ARTICLE

Open Access

Clinical and genetic characteristics of 14 patients from 13 Japanese families with *RPGR*-associated retinal disorder: report of eight novel variants

Go Mawatari¹, Kaoru Fujinami^{2,3,4,5}, Xiao Liu^{2,3,6}, Lizhu Yang^{2,3}, Yu-Fujinami Yokokawa^{2,7,8}, Shiori Komori⁹, Shinji Ueno⁹, Hiroko Terasaki⁹, Satoshi Katagiri¹⁰, Takaaki Hayashi¹⁰, Kazuki Kuniyoshi¹¹, Yozo Miyake^{2,12}, Kazushige Tsunoda², Kazutoshi Yoshitake¹³, Takeshi Iwata¹³ and Nobuhisa Nao-i¹, on behalf of the JEGC study group

Abstract

Variants in the retinitis pigmentosa GTPase regulator (RPGR) gene are a major cause of X-linked inherited retinal disorder (IRD). We herein describe the clinical and genetic features of 14 patients from 13 Japanese families harboring *RPGR* variants in a nationwide cohort. Comprehensive ophthalmological examinations were performed to classify the patients into one of the phenotype subgroups: retinitis pigmentosa (RP) and cone rod dystrophy (CORD). The mean age of onset/at examination was 13.8/38.1 years (range, 0–50/11–72), respectively. The mean visual acuity in the right/ left eye was 0.43/0.43 (range, 0.1–1.7/–0.08–1.52) LogMAR unit. Eight patients had RP, and six had CORD. Whole-exome sequencing with target analyses identified 13 *RPGR* variants in 730 families with IRD, including 8 novel variants. An association between the phenotype subgroup and the position of variants (cutoff of amino acid 950) was revealed. To conclude, the clinical and genetic spectrum of *RPGR*-associated retinal disorder was first illustrated in a Japanese population, with a high proportion of novel variants. These results suggest the distinct genetic background of RPGR in the Japanese population, in which the genotype–phenotype association was affirmed. This evidence should be helpful monitoring and counseling patients and in selecting patients for future therapeutic trials.

Introduction

Inherited retinal disorder (IRD) is a major cause of blindness both in children and working populations in developed countries¹. Retinitis pigmentosa (RP) is one of the most prevalent IRDs, and RP represents a heterogeneous group of retinal diseases characterized by progressive bilateral degeneration of rod and cone photoreceptors^{1–8}. The estimated prevalence of RP in European populations is ~1 in 3000–4000 individuals^{2–6,9}.

© The Author(s) 2019

Different patterns of inheritance have been identified in RP and allied disorders, including autosomal dominant (AD), autosomal recessive (AR), X-linked (XL), and mitochondrial inheritance^{2,3,10}.

RP with an X-linked pattern of inheritance (XLRP) accounts for ~10–15% of RP cases, and is associated with the most severe form of the disease^{3,5,7,8,11}. Two major causative genes for XLRP are the retinitis pigmentosa GTPase regulator (RPGR; OMIM; 312610) and RP2 (OMIM; 312600), which accounts for 70–90% and 7–18% of XLRP, respectively⁹.

Pathogenic variants in the *RPGR* gene (RP3) were first identified as a cause of XLRP in 1996^{12,13}. *RPGR* contains 19 exons and encodes a 90-kDa protein product localized predominantly to the photoreceptor connecting cilium

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Nobuhisa Nao-i (naoi@med.miyazaki-u.ac.jp)

¹Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan

²Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan

Full list of author information is available at the end of the article.

(CC)^{12,14}. The RPGR protein contains a repeat structure highly similar to the regulator of chromosome condensation 1 (RCC1) at the N-terminus^{11,12,15}. RCC1 plays a crucial role in nucleocytoplasmic transport and regulation of cell-division processing^{16,17}. Later, a novel 3' terminal exon (well-known as exon open-reading frame 15; ORF15) was identified, which includes a large 3' terminal exon consisting of exon 15 and extending into part of intron 15¹⁸. Biochemical investigations revealed that RPGR-ORF15 is located in the CC, which binds to the axoneme and the basal body^{19,20}. The RPGR protein plays an important role in the transportation of phototransduction components and other outer segment proteins across the CC, although the function of RPGR is not perfectly understood³.

XLRP caused by pathogenic *RPGR* variants is one of the most severe forms of RP, with early onset of disease, night blindness, myopia, severe generalized rod and cone dys-function, and progression to legal blindness by the third or fourth decade^{3,21}. Carrier females are mostly asymptomatic or mildly affected with characteristic fundus features and electrophysiological abnormalities²², although the severity of carriers varies.

Pathogenic variants in the RPGR gene were responsible for X-linked cone rod dystrophy (XLCORD) and XL cone dystrophy (XLCOD), in addition to XLRP^{23–28}. *RPGR*associated retinal disorder (*RPGR*-RD) accounts for 73% of molecularly confirmed XLCORD cases in a British cohort. *RPGR* variants identified in XLCORD/XLCOD are frequently located toward the 3' end of ORF15 in comparison with *RPGR* variants causing XLRP^{3,29,30}.

XLCORD caused by pathogenic *RPGR* variants affects males with various onsets ranging from the second to the fourth decade, myopia, generalized cone rod dysfunction (occasionally with rod dysfunction), and diverse rates of progression³. Carrier females are mostly asymptomatic or mildly affected, with varying severity²⁸.

Over 350 disease-associated variants in the *RPGR* gene have been reported to date in IRD^{3,15,26,31–37}. A number of studies have been conducted in European populations;^{3,11,21,27,37–41} however, the characteristics of *RPGR*-RD in Asian populations remain uncertain due to limited resources^{8,34–36,41}. Therefore, large cohort studies are required to understand the *RPGR*-RD in Asian populations.

The purpose of this study was to characterize the clinical and genetic features of patients and carriers with *RPGR*-RD in a large nationwide Japanese cohort by clarifying a genotype–phenotype association.

Methods

Participants

The protocol of this study adhered to the tenets of the Declaration of Helsinki, which was approved by the local

ethics committee of the participating institutions from Japan (Reference: R18-029). Signed informed consent was obtained from all participants after explanation of the nature and possible consequences of this study.

Patients with a clinical diagnosis of IRD and available genetic data of whole-exome sequencing (WES) were investigated between 2008 and 2018 in the Japan Eye Genetics Consortium (JEGC; http://www.jegc.org/) study⁴². A total of 1294 subjects from 730 Japanese families registered to the JEGC database were surveyed.

Clinical investigations

Detailed demographic information was obtained, including ethnicity, sex, medical and family history, chief complaints of visual symptoms, and onset of disease. Comprehensive ophthalmological examinations were performed, including measurement of refractive errors, best corrected decimal visual acuity (BCVA) converted to the logarithm of the minimum angle of resolution (Log-MAR), fundus photography, fundus autofluorescence (FAF) imaging, spectral-domain optical coherence tomography (SD-OCT), visual field testing, and electrophysiological assessment according to the international standards of the International Society for Clinical Electrophysiology of Vision (ISCEV)^{43,44}.

Phenotype subgroup

For the purpose of this study, phenotype subgroups were defined based on clinical manifestation according to the previous report;⁴⁵ RP (including rod-cone dystrophy), a progressive retinal dystrophy initially often presenting peripheral atrophy with generalized rod dysfunction greater than cone dysfunction; CORD, a progressive retinal dystrophy initially often presenting with macular atrophy with generalized cone dysfunction greater than rod dysfunction.

RPGR variant detection

Genomic DNA was extracted from all affected subjects and unaffected family members (where available for cosegregation analysis). WES with target analysis of retinal disease-associated genes (RetNet; https://sph.uth.edu/ retnet/home.htm) was performed according to previously published methods⁴². The called variants were filtered by the allele frequency in the general Japanese population (<1%) as listed in the Human Genetic Variation Database (HGVD; http://www.genome.med.kyoto-u.ac.jp/SnpDB/ about.htm). Depth and coverage for the target areas were interrogated using the Integrative Genomics Viewer (http://www.broadinstitute.org/igv/). For the purpose of this study, long-read direct sequencing was performed in seven patients with XLRP who were negative for two major XLRP-associated genes (RP2, RPGR) by WES at the National Genetic Reference Laboratory in Manchester,

UK, for further screening of RPGR-ORF15 according to the previously published method⁴⁶. Together with clinical features and pattern of inheritance, disease-causing variants were determined from the detected variants of the retinal disease-associated genes.

In silico molecular genetic analysis

The allele frequencies of all detected RPGR variants were established with the HGVD, Integrative Japanese Genome Variation (iJGVD 3.5k; https://ijgvd.megabank. tohoku.ac.jp/download_3.5kjpn/), 1000 Genomes (http:// www.internationalgenome.org/), Genome and the Aggregation Database (gnomAD; http://gnomad. broadinstitute.org/). All detected RPGR variants were analyzed with two general and three functional prediction programs; MutationTaster (http://www.mutationtaster. org/), FATHMM (http://fathmm.biocompute.org.uk/9), SIFT (https://www.sift.co.uk/), PROVEAN (http:// provean.jcvi.org/index.php), and Polyphen 2 (http:// genetics.bwh.harvard.edu/pph2/). All detected RPGR variants were analyzed with evolutionary conservation scores according to the UCSC database (https://genome. ucsc.edu/index.html). Variant classification according to the guidelines of the American College of Medical Genetics and Genomics (ACMG) was conducted for all detected variants⁴⁷.

Results

Participants

Fourteen affected subjects from 13 Japanese families with a clinical diagnosis of IRD and harboring RPGR variants were ascertained. All 14 affected subjects were registered as a proband (or probands) for each pedigree. Seven females from six families were also registered as carriers.

The detailed clinical information of 14 affected subjects (registered as a proband) is presented in Table 1. Pedigrees of 13 families are shown in Fig. 1. All 14 subjects and 7 carriers were originally from Japan, and no mixture of ethnicity was reported.

There were two families with definite XL family history (2/13, 15.4%; Families 4, 12; history of multiple affected males in different generations and a female carrier for at least one generation), two families with probable XL history (2/13, 15.4%; Families 9, 10, one affected male and at least a female carrier), five families with possible XL/AD/incomplete AD (5/13, 38.5%; Families 1, 5, 6, 8, 13; a transmission between at least two generations reported or an incomplete transmission anticipated), and three with unknown family history (4/13, 30.8%, Families 2, 3, 7, 11; sporadic).

There were 12 affected males (12/14, 85.7%) and 2 affected females (2/14, 14.2%). For the purpose of this study, the two affected females registered as probands are

described as patients, since both had clear visual impairment (8-III:2, 12-III:1). Systemic abnormalities, including hearing loss, were not reported in all patients.

Page 3 of 12

The mean age at the latest examination of 12 affected males and 2 affected females was 38.9 (range, 11–72) and 25.0 years (25, 41), respectively.

Onset, chief complaint, refraction, and visual acuity

The mean age of onset of ten affected males with available records was 14.3 years (range, 0-50). One affected female with available records had onset of disease at the age of 9 (11-III:1).

Night blindness was reported in 4 out of 11 patients with available records (4/11, 36.3%). There were three patients with reduced visual acuity (3-II:1, 4-IV:1, 6-III:4), two with poor visual acuity (2-II:3, 7-II:1), two with photophobia (1-II:2, 5-III:4), one with color vision abnormality (5-III:2), and one with peripheral visual field defect (13-III:3).

The mean refractive error of the right/left eye of ten affected males with available records who had no refractive complication was -3.15/-2.95 diopter (range -8.0-1.0/-7.0-1.0). The mean refractive error of the right/left eye of two affected females with available records was -8.25/-10.25 diopter (-10, -6.5/-13.5, -7.0). One patient had cataracts in both eyes (2-II:3), and one patient underwent refractive surgery for myopia (1-II:2). Five patients had high myopia (5/10, 50.0%; higher than -6.0 diopter).

The mean VA in the right/left eye of ten affected males was 0.49/0.48 LogMAR unit (range 0.1-1.7/-0.08-1.52). The mean VA in the right/left eye of two affected females was 0.13/0.15 (0.1, 0.15/0.15, 0.15) LogMAR unit. Eight patients had relatively favorable VA (8/14, 57.1%; 0.22 LogMAR unit or better in the better eye), five had moderate VA (5/14, 35.7%; between 0.22 and 1.0 LogMAR unit in the better eye), and one had poor VA (1/14, 7.1%; 1.0 LogMAR unit or worse in the better eye).

Retinal images, visual field, and electrophysiological findings

Fundus photographs were available in 12 affected males, and FAF images were obtained in 6 affected males. Representative fundus and FAF images of 12 affected males are presented in Fig. 2.

Central atrophy or parafoveal atrophy was identified in all 12 patients with available fundus photographs. Tigroid changes (seen in high myopic retina) were observed in six patients (6/12, 50%), and bone-spicule pigmentation (found in peripheral retinal atrophy) was detected in five patients (5/12, 41.7%). Well-marked atrophic changes were demonstrated in FAF images. A ring of high AF density was noted in all six patients with available FAF images.

disord
retinal
RPGR-associated
with
patients
Japanese
14
ę
features
Clinical
Table 1

Table 1	l Clinica	l features	of 1	4 Japane	se patients	MITH	KP-ND-ND-N	OCIAN	פמ וברו							
Family no.	Patient no.	Inheritance	Sex	Age (in the	Age (at latest examination)	Onset	Chief complaint	LogMA	R BCVA	Spherical equivalent		Fundus/AF findings	OCT findings	Visual field	Full-field ERG	Phenotype
				database)				R	ш	RE	ΓE	2				
-	1-11:2	Possible XL/AD	Σ	57	54	50	Photophobia	0.4	- 0.08	-1.00 (post LASIK)	—1.00 (post LASIK)	Central retinal atrophy/central hypo AF surrounded by hyper AF ring	Outer retinal atrophy at the central retina	Central scotoma (GP)	Severely decreased cone reponses and mildly decreased rod responses	Cone rod dystrophy
2	2-II:3	Sporadic	Σ	74	72	NA	Poor visual acuity	1.7	1.52	+ 0.50 (cataract)	-0.50 (catara.ct)	Central retinal atrophy/ attenuated blood vessels	Outer retinal atrophy at the central retina	Central scotoma and concentric visual field defect (GP)	Underctable cone and rod responses	Cone rod dystrophy
m	3-II:1	Sporadic	Σ	50	50	15	Reduced visual acuity	0.7	0.82	-7.00	-6.50	Tigroid/central retinal atrophy/ central hypo AF surrounded by hyper AF ring	Outer retinal atrophy at the central retina	Central scotoma (GP)	Severely decreased cone responses and mildly decreased rod responses	Cone rod dystrophy
4	4-17:1	Definite XL	Σ	11	=	4	Reduced visual acuity	0.15	0.1	-4.00	-4.50	Tigroid/ paracentral hyper AF/hyper AF ring	Outer retinal atrophy at the paramacula	No particular scotoma (GP)	Moderately decreased cone and rod responses	Cone rod dystrophy
Ś	5-111:2	Possible XL/ incomplete AD	Σ	50	47	30	Color vision abnormality	0.22	0.22	-4.00	-4.00	Tigroid/ born spicule pigmentosa, central and paracentral retinal atrophy/hyper AF ring	Outer retinal atrophy at the central retina	Central scotoma (GP)	Severely decreased cone and mildly decreased rod responses	Cone rod dystrophy
2	5-111:4	Possible XL/ incomplete AD	Σ	47	44	15	Photophobia	0.3	1.1	-8.00	-7.00	Tigroid/ centeral and paracentral retinal atrophy/ hyper AF ring	Outer retinal atrophy at the central retina	Central scotoma (GP)	Severely decreased cone and rod responses	Cone rod dystrophy
Q	6-III:4	Possible XL/AD	Σ	45	41	ω	Reduced visual acuity	0.82	0.7	-7,00	-6.00	Tigroid/ paracentral retinal atrophy/ born spicule pigmentation/ attenuated blood vessels	Outer retinal atrophy at the central retina, thinning choroid	Concentric visual field defect (GP)	Undetectable cone and rod responeses	Retinitis pigmentosa
~	7-11:1	Sporadic	Σ	52	50	₹Z	Poor visual acuity	0.52	0.52	+ 1.00	+ 1.00	Tigroid/ paracentral retinal atrophy/born spicule pigmentation/ attenuated blood vessels	Outer retinal atrophy at the paracentral retina, thinning choroid	Concentric visual field defect (GP)	ИА	Retinitis pigmentosa
ω	8-111:2	Possible XL/AD	ш	50	41	NA	Night blindness	0.1	0.15	-10	-13.5	AN	ЧA	No particular scotoma (GP)	Moderately decreased cone and rod responses	Retinitis pigmentosa
0	1:1-6	Probable XL	Σ	33	32	Ŋ	Night blindness	0.1	0	0	+ 0.50	Paracentral retinal atrophy/born spicule pigmentation/ attenuated blood vessels	Outer retinal atrophy at the paracentral retina	Annular scotoma (GP)	Undetectable cone and rod responeses	Retinitis pigmentosa
10	10-III:1	Probable XL	Σ	17	17	12	Night blindness	0.3	-0.18	-1.50	-1.00	Paracentral retinal atrophy/hyper AF ring	Outer retinal atrophy at the paracentral retina	Partial paracentral scotoma (GP)	Severely decreased rod responses and moderately decreased cone responses	Retinitis pigmentosa

Family no.	Patient no.	Inheritance	Sex	Age (in	Age (at latest	Onset	Chief	Log M/	AR BCVA	Spherical equiv	alent	Fundus/AF	OCT findings	Visual field	Full-field ERG	Phenotype
				tne database)	examination)		complaint	RE	3	RE	ΓE	- maings				
=	11-11:1	Sporadic	ш	25	25	6	AN	0.15	0.15	-6.50	-7.00	NA	Outer retinal atrophy at the paracentral retina, thinning choroid	Partial paracentral scotoma (GP)	Undetectable rod and cone responeses	Retinitis pigmentosa
12	12-III:1	Definite XL	≥	16	14	0	Night blindness	0.4	0.3	0	-1.00	Paracentral retinal atrophy	Outer retinal atrophy at the paracentral retina, thinning choroid	Annular scotoma (GP)	ΨZ	Retinitis pigmentosa
13	13-III:3	Possible XL/AD	Σ	36	35	4	Peripheral visual field loss	0.22	0.1	-1.00	-1.00	Paracentral retinal atrophy/born spicule pigmentation/ attenuated blood vessels	Outer retinal atrophy at the paracentral retina	Annular scotoma (GP)	Undetectable rod and cone responeses	Retinitis pigmentosa

Age was defined the age when the latest examination was performed. The age of onset was defined as either the age at which visual loss was first noted by the patient or, in the "asymptomatic" patients, when an abnormal retinal finding was first detected AD autosomal dominant, LogMAR BCVA best-corrected visual acuity, CS central scotoma, F female, FS foveal sparing, LE left eye, M male, RE right eye, NA not available, OCT sp. autofluorescence, GP Goldmann Perimetry, HFA Humphrey visual field analyzer, LASIK laser in situ keratomileusis, ERG electroretinogram

SD-OCT images were available in 11 affected males. Representative SD-OCT images are shown in Fig. 3. Structural disruption in the photoreceptor layers was observed in all 11 patients. Relatively preserved photoreceptor layers at the fovea were detected in five patients (5/11, 45.5%; 4-IV:1, 7-II:1, 10-III:1, 12-III:1, and 13-III:3).

Visual fields were available in all 12 affected males and 2 affected females. Central scotoma was observed in four patients (4/14, 28.6%), and annular scotoma was detected in three patients (3/14, 21.4%). Concentric visual field defects were found in two patients (2/14, 14.3%), and both central scotomas and concentric defects were observed in one patient (1/14, 7.1%). Two patients had partial paracentral scotoma (2/14, 14.3%), and two had no particular visual field defect (2/14, 14.3%).

Electrophysiological assessment was performed in ten affected males and two affected females. Undetectable responses in both generalized rod and cone systems were observed in five patients (5/12, 41.7%). Severely decreased generalized cone and severely decreased rod responses were demonstrated in one patient (1/12, 8.3%). Severely decreased generalized rod responses and moderately decreased generalized cone responses were identified in one patient (1/12, 8.3%). Severely decreased generalized cone and mildly decreased generalized rod responses were found in three patients (3/12, 25.0%). Moderately decreased generalized cone and generalized rod responses were noted in two patients (2/12, 16.7%).

Phenotype subgroups

Phenotype subgroup classification was performed in all 12 affected males and 2 affected females. There were six males with CORD (6/12, 50%) and six with RP (6/12, 50%). Both affected females were classified into RP.

Clinical information of carrier females

Clinical information of seven carrier females from six families was obtained. The detailed findings are described in Supplementary Table 1. Representative fundus and FAF images are presented in Supplementary Fig. 1. Representative SD-OCT images are shown in Supplementary Fig. 2.

The mean age at the latest examination of seven carriers was 47.1 years (range, 12–78). The mean refractive error of the right/left eye was -7.00/-7.42 diopter (range, -12.5-0.5/-12.0-0.5). The mean BCVA in the right/left eye was 0.14/0.13 LogMAR unit (range, 0.05-0.4/0.0-0.4).

Abnormalities on fundus photographs, FAF, SD-OCT, visual field testing, and electrophysiological assessment were found in five out of seven carriers (5/7, 71.4%). One carrier had reduced visual acuity, and one had night blindness. Retinal atrophy was observed in two carriers, and tapetal reflexes were found in five carriers (5/7, 71.4%). Electrophysiological assessment was available in

five carriers, and all five carriers showed decreased responses.

RPGR variants

The variant data of 18 affected, 9 carriers, and 14 unaffected subjects of 13 families are summarized in Table 2.

Thirteen *RPGR* variants were identified; c.3399delG, p.Pro1134HisfsTer18; c.3308_3309delAT, p.Tyr1103SerfsTer7; c.3178_3179delGA, p.Glu1060ArgfsTer18; c.3104_3105delAG, p.Glu1035GlyfsTer43; c.3092delA, p.Glu1031GlyfsTer58; c.2625dupA, p.Gly876ArgfsTer203; c.2236_2237delGA, p.Glu746ArgfsTer23; c.1693C > T, p.Gln565Ter; c.1070 G > A, p.Gly357Asp; c.832 A > G, p.Thr278Ala; c.628 G > T, p.Glu210Ter; c.679 C > T, p.Gln227Ter; and c.389_390delTT, p.Phe130SerfsTer4. Twelve variants were detected by WES with target analysis of the retinal disease-associated genes. One variant was found by specific direct sequencing for RPGR-ORF15 (p.Gly876ArgfsTer203). There are eight frameshift, three nonsense, and two missense variants. Five variants have been previously reported^{18,26,29,32}. Eight variants have never been reported, including three frameshift, three nonsense, and two missense variants: p.Pro1134HisfsTer18, p.Glu1035GlyfsTer43, p.Phe130SerfsTer4, p.Gln565Ter, p.Glu210Ter, p. Gln227Ter, p.Gly357Asp, and p.Thr278Ala.

In silico molecular genetic analysis

The detailed results of in silico molecular genetic analyses for the 13 detected *RPGR* variants are presented in Supplementary Table 2.

Seven frameshift variants were located in ORF15. Six variants, including three nonsense, two missense, and one frameshift variant, were in exons 5, 7, 8, 10, and 14, and all six variants except for one frameshift variant (p. Gly876ArgfsTer203) were located in the RCC1-like domain. The allele frequency for one variant (p. Glu1060ArgfsTer18) in the general population was 0.001134% in the GnomAD database. None of the 13

detected *RPGR* variants were found in the Japanese general population of the HGVD and iJGVD databases.

General prediction, functional prediction, and conservation were assessed for the 13 variants, and pathogenicity classification according to the ACMG guidelines was pathogenic for eight variants, including six frameshift (p.Glu746ArgfsTer23, p.Glu1031GlyfsTer58, p.Glu1035GlyfsTer43, p.Glu1060ArgfsTer18, p.Tyr1103SerfsTer7, and p.Pro1134HisfsTer18) and two nonsense variants (p.Glu210Ter and p.Gln565Ter), likely pathogenic for three variants including two frameshift (p.Phe130SerfsTer4 and p.Gly876ArgfsTer203) and one nonsense variant (p. Gln227Ter), and uncertain significance for two missense variants (p.Gly357Asp and p.Thr278Ala).

Two missense variants (p. Gly357Asp and p. Thr278Ala) with uncertain significance were found in two probable XL families (Families 9, 10), and no other candidate variants associated with RP were detected in either of these families.

Overall, 13 disease-causing variants in the *RPGR* gene were ascertained in eight families with RP, and five families with CORD. Together with the clinical features of affected subjects and the model of inheritance in the

pedigree, 13 disease-causing variants in the *RPGR* gene were determined.

Genotype-phenotype association

The locations of variants for two phenotype subgroups were investigated. All variants in eight families with RP were located in exons 1–14 and the 5' end of ORF15 (< amino acid 950). All variants in five families with CORD were located at the 3' end of ORF15 (> amino acid 950). A significant genotype–phenotype association between the phenotype subgroup and the position of detected variants was revealed.

Discussion

The clinical and genetic characteristics of *RPGR*-RD were illustrated in a nationwide cohort of 18 affected and 14 unaffected individuals and 9 carriers from 13 Japanese families with *RPGR*-RD, detecting 13 variants including 8 novel variants. There were eight families with RP and five families with CORD, which was associated with the position of *RPGR* variants.

To the best of our knowledge, this study reports the largest cohort of *RPGR*-RD in the Asian population. *RPGR*-RD accounts for 66.7% of molecularly confirmed XLRP (12 families; RPGR-8 families, RP2-4 families) in

1 I=I2 Male Affected 15 c.339946ξ, p.Pot113446sf2r/8 Henicygous 1-I2 Female Affected 15 c.339946ξ, p.Pot113446sf2r/8 Hetrozygous 2 2-I3 Male Affected 15 c.339946ξ, p.Pot113446sf2r/8 Hetrozygous 3 3-Ib1 Male Affected 15 c.339946ξ, p.GM10300454, p.GM103047gF1er18 Hetrozygous 3-Ib1 Male Affected 15 c.3104_3105464, p.GM103047gF1er18 Hetrozygous 3-Ib1 Male Unaffected ND Hetrozygous Hetrozygou 4 4-Ib1 Male Unaffected 15 c.3104_3105464, p.GM1031Gyf51er63 Hetrozygou 4HI2 Female Carrier 15 c.3202364A, p.GM1031Gyf51er63 Hetrozygou 5 5HI2 Male Affected 15 c.3202364A, p.GM1031Gyf51er63 Hetrozygou 6 GHI4 Male Affected 15 c.3202364A, p.GM1031Gyf51er63 Hetrozygou 6HI2 Female	Family no.	Patient no.	Gender	Affected/unaffected	Exon	Nucleotide and amino acid changes	State
I-1.1MaleUnaffectedND1.12FernaleAffected153.3993de(3, p.01134/dis/167/3)Hetreozygous22.13MaleAffected15C.3393de(3, p.01136/dis/167/2)Hetreozygous3.11MaleUnaffected15C.3172, 3.173de(A, p.Glu1060Arg)5fer18Hetreozygous3.11MaleUnaffected15C.3172, 3.173de(A, p.Glu1060Arg)5fer18Hetreozygous4.12FernaleCarrier15C.3172, 3.173de(A, p.Glu1050Arg)5fer34Hetreozygous4.11MaleAffected15C.3162, 3103de(A, p.Glu103G)/67fer35Hetreozygous4.11MaleAffected15C.3022de(A, p.Glu103G)/67fer38Hetreozygous4.11MaleAffected15C.3022de(A, p.Glu103G)/67fer38Hetreozygous55.112MaleAffected15C.3022de(A, p.Glu103G)/67fer38Hetreozygous66.114MaleAffected15C.3022de(A, p.Glu103G)/67fer38Hetreozygous66.114MaleAffected15C.3022de(A, p.Glu103G)/67fer38Hetreozygous66.114MaleAffected15C.2625dupA, p.Gly676Arg)57fer203Hetreozygous76.114MaleAffected15C.2262dupA, p.Gly676Arg)57fer234Hetreozygous86.114MaleAffected14C.1693C>7, p.Glr5657ferHetreozygous86.112MaleMalected14C.1693C>7, p.Glr5657ferHetreozygous8 </td <td>1</td> <td>1-11:2</td> <td>Male</td> <td>Affected</td> <td>15</td> <td>c.3399delG, p.Pro1134HisfsTer18</td> <td>Hemizygous</td>	1	1-11:2	Male	Affected	15	c.3399delG, p.Pro1134HisfsTer18	Hemizygous
1-12 Fenale Affected 15 c.3398-86/c, p.6b/1344/eff7er/3 Heterorygou 2 248.3 Male Affected 15 c.3308_3006/AFL, p.Tyr11055erK1er7 Hemizygous 3 341.1 Male Affected 15 c.3178_317946/GA, p.Glu1060ArgftTe18 Heterozygou 3 342.1 Fenale Carrier 15 c.3178_317936/GA, p.Glu10350/s7ter3 Heterozygou 4 Male Mafected 15 c.3178_317936/GA, p.Glu10350/s7ter3 Heterozygou 4 Male Mafected 15 c.3104_31056/4C, p.Glu10350/s7ter3 Heterozygou 4 Male Garrier 15 c.3104_31056/4C, p.Glu10350/s7ter3 Heterozygou 4 Male Affacted 15 c.32092d/dA, p.Glu1031G/sf1er38 Heterozygou 5 SHI2 Male Affacted 15 c.32092d/dA, p.Glu1031G/sf1er38 Hemizygus 6 Male Affacted 15 c.32092d/dA, p.Glu1031G/sf1er38 Hemizygus 6 Herale Malected 15 c.32092d/dA, p.Glu98/Advg15Ter203 Hemizygus 6 Herale Affacted 15 c.32092d/dA, p.Glu98/Advg15Ter203 Hemizygus 6 Herale Malected <td< td=""><td></td><td>1-l:1</td><td>Male</td><td>Unaffected</td><td></td><td>ND</td><td></td></td<>		1-l:1	Male	Unaffected		ND	
2 243 Male Affected 15 c.3308_3309delAT, p.Tyr11035efr.Ter7 Hemizygous 3 34.1 Male Unaffected 15 c.3178_317.04dlGA, p.Gk10000Argf.Ter18 Hemizygous 34.1 Male Unaffected 15 c.3178_317.04dlGA, p.Gk10000Argf.Ter18 Hemizygous 4 Male Male Unaffected 15 c.3178_317.04dlGA, p.Gk10000Argf.Ter38 Hemizygous 4 Male Male Onaffected 15 c.3108_317.04dlGA, p.Gk1003Gyf.Ter38 Hemizygous 4 Male Male Affected 15 c.3002delA, p.Gk1003Gyf.Ter38 Hemizygous 5 Sill.2 Male Affected 15 c.3002delA, p.Gk1003Gyf.Str203 Hemizygous 6 Hill Male Affected 15 c.3025duA, p.Gk976Argf.Str203 Hemizygous 6 Hill Male Affected 15 c.3255duA, p.Gk976Argf.Str203 Hemizygous 6 Hill Male Affected 15 c.3255duA, p.Gk976Argf.Str203 Hemizygous 6 Hill Male Affected 15 c.3255duA, p.Gk976Argf.Str203 Hemizygous 7 Affe. Female Affected 15 c.2352duA, p.Gk976Ar		1-l:2	Female	Affected	15	c.3399delG, p.Pro1134HisfsTer18	Heterozygous
3 3-li.1 Male Affected 15 c.3178_3179delGA, p.Glu1060AvgfsTer18 Hemizygous 3-li Male Mafected ND ND 44 Male Male Marced 15 c.3178_3179delGA, p.Glu1080AvgfsTer18 Heteraygous 44 Male Male Marced 15 c.3178_3179delGA, p.Glu1035dyf3rer3 Heteraygous 44 Male Male Marced 15 c.3178_3179delGA, p.Glu1031GyfsTer38 Heteraygous 44 Male Female Carrier 15 c.3202delA, p.Glu1031GyfsTer38 Heteraygous 5 54 Male Affected 15 c.3202delA, p.Glu1031GyfsTer38 Heteraygous 6 Male Malected 15 c.3202delA, p.Glu1031GyfsTer38 Heteraygous 6 Male Malected 15 c.3202delA, p.Gly876ArgfsTer203 Heteraygous 6 Male Malected 15 c.3202delA, p.Gly876ArgfsTer203 Heteraygous 6 Male Malected 15 c.3202delA, p.Gly876ArgfsTer203 Heteraygous 7 Hifl Male Affected 15 c.3202delA, p.Gly876ArgfsTer203 Heteraygous 8 Hifl Female Mafected	2	2-II:3	Male	Affected	15	c.3308_3309delAT, p.Tyr1103SerfsTer7	Hemizygous
3-h1 Male Unaffected ND 3-H2 Fenale Carler 15 c3178_3170delGA, p.Glu1000.drg/Ter18 Heterozygou 4 Male Mafected TS c3178_3170delGA, p.Glu1003.Grg/Ter43 Heterozygou 4 Male Mafected TS c3164_3165delG, p.Glu1035G/sTer43 Heterozygou 4 H2 Fenale Carler TS c302delA, p.Glu1031G/sTer58 Hetrozygou 5 S1112 Male Affected TS c302delA, p.Glu1031G/sTer58 Hemizygous 6 S1114 Male Affected TS c2025dupA, p.Glu976rdsTer203 Hetrozygou 6 S1114 Male Affected TS c2025dupA, p.Glu976rdsTer203 Hetrozygou 6 G114 Male Affected TS c2025dupA, p.Glu976rdsTer203 Hetrozygou 6 Fenale Carler TS c2025dupA, p.Glu976rdsTer203 Hetrozygou 7 Alta Male Affected TS c2035dupA, p.Glu976rdsTer203 Hetrozygou 8 Hil2 Fenale Carler TS c2035dupA, p.Glu976rdsTer203 Hetrozygou 8 Hil2 Fenale Affected TA c1697C>T, p.Gln557r <td>3</td> <td>3-II:1</td> <td>Male</td> <td>Affected</td> <td>15</td> <td>c.3178_3179delGA, p.Glu1060ArgfsTer18</td> <td>Hemizygous</td>	3	3-II:1	Male	Affected	15	c.3178_3179delGA, p.Glu1060ArgfsTer18	Hemizygous
3.42 Fenale Carrier 15 c.3178_3179delGA, p.Glu1060ArglSTer18 Heterozygout 4 Hvl1 Male Affected 15 c.3104_3105delGA, p.Glu1035GlySTer43 Hemizygouts 4 Hu12 Male Carrier 15 c.3104_3105delGA, p.Glu1033GlySTer43 Hemizygouts 4 Hu12 Fenale Carrier ND Hemizygouts 5 Hu12 Male Affected 15 c.3092delA, p.Glu1031GlySTer58 Hemizygouts 6 Hu4 Male Affected 15 c.3092delA, p.Glu7031GlySTer58 Hemizygouts 6 Hu4 Male Affected 15 c.3092delA, p.Glu7031GlySTer30 Hemizygouts 6 Hu4 Male Affected 15 c.3092delA, p.Glu76ArgISTer203 Hemizygouts 6 Hu4 Male Affected 15 c.2525dupA, p.Glu76ArgISTer203 Hemizygouts 6 Hu5 Fenale Carrier 15 c.2525dupA, p.Glu76ArgISTer203 Hemizygouts 7 7.41 Male Affected 14 c.1693C>T, p.Gln565Ter Hemizygouts 8 Hu12 Fenale Affected 14 c.1693C>T, p.Gln565Ter Hemizygouts 8-Hu2 <td></td> <td>3-l:1</td> <td>Male</td> <td>Unaffected</td> <td></td> <td>ND</td> <td></td>		3-l:1	Male	Unaffected		ND	
4 44/11 Male Affected 15 c3104_3105delAG, p.Glu1033GlyGrEnd3 Hemizygous 44112 Fenale Carrier ND 44112 Fenale Carrier ND 54112 Male Affected 15 c3104_3105delAG, p.Glu1031GlyGrEnd3 Hemizygous 54112 Male Affected 15 c3092delA, p.Glu1031GlyGrEnd3 Hemizygous 64114 Male Affected 15 c3092delA, p.Glu1031GlyGrEnd3 Hemizygous 64114 Male Affected 15 c3092delA, p.Glu976ArgISTer203 Hemizygous 64114 Fenale Carrier 15 c2025dupA, p.Glu976ArgISTer203 Hemizygous 64114 Fenale Carrier 15 c2025dupA, p.Glu976ArgISTer203 Hemizygous 64112 Fenale Affected 14 c1692C > T, p.Gln565Ter Hemizygous 7 7414 Male Affected 14 c1692C > T, p.Gln565Ter Hemizygous 84112 Fenale Affected 14 c1692C > T, p.Gln565Ter Hemizygous 84113 Henale Affected 14 c1692C > T, p.Gln565Ter Hemizygous 84114 Fenale Inaffected 14 c1692C > T, p		3-l:2	Female	Carrier	15	c.3178_3179delGA, p.Glu1060ArgfsTer18	Heterozygous
4-II1 Male Unaffected ND 4-II2 Female Carrier 15 c.3704_3105delAG, p.Glu1033GlyfTer43 Heterozygou 5 5-II2 Male Affected 15 c.3092delA, p.Glu1031GlyfTer43 Hemizygous 5 5-II2 Male Affected 15 c.3092delA, p.Glu1031GlyfTer43 Hemizygous 6 6-II4 Male Affected 15 c.3092delA, p.Glu1031GlyfTer43 Hemizygous 6 6-II4 Male Affected 15 c.2625dupA, p.Gly87ArdfSTer23 Hemizygous 6-II4 Male Affected 15 c.2625dupA, p.Gly87ArdfSTer23 Heterozygou 6-II5 Female Carrier 15 c.2625dupA, p.Gly87ArdfSTer23 Heterozygou 7 7.II5 Male Affected 15 c.2625dupA, p.Gly87ArdfSTer23 Heterozygou 8 HI12 Nale Affected 14 c.1692<7, p.Gln565Ter	4	4-IV:1	Male	Affected	15	c.3104_3105delAG, p.Glu1035GlyfsTer43	Hemizygous
4-III2FemaleCarrierISc.3104_3105delAG, p.Glu1033Gi/hSTerJAHeterozygou:55-III2MaleAffected15c.3092delA, p.Glu1031Gi/hSTerJAHeterozygou:66-III4MaleAffected15c.3092delA, p.Glu1031Gi/hSTerJAHetrozygou:66-III4MaleAffected15c.2625dupA, p.Gly876Arg/hTer203Heterozygou:6-III5FemaleUnaffectedNDHeterozygou:6-III5FemaleCarrier15c.2625dupA, p.Gly876Arg/hTer203Heterozygou:77-II:1MaleAffected15c.2625dupA, p.Gly876Arg/hTer203Heterozygou:88-III:2FemaleCarrier15c.2625dupA, p.Gly876Arg/hTer203Heterozygou:77-II:1MaleAffected16c.2032, 237delGA, p.Glu746Arg/hTer203Heterozygou:88-III:2FemaleAffected14c.1693C > T, p.Gln565TerHeterozygou:88-III:3MaleAffected14c.1693C > T, p.Gln565TerHeterozygou:88-III:3MaleMafected14c.1693C > T, p.Gln565TerHeterozygou:88-III:3MaleMafected14c.1693C > T, p.Gln565TerHeterozygou:88-III:3MaleMafected14c.1693C > T, p.Gln565TerHeterozygou:88-III:3MaleMafected14c.1693C > T, p.Gln565TerHeterozygou:99-II:1MaleAffected14c.1693C >		4-111:1	Male	Unaffected		ND	
4.12 Fende Carrier ND 5 5.112 Male Affected 15 G3092delA, p.Glu1031Glyf5re58 Hemizygous 6 6.114 Male Affected 15 G3092delA, p.Glu1031Glyf5re58 Hemizygous 6 6.114 Male Affected 15 G3092delA, p.Glu1031Glyf5re58 Hemizygous 6 6.114 Male Affected 15 G262sdupA, p.Gly876Argf5Ter203 Hemizygous 6.115 Fenale Carrier 15 C262sdupA, p.Gly876Argf5Ter203 Hemizygous 7 7.11 Male Carrier 15 C225algpA, p.Gly876Argf5Ter203 Hemizygous 8 Hill2 Fenale Affected 14 C4092 ST, p.Gln565Ter Hemizygous 8 Hill3 Male Affected 14 C4092 ST, p.Gln565Ter Hemizygous 8 Hill3 Male Affected 14 C4092 ST, p.Gln565Ter Hemizygous 8 Hill3 Male Affected 14 C4092 ST, p.Gln565Ter Hemizygous 8 Hemizy Male Affected 14 C4092 ST, p.Gln565Ter Hemizygous 8 Hemizy Hemizygous Affected 14 C		4-111:2	Female	Carrier	15	c.3104_3105delAG, p.Glu1035GlyfsTer43	Heterozygous
5 5.4ll2 Male Affected 15 c.3092delA, p.Glu1031GlyfSTer58 Hemizygous 6 6.4ll4 Male Affected 15 c.3092delA, p.Glu1031GlyfSTer58 Hemizygous 6 6.4ll4 Male Affected 15 c.3092delA, p.Glu1031GlyfSTer203 Hemizygous 6.4ll5 Female Carrier 15 c.2625dupA, p.Gly876ArgfSTer203 Heterozygou 6.4ll5 Female Carrier 15 c.2625dupA, p.Gly876ArgfSTer203 Heterozygou 7 74L1 Kemale Affected 15 c.2625dupA, p.Gly876ArgfSTer203 Heterozygou 7 74L1 Kemale Affected 14 c.2625dupA, p.Gly876ArgfSTer203 Heterozygou 8 B4ll2 Female Affected 14 c.1692C >T, p.Gln565Ter Heterozygou 8/18 Male Affected 14 c.1692C >T, p.Gln565Ter Hemizygous 8/18 Male Mafected 14 c.1692C >T, p.Gln565Ter Hemizygous 8/18 Male Mafected 14 c.1692C >T, p.Gln565Ter Hemizygous 8/116 Female Unaffected ND Heterozygou 8/116 Male Affected 14 c.1692C >T, p.		4-II:2	Female	Carrier		ND	
54/114 Male Affected 15 c3092delA, p.Glu1031GlyfSterS8 Hemizygous 6 Hella Male Affected 15 c2625dupA, p.Gly876ArgfsTer203 Hemizygous 6/1/1 Female Carrier 15 c2625dupA, p.Gly876ArgfsTer203 Heterozygous 6/1/2 Female Unaffected 15 c2625dupA, p.Gly876ArgfsTer203 Heterozygous 7 74.11 Male Affected 15 c2236_22376l6A, p.Gly876ArgfsTer23 Heterozygous 8 B418 Female Affected 14 c1693C > T, p.Gln565Ter Heterozygous 8 Female Affected 14 c1693C > T, p.Gln565Ter Heterozygous 8 Hella Female Mafected 14 c1693C > T, p.Gln565Ter Heterozygous 8 Hella Male Affected 14 c1693C > T, p.Gln565Ter Heterozygous 8 Hella Male Mafected 14 c1693C > T, p.Gln565Ter Heterozygous 8 Hella Inaffected 14 c1693C > T, p.Gln565Ter Heterozygous 8 Hella Inaffected 14 c1693C > T, p.Gln565Ter Heterozygous 9 Female Unaffected 14 </td <td>5</td> <td>5-111:2</td> <td>Male</td> <td>Affected</td> <td>15</td> <td>c.3092delA, p.Glu1031GlyfsTer58</td> <td>Hemizygous</td>	5	5-111:2	Male	Affected	15	c.3092delA, p.Glu1031GlyfsTer58	Hemizygous
64 64/14 Male Affected 15 c2625dupA, p.Gly876ArgfsTe203 Henizygous 64/V2 Female Unaffected ND Herrozygous 64/V2 Female Carrier 15 c2625dupA, p.Gly876ArgfsTe203 Hetrozygous 7 64/V2 Female Carrier 15 c2625dupA, p.Gly876ArgfsTe203 Hetrozygous 7 74/11 Male Affected 15 c2236_2237delGA, p.Gly746ArgfsTe203 Hetrozygous 8 Bill2 Female Affected 14 c1693C > T, p.Gln565Ter Hetrozygous 8 Hil2 Male Affected 14 c1693C > T, p.Gln565Ter Hetrozygous 8 Hil2 Male Affected 14 c1693C > T, p.Gln565Ter Hetrozygous 8 Hil2 Male Affected 14 c1693C > T, p.Gln565Ter Hetrozygous 8 Hil2 Male Affected 14 c1693C > T, p.Gln565Ter Hetrozygous 8 Hil2 Male Unaffected ND Hetrozygous 9 Female Unaffected ND Hetrozygous 9 Hil1 Male Affected 8 c3232 > G, p.Thr278A/a Hetrozygous <td></td> <td>5-111:4</td> <td>Male</td> <td>Affected</td> <td>15</td> <td>c.3092delA, p.Glu1031GlyfsTer58</td> <td>Hemizygous</td>		5-111:4	Male	Affected	15	c.3092delA, p.Glu1031GlyfsTer58	Hemizygous
64N1 Fenale Carrier 15 c2625dupA, p.Gly876ArghSTe203 Hetero2ygout 64IIS Fenale Unaffected ND 7 74L1 Male Affected 15 c223c_2237delGA, p.Gly876ArghSTe203 Hetero2ygout 8 8HI2 Fenale Affected 14 c1693C > T, p.Gln56STer Hetero2ygout 8 Fenale Affected 14 c1693C > T, p.Gln56STer Hetero2ygout 8HI8 Fenale Mafected 14 c1693C > T, p.Gln56STer Hetero2ygout 8HI8 Fenale Mafected 14 c1693C > T, p.Gln56STer Hetero2ygout 8HI8 Male Mafected 14 c1693C > T, p.Gln56STer Hetero2ygout 8HI8 Male Mafected 14 c1693C > T, p.Gln56STer Hetero2ygout 8HI8 Male Mafected 14 c1693C > T, p.Gln56STer Hetero2ygout 8HI9 Male Mafected 14 c1693C > T, p.Gln56STer Hetero2ygout 8HV2 Fenale Unaffected ND Hetero2ygout 9H14 Fenale Unaffected ND Hetro2ygout 9H2 Fenale Affected 8 c323A > G, p.Thr278Ala Hetro2ygout <td rowspan="2">6</td> <td>6-111:4</td> <td>Male</td> <td>Affected</td> <td>15</td> <td>c.2625dupA, p.Gly876ArgfsTer203</td> <td>Hemizygous</td>	6	6-111:4	Male	Affected	15	c.2625dupA, p.Gly876ArgfsTer203	Hemizygous
64IIS Fenale Unaffected ND 7 64IV2 Fenale Carrier 15 C2625dupA, p.Gly876ArgfsTer203 Heterozygous 7 74IL1 Male Affected 15 C2236_2237deIGA, p.Gly76ArgfsTer203 Hetrozygous 8 8-III2 Fenale Affected 14 C1693C > T, p.Gln565Ter Heterozygous 8-III2 Male Onaffected 14 C1693C > T, p.Gln565Ter Hetrozygous 8-III2 Male Onaffected 14 C1693C > T, p.Gln565Ter Hetrozygous 8-III2 Male Affected 14 C1693C > T, p.Gln565Ter Hetrozygous 8-III2 Male Affected 14 C1693C > T, p.Gln565Ter Hetrozygous 8-III2 Fenale Onaffected 14 C1693C > T, p.Gln565Ter Hetrozygous 8-III2 Fenale Onaffected 14 C1693C > T, p.Gln565Ter Hetrozygous 8-III2 Fenale Onaffected 14 C1693C > T, p.Gln565Ter Hetrozygous 9 P.II2 Fenale Onaffected ND Hetrozygous		6-IV:1	Female	Carrier	15	c.2625dupA, p.Gly876ArgfsTer203	Heterozygous
6.1v2 Fenale Carrier 15 c2625dupA, p.Gly376ArgfSre203 Heterozygous 7 7.111 Male Affected 15 c2236_2237deGA, p.Gly376ArgfSre23 Hetrozygous 8 Hil2 Fenale Affected 14 c1693C>T, p.Gly357Arg Hetrozygous 8 Hil2 Male Affected 14 c1693C>T, p.Gly55Fre Hetrozygous 8-Hil2 Fenale Mafected 14 c1693C>T, p.Gly55Fre Hetrozygous 8-Hil2 Fenale Unaffected 14 c1693C>T, p.Gly55Fre Hetrozygous 8-Hil2 Fenale Unaffected 14 C1693C>T, p.Gly55Fre Hetrozygous 9 Hil2 Fenale Garrier ND Hetrozygous 10 Holl1 Male Affected 8 c323C>G, p.Thr278Ala		6-111:5	Female	Unaffected		ND	
7 7-ll:1 Male Affected 15 c.2236_2237delGA, p.Glu746ArgfsTer23 Hemizyours 8 Hil2 Female Affected 14 c.1693C > T, p.Gln565Ter Heterozyours 8-lk3 Female Affected 14 c.1693C > T, p.Gln565Ter Heterozyours 8-lk3 Male Unaffected 14 c.1693C > T, p.Gln565Ter Hetrozyours 8-lk13 Male Affected 14 c.1693C > T, p.Gln565Ter Hetrozyours 8-lk16 Female Affected 14 c.1693C > T, p.Gln565Ter Hetrozyours 8-lk16 Female Unaffected 14 c.1693C > T, p.Gln565Ter Hetrozyours 8-lk16 Female Unaffected ND Hetrozyours Hetrozyours 8-lk2 Female Unaffected 10 c.1070 G > A, p.Gly357Asp Hemizyours 9 9-lk1 Male Affected 8 c.832 A > G, p.Thr278Ala Hemizyours 10 10-llk1 Male Affected 8 c.832 A > G, p.Thr278Ala Hetrozyours 10 10-llk1 Male Affected 8 c.832 A > G, p.Thr278Ala Hetrozyours 10 10-llk1 Male Carrier 8 c		6-IV:2	Female	Carrier	15	c.2625dupA, p.Gly876ArgfsTer203	Heterozygous
8 8-lli2 Fende Affected 14 c.1693C > T, p.Gln565Ter Heterozygou 8-lk3 Fende Affected 14 c.1693C > T, p.Gln565Ter Heterozygou 8-lk2 Male Unaffected 14 c.1693C > T, p.Gln565Ter Heterozygou 8-lk13 Male Affected 14 c.1693C > T, p.Gln565Ter Heterozygou 8-lk16 Fende Affected 14 c.1693C > T, p.Gln565Ter Heterozygou 8-lk16 Fende Maffected 14 c.1693C > T, p.Gln565Ter Heterozygou 8-lk12 Fende Unaffected ND Heterozygou Heterozygou 8-lk2 Fende Unaffected ND Heterozygou Heterozygou 9-lk2 Fende Unaffected ND Heterozygou 9-lk2 Fende Carrier ND Heterozygou 10-llk1 Male Affected 8 c.832A > G, p.Thr278Ala Heterozygou 10-llk2 Male Unaffected 8 c.832A > G, p.Thr278Ala Heterozygou 10-llk1 Male Affected 8 c.832A > G, p.Thr278Ala Heterozygou 10-llk1 Fende Carrier 8 c.832A > G, p.Thr278Ala	7	7-II:1	Male	Affected	15	c.2236_2237delGA, p.Glu746ArgfsTer23	Hemizygous
8-11.8 Female Affected 14 c.1693C > T, p.Gln565Ter Heterozygous 8-11.2 Male Unaffected 14 c.1693C > T, p.Gln565Ter Hemizygous 8-11.8 Male Affected 14 c.1693C > T, p.Gln565Ter Heterozygous 8-11.16 Female Maffected 14 c.1693C > T, p.Gln565Ter Heterozygous 8-11.2 Female Unaffected 14 c.1693C > T, p.Gln565Ter Heterozygous 8-11.2 Female Unaffected ND ND ND 8-11.2 Female Unaffected ND Hemizygous ND 9 9-11.1 Male Affected 10 c.1070G > A, p.Gly357Asp Hemizygous 9 9-12.1 Female Carrier ND ND Hemizygous 10-11.2 Male Unaffected 8 c.832 A > G, p.Thr278Ala Heterozygous 10-11.1 Male Carrier 8 c.832 A > G, p.Thr278Ala Heterozygous 10-11.2 Male Carrier 8 c.832 A > G, p.Thr278Ala Heterozygous	8	8-III:2	Female	Affected	14	c.1693C > T, p.Gln565Ter	Heterozygous
8412 Male Unaffected ND 84113 Male Affected 14 c.1693C>T, p.Gln565Ter Hemizygous 84116 Female Affected 14 c.1693C>T, p.Gln565Ter Heterozygous 84116 Female Maffected 14 c.1693C>T, p.Gln565Ter Heterozygous 84116 Female Unaffected ND Heterozygous Heterozygous 84116 Female Unaffected ND Heterozygous Heterozygous 84117 Female Unaffected ND Heterozygous Heterozygous 94118 Male Affected 10 c.1070G>A, p.Gly357Asp Heterizygous 9412 Female Carrier ND Heterozygous Heterozygous 104111 Male Affected 8 c.832A > G, p.Thr.278Ala Heterozygous 104111 Female Carrier 8 c.832A > G, p.Thr.278Ala Heterozygous 104112 Female Carrier 8 c.832A > G, p.Thr.278Ala Heterozygous 104112 Female Carrier 8 <		8-II:8	Female	Affected	14	c.1693C > T, p.Gln565Ter	Heterozygous
8-III-3 Male Affected 14 c.1693C > T, p.Gln565Ter Hemizygous 8-III-6 Female Affected 14 c.1693C > T, p.Gln565Ter Heterozygous 8-IV-1 Female Unaffected ND Heterozygous Heterozygous 8-IV-2 Female Unaffected ND Heterozygous Heterozygous 8-IV-2 Female Unaffected ND Heterozygous 8-IV-3 Female Unaffected ND Heterozygous 9-IV-1 Female Unaffected ND Heterozygous 9-IV-1 Female Affected ND Heterozygous 9-IV-1 Male Affected ND Heterozygous 9-IV-2 Female Carrier ND Heterozygous 10-IIV-1 Male Affected 8 c.832.A > G, p.Thr278.Ala Heterozygous 10-IIV-2 Male Carrier 8 c.832.A > G, p.Thr278.Ala Heterozygous 11 Herling Female Carrier 8 c.832.A > G, p.Thr278.Ala Heterozygous 11 Herling Female Carrier 8 c.832.A > G, p.Thr278.Ala Heterozygous 11 Herling Female <td></td> <td>8-II:2</td> <td>Male</td> <td>Unaffected</td> <td></td> <td>ND</td> <td></td>		8-II:2	Male	Unaffected		ND	
8-lli6 Fenale Affected 14 c.1693C > T, p.Gln565Ter Heterozygout 8-lv1 Fenale Unaffected ND 8-lv2 Fenale Unaffected ND 8-lv3 Fenale Unaffected ND 8-lv3 Fenale Unaffected ND 8-lv3 Fenale Unaffected ND 9-lv3 Fenale Unaffected ND 9 9-lv1 Male Affected 10 c.1070 G > A, p.Gly357Asp Hemizygous 9-lv2 Fenale Carrier ND Hemizygous 10		8-111:3	Male	Affected	14	c.1693C > T, p.Gln565Ter	Hemizygous
8/121 Female Unaffected ND 8/122 Female Unaffected ND 8/124 Female Unaffected ND 8/124 Female Unaffected ND 8/124 Female Unaffected ND 8/125 Female Unaffected ND 9 9/121 Male Affected 10 c.10706 > A, p.Gly357App Hemizygous 9 9/12 Female Carrier ND Hemizygous 10 10-III:1 Male Affected 8 c.832 A > G, p.Thr.278Ala Hemizygous 10 10-III:2 Male Carrier 8 c.832 A > G, p.Thr.278Ala Hemizygous 11 10-III:3 Female Carrier 8 c.832 A > G, p.Thr.278Ala Heterozygous 11 11-II:1 Female Mafected 7 c.628 G > T, p.Glu210Ter Heterozygous 11 11-II:1 Female Unaffected 7 G.267 C > T, p.Glu2210Ter Heterozygous 12 11-II:1 Male Mafected 7		8-III:6	Female	Affected	14	c.1693C > T, p.Gln565Ter	Heterozygous
8-17-2 Fenale Unaffected ND 8-17-4 Fenale Unaffected ND 8-17-5 Fenale Unaffected ND 9 9-11-1 Male Affected 10 c.10706>A, p.Gly357Asp Hemizygous 9 9-12.1 Male Affected 10 c.10706>A, p.Gly357Asp Hemizygous 10 9-12.1 Male Affected 8 c.832A>G, p.Thr278Ala Hemizygous 10 10-111.2 Male Unaffected 8 c.832A>G, p.Thr278Ala Hemizygous 10 10-112.2 Male Carrier 8 c.832A>G, p.Thr278Ala Hemizygous 10 10-113 Fenale Carrier 8 c.832A>G, p.Thr278Ala Hemizygous 11 11-113 Fenale Maffected 7 c.628G>T, p.Glu210Ter Heterozygous 12 11-113 Fenale Unaffected 7 c.627G>T, p.Glu22Ter Hemizygous 12 11-113 Fenale Mafected 7 c.679C>T, p.Glu22Ter Hemizygous 12 Male		8-IV:1	Female	Unaffected		ND	
8-W4 Fenale Unaffected ND 9-W5 Fenale Unaffected ND 9 9-H1 Male Affected 10 c.1070 S A, p.Gy357Asp Hemizygous 9-L2 Fenale Carrier ND 10 10-H12 Male Affected 8 c.832 A > G, p.Thr.278Ala Hemizygous 10 10-H12 Male Onaffected 8 c.832 A > G, p.Thr.278Ala Hemizygous 10-H12 Male Carrier 8 c.832 A > G, p.Thr.278Ala Hemizygous 10-H12 Fenale Carrier 8 c.832 A > G, p.Thr.278Ala Hemizygous 11 Fenale Carrier 8 c.832 A > G, p.Thr.278Ala Hemizygous 11 Fenale Carrier 8 c.832 A > G, p.Thr.278Ala Heterozygous 11 Fenale Mafected 7 c.628 G > T, p.Glu210Ter Heterozygous 12 Male Inaffected 7 c.679 C > T, p.Glu227Ter Hemizygous 12 Male Male Carrier 7 c.679 C > T, p.Glu227Ter H		8-IV:2	Female	Unaffected		ND	
8/N5FemaleUnaffectedND99/L1MaleAffected10 $c.10706 > A, p.Gly357Asp$ Hemizygous9/L2FemaleCarrierND1010/l12MaleAffected8 $c.832A > G, p.Thr.278Ala$ Hemizygous10/l12MaleUnaffected8 $c.832A > G, p.Thr.278Ala$ Hemizygous10/l12FemaleCarrier8 $c.832A > G, p.Thr.278Ala$ Hemizygous10/l14FemaleCarrier8 $c.832A > G, p.Thr.278Ala$ Heterozygous1111-l12FemaleAffected7 $c.282 > G, p.Thr.278Ala$ Heterozygous1111-l12MaleInaffected7 $c.282 < G, p.Thr.278Ala$ Heterozygous1211-l12MaleNaffected7 $c.282 < G, p.Thr.278Ala$ Heterozygous1212-l12MaleNaffected7 $c.282 < G, p.Thr.278Ala$ Heterozygous1212-l12MaleAffected7 $c.292 < C, p.Gh.227 < Heterozygous$		8-IV:4	Female	Unaffected		ND	
99-li1MaleAffected10c.1070 G > A, p.Gly357AspHemizygous9-li2FemaleCarrierND1010-ll1MaleAffected8c.832 A > G, p.Thr278AlaHemizygous10-ll12MaleUnaffected8c.832 A > G, p.Thr278AlaHemizygous10-ll13FemaleCarrier8c.832 A > G, p.Thr278AlaHemizygous10-ll14FemaleCarrier8c.832 A > G, p.Thr278AlaHeterozygous1111-ll12FemaleCarrier8c.832 A > G, p.Thr278AlaHeterozygous1111-ll2MaleOnaffected7c.628 G > T, p.Glu210TerHeterozygous1211-ll3FemaleUnaffected7ND1212-ll2MaleAffected7c.679 C > T, p.Glu227TerHeterozygous12-ll2MaleUnaffected7MDHeterozygous12-ll2MaleUnaffected7c.679 C > T, p.Glu227TerHeterozygous		8-IV:5	Female	Unaffected		ND	
9-12FemaleCarrierND1010-111.0MaleAffected8 $c.832.A > G.p.Thr.278.Ala$ Hemizygous10-112.2MaleUnaffected8 $c.832.A > G.p.Thr.278.Ala$ Hemizygous10-113.3FemaleCarrier8 $c.832.A > G.p.Thr.278.Ala$ Heterozygous1111-112.4FemaleCarrier8 $c.832.A > G.p.Thr.278.Ala$ Heterozygous1111-112.4FemaleCarrier8 $c.832.A > G.p.Thr.278.Ala$ Heterozygous1111-112.4FemaleOnaffected7 $c.628.G > T.p.Glu2.17er$ Heterozygous1212-112.4MaleUnaffected7NDHeterozygous1212-112.4MaleCarrier7 $c.679.C > T.p.Glu2.27ter$ Heterozygous12-112.4MaleUnaffected7NDHeterozygous12-112.4MaleUnaffected7NDHeterozygous12-112.4MaleUnaffected7NDHeterozygous12-112.4MaleUnaffected7NDHeterozygous12-112.4MaleUnaffected7NDHeterozygous12-112.4MaleUnaffected7NDHeterozygous12-112.4MaleUnaffected7NDHeterozygous	9	9-II:1	Male	Affected	10	c.1070 G > A, p.Gly357Asp	Hemizygous
1010-III:1MaleAffected8c.832 A > G, p.Thr278AlaHemizygous10-III:2MaleUnaffected8c.832 A > G, p.Thr278AlaHemizygous10-III:3FemaleCarrier8c.832 A > G, p.Thr278AlaHeterozygous10-II:4FemaleCarrier8c.832 A > G, p.Thr278AlaHeterozygous1111-II:1FemaleAffected7c.628 G > T, p.Glu210TerHeterozygous11-II:2MaleUnaffected7NDHeterozygous1212-II:1MaleAffected7c.679 C > T, p.Glu227TerHemizygous12-II:2MaleUnaffected7NDHeterozygous		9-I:2	Female	Carrier		ND	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	10-III:1	Male	Affected	8	c.832 A > G, p.Thr278Ala	Hemizygous
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10-III:2	Male	Unaffected	8	c.832 A > G, p.Thr278Ala	Hemizygous
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10-III:3	Female	Carrier	8	c.832 A > G, p.Thr278Ala	Heterozygous
11 11-III:1 Female Affected 7 c.628 G > T, p.Glu210Ter Heterozygout 11-II:2 Male Unaffected ND Interval Interval 11-II:3 Female Unaffected ND Interval Interval 12 12-III:1 Male Affected 7 c.679 C > T, p.Glu227Ter Hemizygout 12 12-III:2 Male Carrier 7 c.679 C > T, p.Glu227Ter Heterozygout		10-II:4	Female	Carrier	8	c.832 A > G, p.Thr278Ala	Heterozygous
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	11-111:1	Female	Affected	7	c.628 G > T, p.Glu210Ter	Heterozygous
11-II:3 Female Unaffected ND 12 12-III:1 Male Affected 7 c.679 C > T, p.Gln227Ter Hemizygous 12-II:2 Female Carrier 7 c.679 C > T, p.Gln227Ter Heterozygous 12-II:2 Male Unaffected 7 ND		11-II:2	Male	Unaffected		ND	
12 12-III:1 Male Affected 7 c.679 C > T, p.Gln227Ter Hemizygous 12-II:4 Female Carrier 7 c.679 C > T, p.Gln227Ter Heterozygous 12-II:2 Male Unaffected ND Heterozygous		11-II:3	Female	Unaffected		ND	
12-II:4 Female Carrier 7 c.679 C > T, p.Gln227Ter Heterozygous 12-II:2 Male Unaffected ND	12	12-111:1	Male	Affected	7	c.679 C > T, p.Gln227Ter	Hemizygous
12-II:2 Male Unaffected ND		12-II:4	Female	Carrier	7	c.679 C > T, p.Gln227Ter	Heterozygous
		12-II:2	Male	Unaffected		ND	

Table 2 Summary of detected variants of 18 affected, 9 carriers, and 14 unaffected individuals from 13 families withRPGR-associated retinal disorder

Family no.	Patient no.	Gender	Affected/unaffected	Exon	Nucleotide and amino acid changes	State
	12-111:2	Male	Unaffected		ND	
13	13-III:3	Male	Affected	5	c.389_390deITT, p.Phe130SerfsTer4	Hemizygous

RPGR transcript ID: NM_001034853.1

ND not detected

Novel variants are shown in italic

Whole-exome sequencing with targeted analysis for retinal disease-causing genes on RetNET (https://sph.uth.edu/retnet/) was performed in 18 affected, 9 carriers, and 14 unaffected subjects from 13 families

Sequence variant nonenclature was obrained according to the guidelines of the Human Genome Variation Society by using Mutalyzer (https://mutalyzer.nl/)

the JEGC cohort. All of molecularly confirmed XLCORD were *RPGR*-RD (RPGR-5 families). *RPGR*-RD accounts for 8.1% of 148 families with molecularly confirmed RP in total, and accounts for 4.8% of 105 families with molecularly confirmed CORD and allied disorders. The prevalence of *RPGR*-RD was similar to that of European cohorts^{3,48,49}, although *CACNA1F* responsible for XL incomplete congenital night blindness (incomplete type of Miyake's classification; OMIM: 300071)^{50,51} was not included as CORD in the JEGC cohort.

Out of 13 detected *RPGR* variants detected in this study, five variants were located within the RCC1-like domain (5/13, 38.5%), and seven were within the ORF15 domain (7/13, 53.8%). The proportion of ORF15 variants in the present cohort was slightly lower than that of the North American population (66%, reported by Sharon et al.)²⁷.

In this study, five previously reported RPGR variants were identified in five families (Families 2, 3, 5 -CORD; Families 6, 7 -RP). Three of the five previously reported variants in the present cohort were reported in European cases with RP (p. Glu746ArgfsTer23, p.Gly876ArgfsTer203, and p.Glu1031GlvfsTer58)^{18,26,33}. The other two variants were reported in European cases with CORD (p. Glu1060ArgfsTer18 and p.Tyr1103SerfsTer7)^{29,32}. Four of the five families (4/5, 80%) in the present cohort showed a concordant phenotype with previous reports (Families 2, 3, 6, 7). In that study, the clinical effect of these four variants was confirmed in the Japanese population. One family with CORD had a discordant phenotype with a previous report (Family 5, p. Glu1031GlyfsTer58). Given the severely affected retinal findings in two affected males in Family 5, an advanced stage of this phenotype could be described as "RP".

Eight *RPGR* variants were reported first in this study, including three frameshift (p.Phe130SerfsTer4, p. Glu1035GlyfsTer43, and p.Pro1134HisfsTer18), three nonsense (p.Glu210Ter, p.Gln227Ter, and p.Gln565Ter), and two missense variants (p.Thr278Ala and p. Gly357Asp). A high proportion of novel variants (8/13, 61.5%) was revealed in the Japanese cohort, which suggests a distinct genetic background for RPGR in the Japanese population compared with the European population.

In silico analysis for eight novel variants predicted pathogenic effects in four variants (p. Glu210Ter, p. Gln565Ter, p.Glu1035GlyfsTer43, and p.Pro1134Hisf-sTer18), a likely pathogenic effect in two variants (p. Gln227Ter and p.Phe130SerfsTer4), and variants of uncertain significance in two variants (p.Thr278Ala and p.Gly357Asp). These two missense variants (p. Gly357Asp and p.Thr278Ala) were located within the RCC1-like domain, where other missense disease-causing *RPGR* variants are frequently found³⁷. The pathogenicity of these two missense variants is uncertain, although some association with nucleocytoplasmic transport and regulation of cell-division processing may be anticipated^{16,17}.

A significant association between genotype and phenotype was revealed in this study. Variants located in exons 1–14 and the 5' end of ORF15 caused RP, and variants at the 3' end of ORF15 caused CORD. This finding was consistent with previous reports in the European population^{3,29,30}. This fact supports the prediction of the natural history of *RPGR*-RD in counseling patients. Notably, the mechanism underlying this genotype–phenotype association has not been clarified.

There are limitations to this study. The selection bias related to the disease severity should be inherent, since it is uncommon for genetically affected subjects with good vision to visit clinics/hospitals. This study is a cross-sectional retrospective study; thus, longitudinal natural history studies in a larger cohort could provide more accurate information for disease progression of *RPGR*-RD. In addition, the molecular mechanisms of disease causation for some novel and previously reported variants are not yet known; therefore, further functional analysis could determine the disease causation of each variant.

In conclusion, the phenotypic and genotypic features of *RPGR*-RD were documented first in a large cohort of Japanese populations. A broad spectrum of phenotypic and genotypic findings was determined, revealing a considerable genotype–phenotype association. This evidence should be helpful in monitoring and counseling patients and in selecting patients for future therapeutic trials such as gene replacement therapy.

Acknowledgements

We are grateful to Dr. Anna Thompson at the National Genetic Reference Laboratory, Manchester, UK, and Dr. Panagiotis Sergouniotis, Manchester University, for their help in genetic screening for RPGR-ORF15 and for clinical genetic data analysis. Grant numbers: Kaoru Fujinami is supported by grants from Grant-in-Aid for Young Scientists (A) of the Ministry of Education, Culture, Sports, Science and Technology, Japan (16H06269), grants from Grant-in-Aid for Scientists to support international collaborative studies of the Ministry of Education, Culture, Sports, Science and Technology, Japan (16KK01930002), grants from National Hospital Organization Network Research Fund, Japan (H30-NHO-Sensory Organs-03), grants from the Foundation Fighting Blindness Alan Laties Career Development Program (CF-CL-0416-0696-UCL), USA, and grants from Health Labour Sciences Research Grant, The Ministry of Health Labour and Welfare, Japan (201711107 A), and grants from Great Britain Sasakawa Foundation Butterfield Awards, UK. Yu Fujinami-Yokokawa is supported by grants from Grant-in-Aid for Young Scientists of the Ministry of Education, Culture, Sports, Science and Technology, Japan (18K16943). Takeshi Iwata is supported by AMED (18ek0109282h0002). Kazushige Tsunoda is supported by the Japan Agency for Medical Research and Development (AMED), the Ministry of Health, Labor and Welfare, Japan (18ek0109282h0002), Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science, Japan (H26-26462674). Nobuhisa Nao-i is supported by Grants-in-Aid for Scientific Research (C) of the Ministry of Education, Culture, Sports, Science and Technology, Japan (15K-10842). Role of the funder/sponsor: The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the paper; and decision to submit the paper for the publication.

Author details

¹Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan. ²Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan. ³Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan. ⁴UCL Institute of Ophthalmology, London, UK. ⁵Moorfields Eye Hospital, London, UK. ⁶Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China. ⁷Graduate School of Health Management, Keio University, Tokyo, Japan. ⁸Division of Public Health, Yokokawa Clinic, Suita, Osaka, Japan. ⁹Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan. ¹⁰Department of Ophthalmology, The Jikei University School of Medicine, Nishi-Shimbashi, Minato-ku, Tokyo, Japan. ¹¹Department of Ophthalmology, Kinki University Faculty of Medicine, Osaka-Sayama City, Osaka, Japan.¹²Kobe Eye Center, Next Vision, Kobe, Hyogo, Japan. ¹³Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan

Conflict of interest

All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Individual investigators who participate in the sponsored project(s) are not directly compensated by the sponsor but may receive salary or other support from the institution to support their effort on the project(s). Kaoru Fujinami is a paid consultant of Astellas Pharma Inc., Kubota Pharmaceutical Holdings Co., Ltd, Acucela Inc., Novartis AG., and NightstaRx Limited. Kaoru Fujinami reports personal fees from Astellas Pharma Inc., Kubota Pharmaceutical Holdings Co., Ltd., Acucela Inc., Novartis AG., SANTEN Company Limited, the Foundation Fighting Blindness, the Foundation Fighting Blindness Clinical Research Institute, the Japanese Ophthalmology Society, and the Japan Retinitis Pigmentosa Society. The laboratory of Visual Physiology, Division for Vision Research, National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, Tokyo, Japan is supported by grants from Astellas Pharma Inc. (NCT03281005), outside the submitted work.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information is available for this paper at https://doi.org/ 10.1038/s41439-019-0065-7.

Received: 14 March 2019 Revised: 21 May 2019 Accepted: 30 June 2019. Published online: 2 August 2019

References

- Liew, G., Michaelides, M. & Bunce, C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16-64 years), 1999-2000 with 2009-2010. *BMJ Open* 4, e004015 (2014).
- Hartong, D. T., Berson, E. L. & Dryja, T. P. Retinitis pigmentosa. *Lancet* 368, 1795–1809 (2006).
- Tee, J. J., Smith, A. J., Hardcastle, A. J. & Michaelides, M. RPGR-associated retinopathy: clinical features, molecular genetics, animal models and therapeutic options. *Br. J. Ophthalmol.* **100**, 1022–1027 (2016).
- Boughman, J. A., Conneally, P. M. & Nance, W. E. Population genetic studies of retinitis pigmentosa. *Am. J. Hum. Genet.* 32, 223–235 (1980).
- Haim, M. Epidemiology of retinitis pigmentosa in Denmark. Acta. Ophthalmol. Scand. Suppl. 233, 1–34 (2002).
- Prokisch, H., Hartig, M., Hellinger, R., Meitinger, T. & Rosenberg, T. A populationbased epidemiological and genetic study of X-linked retinitis pigmentosa. *Invest. Ophthalmol. Vis. Sci.* 48, 4012–4018 (2007).
- You, Q. S. et al. Prevalence of retinitis pigmentosa in North China: the Beijing Eye Public Health Care Project. *Acta Ophthalmol.* **91**, e499–e500 (2013).
- Xu, Y. et al. Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. *Hum. Genet.* 133, 1255–1271 (2014).
- Sahel, J. A., Marazova, K. & Audo, I. Clinical characteristics and current therapies for inherited retinal degenerations. *Cold Spring Harb. Perspect. Med.* 5, a017111 (2014).
- Wright, A. F., Chakarova, C. F., Abd El-Aziz, M. M. & Bhattacharya, S. S. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. *Nat. Rev. Genet.* 11, 273–284 (2010).
- Lyraki, R., Megaw, R. & Hurd, T. Disease mechanisms of X-linked retinitis pigmentosa due to RP2 and RPGR mutations. *Biochem. Soc. Trans.* 44, 1235–1244 (2016).
- Meindl, A. et al. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). *Nat. Genet.* 13, 35–42 (1996).
- Roepman, R. et al. Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1. *Hum. Mol. Genet.* 5, 1035–1041 (1996).
- Hong, D. H. et al. RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. *Invest. Ophthalmol. Vis. Sci.* 44, 2413–2421 (2003).
- Shu, X. et al. RPGR mutation analysis and disease: an update. *Hum. Mutat.* 28, 322–328 (2007).
- Bischoff, F. R. & Ponstingl, H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. *Nature* 354, 80–82 (1991).
- Hadjebi, O., Casas-Terradellas, E., Garcia-Gonzalo, F. R. & Rosa, J. L. The RCC1 superfamily: from genes, to function, to disease. *Biochim. Biophys. Acta.* 1783, 1467–1479 (2008).
- Vervoort, R. et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. *Nat. Genet.* 25, 462–466 (2000).
- Khanna, H. et al. RPGR-ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins. *J. Biol. Chem.* 280, 33580–33587 (2005).
- Shu, X. et al. RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin. *Hum. Mol. Genet.* 14, 1183–1197 (2005).
- Tee, J. J. L. et al. Natural history study of retinal structure, progression, and symmetry using ellipzoid zone metrics in RPGR-associated retinopathy. *Am. J. Ophthalmol.* **198**, 111–123 (2019).
- Kalitzeos, A. et al. Cellular imaging of the tapetal-like reflex in carriers of Rpgrassociated retinopathy. *Retina* 39, 570–580 (2019).
- Ayyagari, R. et al. X-linked recessive atrophic macular degeneration from RPGR mutation. *Genomics* 80, 166–171 (2002).
- Demirci, F. Y. et al. X-linked cone-rod dystrophy (locus COD1): identification of mutations in RPGR exon ORF15. Am. J. Hum. Genet. 70, 1049–1053 (2002).

- 25. Yang, Z. et al. Mutations in the RPGR gene cause X-linked cone dystrophy. *Hum. Mol. Genet.* **11**, 605–611 (2002).
- Bader, I. et al. X-linked retinitis pigmentosa: RPGR mutations in most families with definite X linkage and clustering of mutations in a short sequence stretch of exon ORF15. *Invest. Ophthalmol. Vis. Sci.* 44, 1458–1463 (2003).
- 27. Sharon, D. et al. and RPGR mutations and clinical correlations in patients with X-linked retinitis pigmentosa. *Am. J. Hum. Genet.* **73**, 1131–1146 (2003).
- Ebenezer, N. D. et al. Identification of novel RPGR ORF15 mutations in X-linked progressive cone-rod dystrophy (XLCORD) families. *Invest. Ophthalmol. Vis. Sci.* 46, 1891–1898 (2005).
- Branham, K. et al. Mutations in RPGR and RP2 account for 15% of males with simplex retinal degenerative disease. *Invest. Ophthalmol. Vis. Sci.* 53, 8232–8237 (2012).
- Yang, L. et al. Novel mutations of RPGR in Chinese retinitis pigmentosa patients and the genotype-phenotype correlation. *PLoS ONE* 9, e85752 (2014).
- Fokkema, I. F., den Dunnen, J. T. & Taschner, P. E. LOVD: easy creation of a locus-specific sequence variation database using an "LSDB-in-a-box" approach. *Hum. Mutat.* 26, 63–68 (2005).
- Lee, H. et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. *JAMA* **312**, 1880–1887 (2014).
- Neidhardt, J. et al. Identification of novel mutations in X-linked retinitis pigmentosa families and implications for diagnostic testing. *Mol. Vis.* 14, 1081–1093 (2008).
- Oishi, M. et al. Comprehensive molecular diagnosis of a large cohort of Japanese retinitis pigmentosa and Usher syndrome patients by nextgeneration sequencing. *Invest. Ophthalmol. Vis. Sci.* 55, 7369–7375 (2014).
- Hosono, K. et al. Molecular diagnosis of 34 Japanese families with leber congenital amaurosis using targeted next generation sequencing. *Sci. Rep.* 8, 8279 (2018).
- Maeda, A. et al. Development of a molecular diagnostic test for Retinitis Pigmentosa in the Japanese population. *Jpn J. Ophthalmol.* 62, 451–457 (2018).
- Bellingrath, J. S. et al. High symmetry of visual acuity and visual fields in RPGR-linked retinitis pigmentosa. *Invest. Ophthalmol. Vis. Sci.* 58, 4457–4466 (2017).
- Tee, J. J. L., Carroll, J., Webster, A. R. & Michaelides, M. Quantitative analysis of retinal structure using spectral-domain optical coherence tomography in RPGR-associated retinopathy. *Am. J. Ophthalmol.* **178**, 18–26 (2017).

- Tee, J. J. L., Kalitzeos, A., Webster, A. R., Peto, T. & Michaelides, M. Quantitative analysis of hyperautofluorescent rings to characterize the natural history and progression in Rpgr-associated retinopathy. *Retina* 38, 2401–2414 (2018).
- Tee, J. J. L. et al. Characterization of visual function, interocular variability and progression using static perimetry-derived metrics in RPGR-associated retinopathy. *Invest. Ophthalmol. Vis. Sci.* 59, 2422–2436 (2018).
- Jin, Z. B., Liu, X. Q., Hayakawa, M., Murakami, A. & Nao-i, N. Mutational analysis of RPGR and RP2 genes in Japanese patients with retinitis pigmentosa: identification of four mutations. *Mol. Vis.* **12**, 1167–1174 (2006).
- 42. Fujinami, K. et al. Novel RP1L1 variants and genotype-photoreceptor microstructural phenotype associations in cohort of Japanese patients with occult macular dystrophy. *Invest. Ophthalmol. Vis. Sci.* **57**, 4837–4846 (2016).
- Hood, D. C. et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). *Doc. Ophthalmol.* **124**, 1–13 (2012).
- 44. McCulloch, D. L. et al. ISCEV standard for full-field clinical electroretinography (2015 update). *Doc. Ophthalmol.* **130**, 1–12 (2015).
- Hull, S. et al. The phenotypic variability of retinal dystrophies associated with mutations in CRX, with report of a novel macular dystrophy phenotype. *Invest. Ophthalmol. Vis. Sci.* 55, 6934–6944 (2014).
- Neidhardt, J. et al. Identification and characterization of a novel RPGR isoform in human retina. *Hum. Mutat.* 28, 797–807 (2007).
- Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet. Med.* 17, 405–424 (2015).
- Stone, E. M. et al. Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. *Ophthalmology* **124**, 1314–1331 (2017).
- Gill, J. S., Georgiou, M., Kalitzeos, A., Moore, A. T. & Michaelides M. Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy. *Br. J. Ophthalmol.* e-pub ahead of print 24 January 2019; https://doi.org/10.1136/bjophthalmol-2018-313278 (2019).
- Miyake, Y., Yagasaki, K., Horiguchi, M., Kawase, Y. & Kanda, T. Congenital stationary night blindness with negative electroretinogram. A new classification. *Arch. Ophthalmol.* **104**, 1013–1020 (1986).
- Nakamura, M., Ito, S., Piao, C. H., Terasaki, H. & Miyake, Y. Retinal and optic disc atrophy associated with a CACNA1F mutation in a Japanese family. *Achc Ophthalmol.* **121**, 1028–1033 (2003).