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Background: Myopia is the leading cause of visual impairment and affects millions of children worldwide. 
Timely and annual manual optometric screenings of the entire at-risk population improve outcomes, but 
screening is challenging due to the lack of availability and training of assessors and the economic burden 
imposed by the screenings. Recently, deep learning and computer vision have shown powerful potential for 
disease screening. However, these techniques have not been applied to large-scale myopia screening using 
ocular appearance images.
Methods: We trained a deep learning system (DLS) for myopia detection using 2,350 ocular appearance 
images (processed by 7,050 pictures) from children aged 6 to 18. Myopia is defined as a spherical equivalent 
refraction (SER) [the algebraic sum in diopters (D), sphere + 1/2 cylinder] ≤−0.5 diopters. Saliency maps and 
gradient class activation maps (grad-CAM) were used to highlight the regions recognized by VGG-Face. In 
a prospective clinical trial, 100 ocular appearance images were used to assess the performance of the DLS.
Results: The area under the curve (AUC), sensitivity, and specificity of the DLS were 0.9270 (95% CI, 
0.8580–0.9610), 81.13% (95% CI, 76.86–5.39%), and 86.42% (95% CI, 82.30–90.54%), respectively. Based 
on the saliency maps and grad-CAMs, the DLS mainly focused on eyes, especially the temporal sclera, rather 
than the background or other parts of the face. In the prospective clinical trial, the DLS achieved better 
diagnostic performance than the ophthalmologists in terms of sensitivity [DLS: 84.00% (95% CI, 73.50–
94.50%) versus ophthalmologists: 64.00% (95% CI, 48.00–72.00%)] and specificity [DLS: 74.00% (95% 
CI, 61.40–86.60%) versus ophthalmologists: 53.33% (95% CI, 30.00–66.00%)]. We also computed AUC 
subgroups stratified by sex and age. DLS achieved comparable AUCs for children of different sexes and ages.
Conclusions: This study for the first time applied deep learning to myopia screening using ocular images 
and achieved high screening accuracy, enabling the remote monitoring of the refractive status in children 
with myopia. The application of our DLS will directly benefit public health and relieve the substantial 
burden imposed by myopia-associated visual impairment or blindness.
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Introduction

Refractive status plays a significant role in the development 
of photoreceptors and visual function (1,2). Myopia, 
impaired refractive ability, has become a public health 
concern affecting nearly 130 million people worldwide, 
and its prevalence is increasing at an alarming rate among 
school-age children globally, especially in China (3). 
All myopia should be corrected to avoid amblyopia and 
pathological myopia (4). However, most children do not 
notice their visual impairment, especially if only one eye is 
involved (5). Currently, the most widely used method for 
myopia screening is the uncorrected visual acuity test, which 
requires an acuity chart and trained nurses or technicians, 
possessing a sensitivity and specificity of 63.6% and 94.0%, 
respectively (6,7). Timely and annual manual optometric 
examinations of the entire at-risk population of individuals 
would help prevent the development of myopia. However, 
these screening examinations are expensive and time-
consuming, making them an inefficient means of screening 
a large at-risk population (8). Therefore, a substantial 
number of patients, especially children with early-stage 
myopia and monocular myopia, may remain unnoticed and 
uncorrected, resulting in uncontrolled children’s myopia 
progression and substantial global costs (9).

Refractive ability is associated with anatomical structures 
of the axial and refractive medium, such as the cornea and 
lens (10,11). Because of environmental influences, most 
eyeballs will experience axial elongation and changes in 
the structure or location of the cornea and lens, resulting 
in myopia (12). Structural changes in the eyeball often 
accompany alterations in ocular appearance, such as 
strabismus, abnormal head position, longer axial, steeper 
central corneal curvatures (13-17). However, the ocular 
appearance of myopia children is not clinically observable 
before high myopia occurs; therefore, it is clinically 
challenging to diagnose myopia by ocular appearance (17). 
Facial recognition with deep convolution neural networks 
(DCNNs) has the potential to extract subtle features as well 
as hidden patterns, such as identifying facial phenotypes of 
genetic disorders and detecting sexual orientation (18,19). 
Therefore, DCNNs have great potential and may even 
be superior to ophthalmologists in diagnosing refractive 
function based on ocular appearance image features.

Recently, deep learning has been applied to many 
research areas in computer vision, the discipline that 
enables computers to understand images (20), including 
diagnosis of structural ocular disorders, such as diabetic 

retinopathy, glaucoma, and cataract (21-23). However, the 
effectiveness of computer vision techniques in diagnosing 
diseases with detectable functional changes and insignificant 
morphological changes remains to be studied, such as 
intestinal functional diseases, mental disorders, and 
behavioral developmental disorders. Deep learning models 
such as DCNNs are the primary candidates for most 
visual recognition tasks, such as fine-grained recognition 
to automatically discriminate categories with only small 
subtle visual differences (24); thus, these models have great 
potential to be applied for the diagnosis of these kinds of 
diseases. Recently, Heather Cody Hazlett’s group applied 
a DCNN to predict autism based on brain MRI, with a 
sensitivity of 88% and a specificity of 95% (25). Here, we 
aimed to automatically detect myopia using a DNCC based 
on real-world 2-D ocular appearance images that can be 
readily obtained in daily life.

Methods

Data source

Our research data were derived from the Myopia Artificial 
Intelligence (AI) Program in China after informed consent, 
name, sex, and age were collected from children aged 
6–18 in China. Medical histories were obtained to exclude 
common diseases that can affect refractive status, such as 
diabetes and microphthalmia. Using a VX120 (Visionix 
Luneau, Jerusalem, Israel), noncycloplegic examinations 
were performed to measure eye refraction (26). Spherical 
lens values and column lens values were recorded. To 
extend the applicability of the deep learning system (DLS), 
different cameras including EVA-AL00, Canon EOS 6D, 
iPhone 6, iPhone 7 Plus and Le X620, were used for ocular 
appearance image collection according to the following 
standards. Without glasses, children were directed to look 
straight ahead, and three pictures from different angles of 
each eye were collected from a distance of 1 m from the 
examiners; these included pictures taken from the side, at 
a 45-degree front angle, and from the front under room 
illuminance ranging from 300 to 500 lx.

Data preparation

We extracted data from the Myopia AI Program for deep 
learning. To focus on the school-aged population, we 
included only individuals aged 6 to 18 in the analysis. 
After excluding blurred images, 7,050 pictures from 
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2,350 different eyes were finally included in our study, 
which contained 1,057 myopic eyes and 1,293 nonmyopic 
(emmetropic and hyperopic) eyes.

Three-angle pictures of one specific eye were stitched 
into one ocular appearance image. From top to bottom, an 
ocular appearance image consists of pictures from the side, 
45-degree angle front, and front. Therefore, 7,170 pictures 
were processed into 2,350 ocular appearance images. 
Spherical equivalent refraction (SER) [the algebraic sum in 
diopters (D), sphere + 1/2 cylinder] was used to determine 
the refractive status of each ocular appearance image. The 
presence of myopia was defined as an SER ≤−0.5 diopter, 
according to the international definition of myopia (10).

Ethics statement

This study adhered to the tenets of the Declaration of 
Helsinki, and approval for the study protocol was obtained 
from the Institutional Review Board/Ethics Committee of 
Sun Yat-sen University (Guangzhou, China). Only partial 
faces (from the forehead to the nose) were contained in the 
ocular appearance images. All datasets used in the study 
were deidentified before transfer to the study investigators.

Model development

We resized the 2,350 ocular appearance images to  
224×224 pixels and extracted facial features using a widely 
employed DCNN, VGG-Face with transfer learning (27).  
VGG-Face was originally pretrained using 2.6 million 
images to detect appearance features (28). The training 

dataset was randomly shuffled into training (75%) 
and validation (25%) datasets. Each eye was randomly 
assigned to the training or validation dataset. The VGG-
Face was then fine-tuned for the myopia classification 
task. The training was performed using a Keras deep 
learning library with a TensorFlow GPU backend 
(Keras version 2.2.4, TensorFlow version 1.11.0) (29).  
The convolutional layers and batch normalization layers 
were unchanged. Each image was randomly augmented 
by cropping and zooming. To ensure that the important 
image features were retained, only the outer most 5% of the 
image, the background area without the eyes, were cropped. 
The dropout rate was empirically set to 0.5. Iteration was 
set at 250. We applied the adaptive moment estimation 
(ADAM) optimizer with an initial learning rate of 0.000001, 
a beta 1 of 0.9, a beta 2 of 0.999, and a fuzz factor of 1e−7 
with zero decay (30). Finally, the loss was 0.3587. A diagram 
of the deep learning architecture is shown in Figure 1. The 
machine made a diagnosis in one eye based on the ocular 
appearance image of one eye from three directions. Thus, 
the machine diagnoses only once per image. However, the 
machine also makes use of the information from the front 
picture of the other eye for the diagnosis.

After a comparison with SER, we evaluated the 
performance of the DLS using the area under the curve 
(AUC), sensitivity (percentage of correctly predicted 
positive cohort cases from all positive cohort cases) and 
specificity (percentage of correctly predicted negative 
cohort cases from all negative cohort cases). The AUC and 
receiver operating characteristic (ROC) curve assessments 
were performed to evaluate the performance of our DLS.

Figure 1 Diagram of the deep learning system used to diagnose myopia. This deep learning network contains 15 layers.
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Diagnosis visualization

To visualize the areas that contributed to the diagnosis made 
by the DLS, saliency maps and gradient class activation 
maps (grad-CAMs) were generated for each image in the 
dataset (31). On the saliency maps, pixel-level gradient of 
our model’s prediction with respect to each pixel in the 
input image was calculated. Image pixels that had a high 
impact on the model’s prediction were highlighted. In grad-
CAM, instead of using the model output, the penultimate 
(pre-fully connected layer, usually the last convolution layer) 
convolution layer output was used to preserve any spatial 
information that was lost in the fully connected layer. The 
warmest color was used to represent the region of interest 
that contributed most to the DLS.

Clinical assessment

To assess the capability of the system in a real-world setting, 
we designed a prospective clinical trial test to compare the 
performance between our system and ophthalmologists 
(NCT04014725). The ophthalmologists were China Board-
certified physicians who specialized in the clinical care of 
patients with ocular disorders. Fifty students (100 eyes) 
aged 6–18 years old were recruited for this study. The 
sample size of this study was calculated based on the sample 
sizes of previous studies (23,32). After ocular appearance 
images were obtained, all students were evaluated by the 
diagnostic system and three clinical ophthalmologists 
before optometric examinations. To minimize physician 
bias associated with prior knowledge of the children’s 
medical history, the physicians reviewed the same images of 
the children’s ocular appearance as the DLS. The status of 
each eye was judged as “myopia” or “nonmyopia”. Finally, 
the diagnoses of the system and ophthalmologists were 
recorded and compared.

To assess the parents’ ability to detect myopia in 
children, we asked the parents of three myopic students 
who did not have a medical education background to screen 
for myopia using the same 100 ocular appearance images. 
The diagnoses of the non-ophthalmologists were recorded 
and compared with those of the DLS and ophthalmologists.

Subgroup analysis

Since the prevalence of myopia was associated with age 
and sex (33), we performed subgroup analysis to investigate 
the influencing factors of DLS performance (34). Using 

the external validation dataset, AUCs were investigated in 
different age (≤10 vs. ≥11 years) and sex (male vs. female) 
subgroups.

Results

Internal validation and diagnosis visualization

In the validation test, our DLS achieved an AUC of 0.9270 
(95% CI, 0.8580–0.9610), sensitivity of 81.13% (95% 
CI, 76.86–85.39%), and specificity of 86.42% (95% CI, 
82.30–90.54%). The ROC curve is shown in Figure 2. 
Grad-CAMs and Saliency maps investigated the areas of the 
face applied by the classifier and showed that the classifier 
focused on the eyes, especially the temporal sclera, and did 
not rely on the background (Figure 2).

Clinical performance

In the perspective clinical trial, 50 students (100 eyes, 56% 
male) with an average age of 10.06 were finally included 
in our study. Figure 3 shows the prediction performance of 
the DLS compared to that of each ophthalmologist, both 
with reference to the optometric examination, using ocular 
appearance images from the students. The AUC of the DLS 
was 0.9140. For myopia detection, the DLS had a higher 
sensitivity (84.00%; 95% CI, 73.50–94.50%) and specificity 
(74.00%; 95% CI, 61.40–86.60%) than ophthalmologists 
(sensitivity: 64.00%, 95% CI, 48.00–72.00%; specificity: 
53.33%; 95% CI, 30.00–66.00%). In addition, the 
prediction performance of parents was worse than that of 
the DLS and ophthalmologists (Figure 3), with a sensitivity 
of 23.33% (95% CI, 20.00–30.00%) and a specificity of 
62.00% (95% CI, 48.00–84.00%).

Subgroup analysis

The prevalence of myopia is associated with age and sex. 
It has been reported that girls and older children are 
more likely to have a worse SER and higher incidence 
of myopia (33,35). Therefore, we further performed 
subgroup analysis according to age and sex to evaluate the 
predictive performance of our DLS (Figure 4). For the 
subgroup analysis stratified by age, the AUC, sensitivity, 
and specificity of DLS were 0.8980, 68.75% and 86.84% 
for age ≤10 years; and 0.8995, 91.8% and 33.33% for age  
≥11 years. For the subgroup analysis stratified by sex, the 
AUC, sensitivity, and specificity of DLS were 0.8976, 
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76.67% and 71.43% for females and 0.9722, 95.00% and 
75.00% for males. The DLS achieved comparable AUCs 
for children of different sexes and ages.

Discussion

Our data suggest that DLS can detect myopia through 
subtle morphological features. Myopia is a chronic disease 
that is generally diagnosed and classified by functional 
examinations, such as visual acuity, optometric examination, 
microperimetry, and electrophysiologic assessments (10). 
In suspected pathological myopia, the morphological 

changes in the retina and choroid can be further explored 
using ocular coherence tomography (OCT), retinal 
autofluorescence (AF), fluorescein angiography (FA), 
and indocyanine green angiography (ICG) (10). In our 
study, a comparison of diagnostic accuracy between 
ophthalmologists and parents revealed that parents were 
less likely to detect myopia through ocular appearance. 
Ophthalmologists show better performance in the detection 
of myopia by identifying ocular appearance features, such 
as slightly protruding eyes, which are recognizable to the 
human eye according to their clinical experience (15-17).  
However, the DLS shows the best performance by 

Figure 2 Internal validation and visualization-based diagnosis by the DLS. (A) The DLS used ocular appearance images as inputs and 
distinguished between myopia and nonmyopia in a VGG-Face network. (B) In the validation test, our DLS achieved an AUC of 0.9270 (95% 
CI, 0.8580–0.9610), a sensitivity of 81.13% (95% CI, 76.86–85.39%), and a specificity of 86.42% (95% CI, 82.30–90.54%). (C) Grad-CAMs 
and Saliency maps showed that the classifier focused on the eyes, especially the temporal sclera, and did not rely on the background. DLS, 
deep learning system; AUC, area under the curve.

Input image                                          Grad-CAM                                   Saliency map

M
yo

pi
a 

   
   

   
   

   
   

   
   

   
N

on
-m

yo
pi

a

Tr
ue

 p
os

iti
ve

 r
at

e

False positive rate

DLS, AUC=0.9270

1.0

0.8

0.6

0.4

0.2

0.0
0.0            0.2                 0.4                 0.6                 0.8               1.0

A

B

C



Yang et al. Automatic identification of myopia

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(11):705 | http://dx.doi.org/10.21037/atm.2019.12.39

Page 6 of 9

distinguishing the nonquantifiable morphological features 
of myopia. In addition, since the knowledge, experience, 
and impression of the signs and symptoms vary among 
different individuals, human performance shows large 
variations. However, the DLS outperforms humans in 
making inferences from images and extracting generic 
descriptors.

The Grad-CAMs and Saliency maps reveal how DLS 
makes the diagnostic decisions and shows that the temporal 
sclera is of greatest importance in detecting myopia. The 
sclera presents the eyelid fissure of the eyes, reflecting 
lateral protrusion. Sclera can also reflect information about 
strabismus. The temporal sclera contributes more than 
the nasal sclera does, likely because we used images from 
three angles for our analysis, and side pictures can only 
provide information pertaining to the nasal sclera. During 
the identification of the region of interest, the cornea area 
occasionally did not present a clear point of interest. This 
is likely because the cornea is transparent, so it does not 

contribute to the diagnosis of myopia because it is not 
recognizable in the images.

Given the  per formance  of  th i s  DLS and high 
prevalence of uncorrected myopia worldwide (36-38),  
this technology requires only photos obtained from 
regular cameras, such as smartphones, and has significant 
implications as a widely accessible screening tool 
for the general population. Compared with a visual 
acuity test, our DLS shows higher sensitivity (84%) in 
screening myopia in the clinical trial, providing a new 
myopia screening method. Optimizing sensitivity is of 
paramount importance for a screening tool, because it 
indicates the tool’s ability to correctly identify a myopia 
case even if this negatively impacts specificity (39).  
Spot Vision Screener (Welch Allyn Inc., Skaneateles 
Falls, NY, USA), an automatic noncycloplegic photo 
screener,  has both high specif ic ity (98.55%) and 
sensitivity (84.61%) for myopia detection (40). However, 
Spot Vision Screener requires specialized equipment 
and facilities that are not affordable in underdeveloped 
regions. Our DLS requires only children or their parents 
to obtain an ocular appearance image at home and does 
not require trained nurses or technicians; therefore, the 
savings of regular healthcare cost could be significant.

Notably, our study has the following advantages. First, 
most medical AI systems use diagnoses obtained from 
senior doctors as the ground truth to grade a dataset. 
However, our system uses the result of optometry as a gold 
standard, making our results more objective and reliable. 
Second, the DLS achieved comparable AUCs for children 
of different sexes and ages, indicating that the system has a 
wide applicability among different age groups and sexes.

Several  l imitations should be considered when 
interpreting the findings of this study. First, although the 
AUC remained high across different sex and age groups, 
the sensitivity and specificity had large variations. Future 
research with larger sample size and more balanced sample 
sizes across different ages and sexes is needed to enhance 
the performance in the subgroups. Second, the DLS has not 
been evaluated for its diagnostic performance in multiethnic 
populations to validate its robustness as a diagnostic tool 
in different ethnic groups. Third, although the DLS was 
able to detect myopia, it could not provide quantitative 
measurements of diopters. Moreover, improving the 
performance of the classification task for myopia will be 
addressed in the form of a future comprehensive analysis 
of the students’ ages, their parental history and potential 
environmental factors.

Figure 3 Comparison of the diagnostic performance of the DLS, 
ophthalmologists and parents. In the perspective clinical trial, our 
DLS achieved an AUC of 0.9140, a sensitivity of 84.00%, and a 
specificity of 74.00%. The ophthalmologists achieved a sensitivity 
of 72.00%, 48.00% and 72.00% and a specificity of 64.00%, 
66.00%, and 30.00%. The parents achieved a sensitivity of 
20.00%, 30.00% and 20.00% and a specificity of 84.00%, 54.00%, 
and 48.00%. All the sensitivity-specificity points are below the 
orange curve, indicating that compared with each ophthalmologist 
and parent, the DLS achieved superior performance. In addition, 
all the blue points are above the gray solid line, while most of 
the green points are below the gray solid line, indicating that the 
ophthalmologists achieved better performance than the parents. 
DLS, deep learning system; AUC, area under the curve.
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Figure 4 In the subgroup analysis stratified by age, the AUC, sensitivity and specificity of DLS were 0.8980, 68.75% and 86.84%, 
respectively, for children aged ≤10 years old and 0.8995, 91.8% and 33.33%, respectively, for those aged ≥11 years old. For the subgroup 
analysis stratified by sex, the AUC, sensitivity, and specificity of DLS were 0.8976, 76.67% and 71.43%, respectively, for females and 0.9722, 
95.00% and 75.00%, respectively, for males. AUC, area under the curve; DLS, deep learning system.
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Conclusions

In conclusion, we present a DLS that can be used for 
myopia detection based on ocular appearance images. This 
DLS learned the ocular appearance features of myopia 
from a dataset derived from the Myopia AI Program and 
had high diagnostic accuracy; hence, it could potentially be 
applied for routine myopia screening.
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