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Transcriptional regulation is pivotal for development and
differentiation of organisms. Transcription of eukaryotic
protein-coding genes by RNA polymerase II (RNAP II) initiates
at the core promoter. Core promoters, which encompass the
transcription start site, may contain functional core promoter
elements, such as the TATA box, initiator, TCT and
downstream core promoter element. TRF2 (TATA-box-binding
protein-related factor 2) does not bind TATA box-containing
promoters. Rather, it is recruited to core promoters via
sequences other than the TATA box. We review the recent
findings implicating TRF2 as a basal transcription factor in the
regulation of diverse biological processes and specialized
transcriptional programs.

Introduction

Transcriptional regulation is pivotal for the proper function of
multiple cellular processes and signaling pathways. In eukaryotes,
transcription of protein-coding genes by RNAP II initiates by
formation of the preinitiation complex (PIC) at the core pro-
moter (for a review see ref. 1). The PIC is a multisubunit com-
plex composed of RNAP II and several basal transcription
factors, also termed general transcription factors (or GTFs),
which ensure accurate initiation of transcription. But how gen-
eral are the general transcription factors? Several studies pub-
lished in the last few years suggest that genes with specific core
promoter composition recruit a specialized basal transcription

factor, demonstrating the diversity of transcriptional regulation.
This is the story of TRF2, TATA-box-binding protein-related
factor 2, which was shown to be essential for transcription of
genes having a unique role in multiple biological processes,
including early embryonic development and differentiation.

Transcription initiation can occur in a focused manner (at a
single nucleotide or within a narrow region of several nucleoti-
des), a dispersed manner (at multiple weak start sites over a broad
region of about 50 to 100 nucleotides) or in a manner that com-
bines both focused and dispersed transcription initiation.
Focused core promoters encompass the RNA start site and are
typically 80 nucleotides in length (¡40 to C40 relative to the
C1 transcription start site).2-5 Core promoters may contain one
or more functional DNA sequence elements, termed core pro-
moter elements or motifs, such as the TATA box, TFIIB recogni-
tion elements (BREu and BREd), initiator (Inr), TCT motif,
motif 10 element (MTE), and downstream core promoter ele-
ment (DPE), which confer specific properties to the core pro-
moter (for a review see refs. 3, 4, 6). There is no universal core
promoter composition. Notably, dispersed promoters generally
lack TATA, BRE, MTE and DPE motifs.5,7,8 From this point
onwards, this review will mainly relate to studies performed with
focused core promoters.

The TATA box is the first eukaryotic promoter element dis-
covered.9 Its consensus sequence is TATAWAAR, where the
upstream T is located about ¡31/¡30 relative to the AC1 of the
transcription start site (TSS). The TATA box is conserved from
archaebacteria to humans.10 Although the TATA box is well-
known and extensively studied, it is only present in 10%-15% of
mammalian core promoters, and in about 20% of Drosophila
genes.7,11-15 The BRE motifs function together with the TATA
box. The BREu is located immediately upstream of the TATA
box (with a SSRCGCC consensus sequence), and the BREd is
located immediately downstream of the TATA box (with a
RTDKKKK consensus sequence).16-18 The initiator (Inr) is the
most commonly occurring motif among core promoter ele-
ments.12-15,19 The Inr encompasses the TSS 20 and its consensus
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is YYANWYY in humans and TCAKTY in Drosophila. Focused
transcription generally starts at the A nucleotide of the Inr con-
sensus that is referred to as “C1” of the TSS (whether transcrip-
tion starts at this nucleotide or nearby). The TCT motif is a
polypyrimidine initiator located from ¡2 to C6 relative to the
TSS, which has been identified in genes encoding ribosomal pro-
teins as well as other proteins involved in translation.21 Both the
MTE and DPE motifs are located at a specific position relative to
the Inr (with strict spacing requirements from the AC1 of the Inr)
and their function depends on the Inr. The MTE is located from
C18 to C27 relative to the AC1 of the Inr, and its consensus
sequence is CSARCSSAAC.19,22 It is conserved from Drosophila
to humans and functions cooperatively with the Inr.22,23 The
DPE, which has been identified in Drosophila as a TFIID-bound
downstream core promoter element in promoters lacking a
TATA box, is precisely located from C28 to C33 relative to the
AC1 nucleotide of the Inr and has a functional range set of
DSWYVY.24-26 The DPE is conserved from Drosophila to
humans.25 The DPE has been shown to be prevalent among
developmentally regulated genes, such as the Hox gene network
and Dorsal target genes,15,27 suggesting that the composition of
the core promoter is a major contributor to transcriptional
regulation.

RNAP II is a 12-subunit molecular machine that catalyzes the
synthesis of RNA from the template DNA. It is, however, unable
to discriminate between the core promoter region and other
DNA regions. RNAP II is recruited to the core promoter by the
basal transcription machinery (TFIIA, TFIIB, TFIID, TFIIE,
TFIIF and TFIIH; for a review see ref. 1). TFIID, a protein com-
plex composed of the TBP (TATA-box binding protein) and
TBP-associated factors (TAFs), is the first protein complex that
recognizes the core promoter: TBP binds the TATA-box motif,
TAF1 and TAF2 bind the Inr motif and TAF6 and TAF9 bind
the DPE and MTE motifs.23,25,28-31 Several tissue-specific var-
iants of TAFs have been discovered: TAF4 variants are important
for ovarian development and spermatogenesis in mice, while
Drosophila and human TAF5 and TAF7 paralogs are implicated
in male gametogenesis, thus providing the TFIID with unique
functions in a tissue-specific transcription environment.32-37 Fol-
lowing the binding of TFIID, TFIIA binds and stabilizes the
association of TFIID with the TATA-box. The formation of the
TFIID-TFIIA-DNA complex is followed by the sequential bind-
ing of TFIIB, RNAP II/TFIIF, TFIIE and TFIIH, resulting in
the assembly of the PIC. The hierarchical recruitment of the basal
transcription factors to the core promoter was discovered using
the TATA box-containing adenovirus major late promoter.
Remarkably, these basal transcription factors, which are necessary
for TATA box-dependent transcription, are insufficient to tran-
scribe DPE-dependent promoters.38,39 Moreover, whereas TBP
binds and activates TATA-dependent transcription, it down reg-
ulates DPE-dependent transcription.40 NC2 and MOT1, which
are positive regulators of DPE-dependent transcription, counter-
act TBP and relieve its inhibition of DPE transcription.40-42

Hence, the known basal transcription factors are not “general”
and additional basal transcription factors that support DPE-
dependent transcription exist.

TBP-related factors
The C-terminal core domain of TBP contains 2 structural

repeats that fold into a saddle-like structure that is essential for
the interaction with the TATA box.29-31 Using low-stringency
hybridization, 2 distinct TBPs were identified in Arabidopsis
thaliana and then in maize.43,44 Since then, 3 TBP-related factors
(TRFs; TRF1, TRF2 and TRF3) have been discovered in the ani-
mal kingdom based on their homology to the C-terminal core
domain of TBP (for a review see refs. 45-49). The existence of
the variety of TRFs is another manifestation of the diversity and
complexity of transcriptional regulation.

TFR1 exists in Drosophila and Anopheles, but not in yeast or
humans.50,51 TRF1 has 63% identity to the C-terminal core
domain repeats of TBP. In vitro experiments showed that TRF1
can bind to TATA-box together with TFIIA and TFIIB, and can
efficiently replace TBP in transcription of TATA-dependent pro-
moters. In addition, whole genome ChIP analysis demonstrated
that TRF1 mainly activates transcription through RNAP III, and
a minor group of genes transcribed by RNAP II. Drosophila
TRF1 associates with Brf1, a TFIIB-related RNAP III transcrip-
tion factor to form a 300 kDa complex.51

TRF3 (also known as TBP2 (TATA-binding protein 2) and
TBPL2 (TBP-like protein 2)), which is the TRF that is most
closely related to TBP, is unique to vertebrates.52-55 Similarly to
TBP and TRF1, TRF3 can associate with TFIIA and TFIIB.52,54

TRF3 binds TATA-box containing promoters and activates
them. TRF3 has been shown to be important for initiation of
hematopoiesis during zebrafish embryogenesis.53,56 TRF3 has
also been shown to form a complex with TAF3 and play a role in
the ex-vivo differentiation of mouse myoblast to myotubes.57,58

As skeletal muscle differentiation is unaffected in TRF3 knock-
out mice,59 the involvement of TRF3 in terminal differentiation
in different species awaits further investigation. Importantly,
TRF3 of Xenopus and zebrafish is mainly expressed in oocytes
and is essential for embryogenesis.52,54 Mouse TRF3, which is
exclusively expressed in oocytes, is essential for the differentiation
of female germ cells but not for embryonic development.59

TRF2 is the TRF protein with the least similarity to TBP.60-65

In 1999-2000, when different research groups have cloned TRF2
from multiple species, different names were coined. The name
TRF2 was used for Drosophila64 and humans,65 as it followed the
discovery of TRF1 in Drosophila. It was also named TLP
(TATA-like protein; identified in mouse and humans),62,63 TLF
(TBP-like factor; identified in C. elegans),60,66 TRP (TBP-related
protein; identified in humans)61 and TBPL1 (TBP-like 1; L is
used by the Human Gene Nomenclature Committee to denote
paralogs of named genes), based on its homology to TBP and
perhaps, taking into account that there is no vertebrate TRF1.
TRF2 is involved in RNAP II transcription.65 Similarly to TRF1
and TRF3, TRF2 can directly interact with TFIIA61,65,67 and
TFIIB.61 Interestingly, Drosophila trf2 encodes 2 protein prod-
ucts - a short (632 aa) protein, and a protein of 1715 aa (which
will henceforth be referred to as long TRF2), in which the same
short amino acid sequence is preceded by an N-terminal domain
composed of coil-coiled motifs.68 Translation of the short iso-
form probably results from an internal translation initiation by
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an IRES mechanism.68 Both proteins show similarity to the
C-terminal core domain of TBP. The long TRF2 has only been
identified in Drosophila. The short TRF2, which is highly con-
served in evolution,45,55,61,64,69,70 has been extensively studied
and will henceforth be referred to as TRF2. The TRF2 core
domain shows 40% identity and 60% similarity to the TBP core
domain.64 Despite the homology between the TRF2 and TBP
core domains, the TATA-interacting Phe residues of TBP are not
conserved in TRF2, and indeed TRF2 cannot bind the TATA-
box.61,64,70 Hence, the variety of TBP-related factors adds
another level of complexity to the regulation of transcription. As
discussed below, recent evidence suggests that TRF2 can direct
RNAP II to subsets of TATA-less promoters and mediate diverse
biological processes and transcriptional programs (Fig. 1).

TRF2 is involved in transcription of specific pathways
In Drosophila, TRF2 was shown to bind polytene chromo-

somes at sites distinct from those of TBP, suggesting that TRF2
regulates a subset of genes that differ from TBP-regulated
genes.64,71 Specifically, TRF2 has been shown to regulate the
TATA-less Histone H1 gene, whereas TBP regulates the core his-
tone genes.71 Recent single cell imaging analysis of the endoge-
nous histone gene cluster in Drosophila cells, showed differential
transcription kinetics of TRF2-directed histone H1 gene expres-
sion (transcribed throughout S phase) vs. TBP-directed core his-
tones gene expression (only transcribed in a short pulse during
early S phase).72

Furthermore, ChIP-chip analysis revealed that Drosophila
TRF2, but not TBP, is associated with a large group of TATA-
less core promoters, including core promoters of ribosomal pro-
tein genes.71 The core promoters of most ribosomal protein
genes in Drosophila and humans contain a functional TCT motif,
which is not recognized by the TBP/TFIID complex.21 Remark-
ably, TRF2, but not TBP, has recently been shown to mediate
the transcription of ribosomal protein genes that lack a TATA
box and have functional TCT motifs.73 In vitro transcription
analysis using Drosophila TRF2-depleted embryonic nuclear
extracts demonstrated that transcription of 4 TCT-dependent
ribosomal genes (RpL30, RpLP1, RpS12 and RpS15) was
reduced, while no effect on transcription of TATA-dependent
genes was observed.73 Moreover, the addition of recombinant
TRF2 to the TRF2-depleted extracts restored the transcriptional
activity, further supporting the hypothesis that TRF2 regulates
transcription of specific pathways.

ChIP-seq analysis of TRF2 on early (2 to 4 h) Drosophila
embryos showed a peak of TRF2 in the TSS region.73 Interest-
ingly, MEME analysis performed on the top TRF2-bound genes
revealed enrichment of the DPE motif, while no enriched motif
was identified in the least TRF2-bound genes.74 Drosophila short
TRF2 was recently identified by a biochemical complementation
analysis as an enriched factor in fractions that support DPE-
dependent transcription.74 Microarray analysis of Drosophila
S2RC cells that overexpress inducible short TRF2 identified
multiple DPE-dependent targets. In vitro transcription followed

Figure 1. Schematic model depicting the regulation of diverse biological processes and transcriptional programs by TRF2.
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by primer extension analysis of 4 TRF2 target genes (pvf2, sodh-
2, bgm and inx3) indicated that their transcription was highly
dependent on an intact DPE motif.74 Furthermore, using micro-
fluidics affinity analysis, protein extracts from S2RC cells that
over-express inducible TRF2, were shown to bind these DPE-
containing promoters in a sequence-specific manner. Taken
together, these findings suggest the existence of specialized tran-
scriptional systems that do not involve TBP and regulate diverse
biological pathways.

TRF2 is involved in embryonic development, differentiation
and morphogenesis

TRF2 has been shown to be essential for embryonic develop-
ment of C. elegans, Drosophila, zebrafish and Xenopus.60,66,68,75,76

Interestingly, Xenopus TRF2 was shown to play a role in the
expression of catabolic genes during embryonic development.77

Recent analysis of Drosophila genes with high TRF2 occupancy
revealed a strong relationship between TRF2 and processes such
as cell differentiation and development.70,73 An evolutionary
conservation analysis indicated that TRF2 evolved by duplication
of the TBP gene.70 TRF2 is highly conserved in evolution and is
present in all bilaterian organisms containing 3 germ layers:
endoderm, mesoderm and ectoderm. TRF2 was not found in
any of the non-bilaterian genomes that are currently available.70

As more ancient animals only contain 2 germ layers (endoderm
and ectoderm) and the emergence of the bilateria was at the same
evolutionary point as that of trf2, one can speculate that TRF2 is
important for mesoderm formation. Notably, analysis of core
promoter composition of Drosophila genes involved in embry-
onic development and differentiation reveals the prevalence of
the DPE motif.15,78 Moreover, Drosophila embryos with reduced
TRF2 have previously shown homeotic and segmentation
defects, as well as dorsal-ventral abnormalities.68 Unlike TRF2 in
Drosophila, zebrafish and Xenopus, mouse TRF2 is not required
for embryonic development.79,80

TRF2 is widely expressed in the adult animal.61-63,65 Mouse
TRF2 is essential for spermiogenesis.79-81 It was recently demon-
strated that TRF2 works in concert with the tissue-specific
TAF7L, which is associated with testis-specific promoters, to reg-
ulate a subset of postmeiotic genes directing spermiogenesis.82

Notably, Drosophila TRF2 has been shown to be involved in dif-
ferentiation of germ cells of both male and female.68 Interest-
ingly, it was recently demonstrated that Taspase1-mediated
proteolytic cleavage of the TFIIAa-b precursor (into the a and b
subunits of TFIIA) is necessary for the activation TRF2-specified
transcriptional spermiogenic program in the juvenile and adult
mouse testes.83 Hence, TRF2 may form tissue-specific preinitia-
tion complexes that regulate transcription of specific subsets of
genes necessary for germ cell differentiation.

Drosophila trf2 has been shown to be required for transcrip-
tional and developmental responses to ecdysone during Drosoph-
ila metamorphosis.84 Hypomorphic trf2 mutations display
defects in major ecdysone-triggered biological responses, includ-
ing puparium formation, anterior spiracle eversion, gas bubble
translocation, adult head eversion, and larval salivary gland cell
death. Drosophila trf2 appears to be required for the proper

timing and levels of ecdysone-regulated gene expression required
for entry into metamorphosis.84 Additional support for the
involvement of TRF2 in Drosophila metamorphosis comes from
RNAi depletion of TRF2 in larval salivary glands that results in a
significant reduction in the sizes of the cells and the glands.71

Although these mutant embryos develop to the third instar larval
stage, a majority of them fail to pupate or die during pupal stages.
Hence, even though a detailed mechanism has not been demon-
strated, TRF2 is involved in the regulation of Drosophila
metamorphosis.

Conclusions and future perspectives
Recent findings have highlighted the involvement of TRF2 in

the regulation of diverse biological processes and specialized tran-
scription programs (Fig. 1). It is possible that TRF2 regulates
additional pathways and systems that remain to be discovered.

Historically, promoters have been classified as TATA box-
containing or TATA-less. It is now clear that it takes much more
than the presence of a TATA box to define the characteristics of a
core promoter. Likewise, it is clear that there is no universal tran-
scription machinery and the term general transcription machinery
should be replaced by basal transcription machinery. Since its dis-
covery, it has been known that TRF2 does not bind TATA-
containing DNA. In fact, based on multiple studies in the last
15 years implying that TRF2 regulates specialized transcription sys-
tems, the name TBP-related factor 2, rather than TBP-like factor
(TLF) or TBP-like protein (TLP), seems more appropriate. Hence,
based on functionality, rather than homology to TBP, we suggest
adopting the TRF terminology for the TBP family of proteins.

It remains to be determined whether TRF2 binds sequence-
specific DNA directly. The Kadonaga Lab did not observe
sequence-specific DNA binding under an extensive range of con-
ditions with many different template DNAs and methodologies
in the absence or presence of different combinations of purified
TFIIA and TFIIB.73 ChIP-seq data indicated that TRF2 binds in
the vicinity of the TSS.73 Microfluidic affinity analysis has
demonstrated DNA binding of TRF2-containing complexes to
DPE-containing promoters.74 It is likely that there are TRF2-
associated factors (like TBP-associated factors), which assist
TRF2 in binding to its target promoters. Such TRF2-associated
factors remain to be discovered.
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