+-independent mechanisms, DA
influences neuronal activity, synaptic plasticity, and behavior.
Presynaptically localized D2Rs regulate synthesis and release
of DA as the main autoreceptor of the dopaminergic system
[29, 30].

“MicroRNAs in cancer” pathway is involved in a cluster
of small nonencoding RNAmolecules of 21–23 nucleotides in
length, which controls gene expression posttranscriptionally
via either the degradation of target mRNAs or the inhibition
of protein translation. Using high-throughput profiling, dys-
regulation of miRNAs has been widely observed in different
stages of cancer. The upregulation of specific miRNAs could
result in the repression of tumor suppressor gene expres-
sion, and conversely the downregulation of specific miRNAs
could lead to an increase of oncogene expression; both
these situations result in tumor growth and progress. The
miRNA signatures of cancer observed in various studies differ
significantly.These inconsistencies result from the differences
in the study populations and methodologies [31, 32].

“Cell cycle” pathway functions in response to DNA dam-
age by activating signaling pathways that promote cell cycle
arrest and DNA repair. When responding to DNA damage,
the checkpoint kinase ATM phosphorylates and activates
Chk2,which in turn directly phosphorylates and activates p53
tumor suppressor protein. p53 and its transcriptional targets
play an important role in both G1 and G2 checkpoints [33].
ATR-Chk1-mediated protein degradation of Cdc25A protein
phosphatase is also a mechanism conferring intra-S-phase
checkpoint activation [34].

Besides, some identified pathways were involved in the
regulation of NADPH, such as “fatty acid metabolism” and
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“oxidative phosphorylation,” which was similar to the results
of Ryan et al. [7].

Still, there are limitations in the paper. The results were
generated from bioinformatics analysis, which still need
clinical data to be verified.

5. Conclusion

In this study, we concentrated on exploring important path-
ways that reflected mechanism of the occurrence and devel-
opment of colon cancer. We identified DEG and differential
pathways by comparing colon cancer tissues and normal
tissues. After comparing PCN between cancer and normal,
we identified 5 important pathways, which may give new
insights into the underlying biological mechanisms driving
the progression of colon cancer and should be paid close
attention to in further research.
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