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POUV is a relatively newly emerged class of POU transcription factors
present in jawed vertebrates (Gnathostomata). The function of POUV-class
proteins is inextricably linked to zygotic genome activation (ZGA). A large
body of evidence now extends the role of these proteins to subsequent
developmental stages. While some functions resemble those of other
POU-class proteins and are related to neuroectoderm development, others
have emerged de novo. The most notable of the latter functions is pluripo-
tency control by Oct4 in mammals. In this review, we focus on these
de novo functions in the best-studied species harbouring POUV proteins—
zebrafish, Xenopus (anamniotes) and mammals (amniotes). Despite the
broad diversity of their biological functions in vertebrates, POUV proteins
exert a common feature related to their role in safeguarding the undifferen-
tiated state of cells. Here we summarize numerous pieces of evidence for
these specific functions of the POUV-class proteins and recap available
loss-of-function data.
1. Introduction
The POUV class consists of a group of proteins that harbour the POU domain
and are expressed mainly during early embryogenesis [1,2]. The most famous
member of this class is Oct4, a key factor for induction and maintenance of
pluripotency [3–5]. Considering the impact of this protein on these processes,
it can be assumed that Oct4 orthologues exhibit strong conservation among
multicellular organisms. Surprisingly, though, members of the POUV class
were found only in vertebrates and, remarkably, only in jawed vertebrates
(Gnathostomata), from cartilaginous fishes to human, and not in lampreys,
for example [6,7]. In our previous review, we focused on the structural features
of Oct4 and the POUV class and the role of these proteins in pluripotency
induction and zygotic genome activation (ZGA) [8]. We concluded that
although POUV-class proteins make a major contribution to ZGA in ana-
mniotes (zebrafish, Xenopus), they are overtaken by proteins such as Nfya
and Dux in Placentalia development. Nevertheless, POUV proteins from all
studied vertebrates are characterized by numerous functions in embryogenesis
following ZGA. Some of these functions, which are performed by Pou5f3 in
zebrafish and Xenopus, are indicative of the origin of POUV from the POUIII
class and are related to neuroectoderm development—midbrain–hindbrain
boundary establishment, embryo integrity and neuro-progenitors maintenance
[9–14]. Mammals possess Pou5f1 (Oct4), a protein known primarily as a key
regulator of pluripotency—the undifferentiated state that endows cells the abil-
ity to become endo-, ecto- and mesoderm [3,15–17]. Interestingly, both Pou5f3
and Pou5f1 have a common function in posterior (trunk and tail) body exten-
sion [9,11,18,19], a feature that may be indicative of the role of POUV in
maintenance of the undifferentiated state. This state is needed for regulative
development of vertebrates and for prevention of premature differentiation to
one or another trajectory. However, in some cases, Oct4 at least does not
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Figure 1. Origin and diversification of POUV-class proteins in evolution. The figure is modified from [22] and [7]. Dashed line represents a POUIII-class ancestor,
which existed before the emergence of the POUV class. 2WGD represents two subsequent whole-genome duplications.
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prevent differentiation, suggesting that the function of this
transcription factor is context dependent. In this review, by
summarizing available loss-of-function data, we focus on
the post-ZGA functions of the POUV class during early
embryogenesis of jawed vertebrates, denoting both conserved
and newly emerged functions.
2. POUV-class origin
The POUdomain consists of the combination of a POU-specific
subdomain (POUs), a linker and a homeodomain (POUh) [1].
POU-domain proteins emerged after the divergence of choano-
flagellate and animals, but before the divergence of sponges
and eumetazoans. Thus, POU-domain proteins are not present
in plants and fungi, and like other metazoan-specific proteins
such as Six and Pax, they appear to have contributed to
animal multicellularity [20,21]. The POUV-class proteins
evolved approximately 450 million years ago in some jawed
ancestor (Gnathostomata) and across different taxa, rep-
resented by two orthologues—Pou5f1 (Oct4) and Pou5f3
(previously known as pou2) (figure 1) [6,22,23]. The evolution
of the POUV class was reviewed in detail elsewhere [7,24,25].
All studied jawed vertebrates bear at least one of these
orthologues and demonstrate an early lethal phenotype upon
Pou5f1 or Pou5f3 factor knockout [17,26,27]. Considering that
POUV-class members are involved in important processes
during early embryonic development, it is surprising that
they appeared during evolution only relatively recently [28].
The appearance of POUV class in vertebrates could be related
to global rearrangements in the genome, resulting in the
emergence of principally new organisms. Whole-genome
duplications (WGDs), which occurred before the origin of ver-
tebrates, is an example of such a rearrangement [29–32]. Two
subsequent WGDs took place between tunicates and lampreys
[33,34] and perhaps account for the switching from a ‘mosaic’
type of development to a ‘regulative’ development. The former
type of development is typical for most invertebrates while the
latter applies to all vertebrates. However, the absence of any
POUVs in the lamprey’s genome [35] does not support the
role ofWGDs in the origin of the POUV class. Thus, unless lam-
preys had POUV genes and then lost them, this class likely
appeared by simple duplication of some POUIII gene
(figure 1) [36]. This is confusing in light of the relatively similar
early development of lamprey and zebrafish [37,38] as well as
the indispensability of POUV-class proteins for embryogenesis
of all vertebrates except lampreys (discussed below). Never-
theless, other POU-domain classes are widely distributed
across multicellular organisms (classes I, III, IV and VI) prob-
ably first appearing at the dawn of Metazoa development
and, now present in species ranging from sponges to human
[20,21,36]. It is unlikely that these proteins perform POUV
functions because they are not related to early embryogenesis
[39]. Members of the POUIII class, which is probably the ances-
tor of POUV, usually serve as regulators of neuroectoderm
development [40–45]. Interestingly, the emergence of Nanog
is also associated with jawed vertebrates, as Nanog has been
found as early as in Osteichthyes [46]. Of note, the SoxB
class, which in cooperation with POUV proteins regulates
early development and maintenance of pluripotency, has
existedmuch longer than the POUV class andwas already pre-
sent in sponges [28,47,48]. Also, the partnership between Sox
and POU proteins could have existed longer than the Sox-
POUV partnership, even as early as in invertebrates. For
example, it was proposed that the cooperation between the
HMG-containing Dichaete and the POU protein vvl occurs
during Drosophila neurogenesis [49–51]. On the other hand,
in vivo data (ChIP-seq) show that DNA-dependent formation
of the Sox–Oct dimer is more typical for POUV-class proteins,
while other POU factors prefer binding to DNA as homodi-
mers [52–55].

Although it is generally accepted that participation of
POU-domain proteins in pluripotency is a privilege of
Gnathostomata, several reports have attempted to address
roles of these proteins in stem cell function in invertebrates
[56–59]. It was shown that the cnidarian POU-containing
protein Pln, which is likely to be a POUVI-class member, is
expressed in the embryo and adult stem cells (i-cells) [59].
Surprisingly, these cells could be positively stained with anti-
human Oct4 antibodies. However, considering that Pln is not
even an orthologue ofOct4 but rather a paralogue fromanother
POU class, this observation casts some doubts. Oocytes,
embryos, primordial germ cells and some branchial sac cells
in the tunicate Botryllus schlosseri are stained positively by
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expression at this stage, while colour-filled circles denote POUV expression at this stage; different colours reflect POUV expression at comparable stages of devel-
opment across taxa; arrow denotes involvement of POUV in the specification of certain tissue, whereas blunt arrow denotes inhibition of tissue specification by POUV.
ICM, inner cell mass; PGCs, primordial germ cells; ME, mesendoderm; NE, neuroectoderm; MHB, midbrain–hindbrain boundary; PrE, primitive endoderm; ESCs,
embryonic stem cells; EpiSCs, epiblast stem cells; CNCCs, cranial neural crest cells.

royalsocietypublishing.org/journal/rsob
Open

Biol.12:220065

3

anti-Oct4 antibodies [56], which is also inconsistent with the
absence of Oct4 orthologues in tunicates. The study of planar-
ian stem cells has revealed evolutionary conservation of a gene
network governing pluripotency between these organisms and
mammals, including genes affecting both Oct4 and Oct4 target
expression [58]. Considering the ambiguity of this data,
additional research on the potential stem cell function of
POU-domain proteins is needed. To date, involvement of
other proteins such as Piwi and Vasa in invertebrate stem cell
function represents a more likely scenario [60].
3. Biological functions of POUV proteins in
anamniotes

3.1. Zebrafish
These animals are the most studied early Gnathostomata
across vertebrates. Their POUV member Pou5f3 is known to
be a regulator of neuroectoderm and endoderm develop-
ment, as well as an organizer of dorsoventral patterning
and gastrulation, acting via regulation of cell motility. Mater-
nally expressed Pou5f3 is present in the zygote, whereas
embryonic Pou5f3 begins to be expressed in the blastoderm
and becomes restricted to the epiblast. Subsequently, Pou5f3
is expressed in the midbrain and hindbrain at late gastrula-
tion and early somitogenesis (figure 2) [9,61]. While there is
no evidence of Pou5f3 expression in zebrafish primordial
germ cells (PGCs) [62], medaka fish PGCs were shown to
harbour expression of this protein [63,64].

Early Pou5f3 research in zebrafish showed that this protein
is necessary for establishment and maintenance of the mid-
brain–hindbrain boundary (MHB) organizer [9,10,18]. MHB
is responsible for proper neuroectoderm patterning and differ-
entiation, and it is dependent on Fgf8,Wnt1 and Pax2.1 to exert
its function. These markers demonstrated strong decline in
expression upon Pou5f3 knockdown and consequently, several
morphological defects in neurogenesis were observed—no
MHB, a smaller midbrain, and fewer neurons in the spinal
cord. Defects in trunk and tail development during Pou5f3
knockdown were also noted—abnormal somite morphology
and variable tail length [9,18]. Furthermore, using embryos
with maternally and zygotically knocked-out Pou5f3
(MZspg), MHB defects became more pronounced; however,
an earlier phenotype characterized by gastrulation delay and
endoderm loss was discovered [26,65]. It was shown that
Pou5f3 maintains Nodal-dependent Sox32 (cas) expression;
together, Pou5f3 and Sox32 activate Sox17 transcription, a
requirement for endoderm development. Pou5f3 and Sox32
bind cis-regulatory modules B and C of Sox17 gene, respect-
ively, and act synergistically [66]. Accordingly, MZspg
mutants had reduced Sox32 (cas) and Sox17 levels and failed
to develop endoderm tissue. Gastrulation delay is also a dis-
tinctive feature of MZspg. By the time wild-type embryos
reach 30% epiboly, the mutants reach only the dome stage
[26]. This abnormality is related to defects in cytoskeleton,
cell adhesion, and cell behaviour in MZspg [67]. It was
shown that both upward and downward intercalations
during gastrulation are significantly affected in Pou5f3-null
embryos [68]. These abnormalities in cell motility are related
to disturbances in E-cadherin endosomal trafficking; while
this molecule is used during epiboly in wild-type embryos,
in MZspg it accumulates on the plasma membrane and inter-
feres with cell mobility. E-cadherin endocytosis is controlled
by Pou5f3-dependent EGF expression and thus, ectopic EGF
mRNA could rescue E-cadherin distribution in MZspg [69].
Pou5f3 deficiency has also shown an influence on cell viability
during gastrulation and is related to mych activity [70]. Using
ChIP-seq analysis, Kotkamp et al. showed that transcription
of both mych and mycl1b is directly regulated by Pou5f3.
MZspg mutants showed increased apoptosis during gastrula-
tion, and this phenotype was partially rescued by ectopic
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mych expression, whereas combinedmych and p53 overexpres-
sion completely attenuated apoptosis in MZspg [70]. The
authors also showed a specific role for Pou5f3 in activating
Klf2a, Klf2b and Klf17 during the establishment of the extraem-
bryonic envelope layer (EVL) and ectoderm. In the case of the
ventral ectodermal domain, Pou5f3 acts together with BMP to
mediate Klf2a and Klf2b expression [71]. Finally, there is the
well-known function of Pou5f3 in the dorsoventral patterning
of the zebrafish embryo, again achieved through collabora-
tion with BMP signalling [62,72,73]. MZspg mutants are
characterized by dorsalization and ventral expression of BMP
antagonists Gsc, Chd and Nog1. Pou5f3 promotes ventraliza-
tion through activation of Bmp2b, Bmp4, Bmp7, Vox, Vent
and other factors. Ventralization is at least partly achieved
via the Alk8-TGFbeta receptor, as receptor overexpression
was shown to rescue Bmp2b and Bmp4 activation. It was also
demonstrated that Pou5f3 directly regulates Vox transcription
through a specific regulatory element [73].

Considering that lampreys resemble zebrafish in early
development but have no POUV analogues, it is surprising
that this new class of proteins in zebrafish has acquired so
many functions. It seems that this may be due, at least partially,
to participation of the newly emerged POUV class in zygotic
genome activation [52,74,75], and some of the discussed defects
in MZspg mutants could be related to failure to initiate the
expression of one or several key developmental regulators.
Therefore, the major mutant phenotype is characterized by
gastrulation delay and consequent absence of endoderm—
and may be caused by genome activity shutdown. At the
same time, the listed defects in neurogenesis may indicate
the POUV origin—the neuroectoderm regulators of the
POUIII class.

3.2. Xenopus
Amphibians, like fish, are anamniotes and have similar early
development. However, the function of POUV proteins in
these animals is different from and sometimes even opposite
to that in zebrafish. Of note, Xenopus, unlike fish and mam-
mals, does not express Nanog, and Ventx is likely to serve
the role of Nanog in this species [46]. The POUV class in
Xenopus is represented by three Pou5f3 homologues—
Pou5f3.1 (Oct91/Xlpou91), Pou5f3.2 (Oct25/Xlpou25) and
Pou5f3.3 (Oct60/Xlpou60). In addition to their role in
genome activation [76], these Pou5f3 proteins perform several
functions in neurogenesis and cell integrity. Their expression
pattern is different throughout early embryogenesis. Pou5f3.3
is maternally expressed and is downregulated in blastula and
undetected early during gastrulation [11]. Pou5f3.1 and
Pou5f3.2 are expressed after ZGA in animal and marginal
blastula zones and are then expressed during gastrulation
(not in involuting cells) and in the developing neural tissue
(figure 2) [11]. Pou5f3.1 (Oct91, Xlpou91), which completely
rescues Oct4-null mouse embryonic stem cells (ESCs) [11],
is not maternally expressed and functions after genome acti-
vation. However, like mouse Oct4, this protein is found in
Xenopus PGCs [77].

Like zebrafish, in Xenopus, POUV proteins play a notable
role in neurogenesis. Pou5f3.1 and Pou5f3.2 downregulation
leads to a decline of neural markers Fgf8, En2 and Krox20,
as well as upregulation of organizer (Cer, Gsc, Chordin)
and endoderm (Sox17, Mixer, Endodermin) markers [11].
This observation is unexpected due to the crucial role of
POUV in endoderm formation of the evolutionarily older
zebrafish and in primitive endoderm formation of the evolu-
tionarily more recent mammals (discussed below). On the
other hand, the authors speculate that their results may indi-
cate a conserved role of POUV-class proteins in prevention of
premature commitment, which is supported by the ability of
these proteins to rescue the self-renewal of mouse ESCs [11].
The participation of Pou5f3.1 and Pou5f3.2 in neurogenesis
occurs in part through activation of Chch and Sip1, as overex-
pression of these two proteins rescues Pou5f3.1-knockdown
embryos [12]. Interestingly, Pou5f3.1 and Pou5f3.2 promote
maintenance of the neuro-progenitor state rather than neuro-
differentiation. Cooperativity with SoxB1-class proteins leads
to inhibition of epidermis formation but expanded neural
tube formation [14,78]. Co-injection of Pou5f3.1 and SoxB1
into blastomeres leads to the appearance of neuron-filled pro-
trusions at the tailbud stage [14]. Interactions of POUV and
SoxB1 in the maintenance of neural progenitors is thus remi-
niscent of interactions between Oct4 and Sox2 in mammals in
pluripotency control. Inhibition of ectodermal formation is
thought to occur through BMP suppression by Pou5f3.2
[79]. Xenopus Pou5f3 proteins have been found to inhibit
posterior neural fate. FGF-induced Sall4 suppresses their
activity and thus promotes spinal cord formation, as Sall4
knockdown leads to Pou5f3 upregulation and loss of spinal
cord tissue [80]. Of note, this is not true for overall posterior
extension, as other studies indicate that Pou5f3 depletion also
leads to posterior body truncation [11,76]. Moreover, this
phenotype is characteristic of both zebrafish and mammals
(discussed below).

There is also a documented function of Pou5f3 proteins in
inhibition of mesendoderm formation [27,78]. These proteins
act in opposition to both activin/nodal and FGF signalling
through inhibition of VegT/beta-catenin, Gsc and Mix2
[12,81,82]. Of note, Xbra, a marker of mesendoderm progeni-
tors, is differentially dependent on Pou5f3 knockdown: it is
downregulated upon knockdown of all Pou5f3 proteins
(PVD2 in the article) [13] while upregulated during gastrula-
tion upon Pou5f3.1 knockdown [12,13]. It was also shown
that Pou5f3s could act as a repressor of Nodal/TGF-beta sig-
nalling by direct DNA binding of Foxh1 targets. Pou5f3
binding motifs were found in Foxh1 ChIP-seq data, and
Pou5f3 knockdown led to upregulation of Gsc and Nodal2,
both controlled by Foxh1 [83]. Interestingly, mouse Oct4
behaves like its Xenopus orthologues, as its overexpression
also leads to inhibition of mesendoderm differentiation in
Xenopus [78]. Also, Xenopus Pou5f3.1 can rescue Oct4-deficient
mouse ESC self-renewal [11] andmouse Oct4 can substitute for
Pou5f3 in zebrafish development [84]. Therefore, one could
conclude that POUV proteins have not undergone any princi-
pal structural changes throughout vertebrate evolution
but acquired their functions according to the species-specific
developmental context. Due to the differential regulatory
environment, POUV protein functions may have different
effects. For example, in zebrafish, POUV induces endoderm
formation and in mammals, it induces primitive endo-
derm formation, whereas in Xenopus, POUV suppresses
mesendoderm formation (figure 2). At the same time, the
abovementioned functions in inhibition of mesendoderm
formation and posterior neural tissue formation confirm a
role for POUV in prevention of premature differentiation.

In addition to the described functions of Pou5f3 proteins
during neuroectoderm and mesendoderm specification, these
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proteins play an important function in embryo integrity [13].
Livigni et al. compared conserved POUV targets in Xenopus,
mouse and human, and revealed that evolutionarily
conserved genomic targets are related to cell adhesion.
Improved knockdown of all Pou5f3 mRNAs in this work
led to complete embryo disaggregation at the neurula stage,
while injection of Pou5f3.1, Pou5f3.2, or mouse Oct4 mRNA
rescued this phenotype. Those authors considered the follow-
ing: (1) conserved POUV genome targets are associated with
cell adhesion; (2) E-cadherin overexpression partially rescues
Pou5f3 (PVD2) knockdown in Xenopus and blocks differen-
tiation of mouse ESCs in the absence of the Oct4; and
(3) Pou5f3.1 and Pou5f3.2 could rescue the self-renewal of
mESCs at least partially by maintaining E-cadherin
expression. The authors thus speculated that an ancient role
of POUV-class proteins is to block delamination itself
and to support an undifferentiated state via ‘uncommitted
ectodermal epithelium’ [13].
20065
4. Biological functions of the POUV
proteins in amniotes

Amniotes are characterized by the presence of amnion during
embryogenesis. Amnion is a liquid-filled structure that
allows the embryo to develop in an out-of-water environ-
ment. These taxa include reptiles, birds and mammals.
Unfortunately, there are just a few pieces of information
about POUV proteins in non-mammalian amniotes [85].
It is known that (1) both Pou5f1 and Pou5f3 are present in tur-
tles, (2) only Pou5f1 is present in snakes and lizards, and
(3) only Pou5f3 is present in crocodiles and birds (figure 1).
Pou5f1 expression was observed in the posterior segment of
the snake embryo, suggesting that Pou5f1 participates in
trunk elongation during snake development [86]. Early mam-
mals such as monotremes and marsupials have both Pou5f1
and Pou5f3. Other mammals harbour Pou5f1 (Oct4) while
some (rodents and primates) also have the relatively newly
emerged Pou5f2, which is expressed in male germ cells
[7,22,87]. Chicken Pou5f3, like Nanog, is expressed at a high
level in chicken ESCs (cESCs), and, like mouse Oct4, its
expression is downregulated upon retinoic acid treatment
[88]. During early chicken development, Pou5f3 was found
first in the epiblast and, to a limited extent, in hypoblast in
the pre-streak embryo stage; then in the primitive streak, ecto-
derm, and mesoderm during gastrulation; and finally, in the
neural tube, underlying the mesoderm, and in PGCs, but not
in endoderm [89]. This expression pattern of Pou5f3 is more
reminiscent of its orthologues in zebrafish and Xenopus rather
than Pou5f1 expression in mammals, as one would expect.

Unlike the case for zebrafish and Xenopus, POUV research
in mammals is performed by using not only an animal gen-
etics approach but also cultured pluripotent stem cells or
cellular reprogramming into a pluripotent state. Despite the
longstanding comprehensive research on these proteins in
mouse and human, new data continues to emerge and
change our view of POUV functions in these species. While
most studies underlie the function of Oct4 in mammals as a
gatekeeper of the undifferentiated pluripotent state, data on
Oct4 function in early differentiation begins to accumulate.

In mammalian ontogenesis, Oct4 is first detected in
oocytes, and after fertilization, its transcription begins before
the 8-blastomere stage; after trophectoderm segregation, Oct4
is detected in the inner cell mass (ICM) at embryonic day 3.5
(E3.5). Oct4 becomes transiently upregulated in the primitive
endoderm (PrE) and is expressed in the pluripotent epiblast
before (E4.5) and after implantation (E5.5-E8.0). During gastru-
lation and with the onset of somitogenesis, Oct4 expression is
downregulated and subsequently becomes restricted to PGCs
(figure 2) [2,90–92]. Oct4 is downregulated during spermato-
genesis, but spermatogonial stem cells remain positive for
Oct4. Oct4 is not detected at the early stages of oogenesis but
is re-expressed during the growth phase of primary oocytes
and is present until fertilization [93–95]. Oct4 is a key marker
of cultured pluripotent stem cells, with two major stem cell
types identified: the classic so-called ‘naive’ cells, which are
ESCs that correspond to and could be obtained from the epi-
blast before implantation [15,16,96,97]; and the ‘primed’
epiblast stem cells (EpiSCs), which correspond to the epiblast
after implantation [98,99]. In the past few years, an intermedi-
ate ‘formative’pluripotent stem cell type,which corresponds to
E5.5 epiblast and to cultured epiblast-like stem cells (EpiLCs),
was identified and shown to have an ability to differentiate
into germ cells [100–103]. Loss of pluripotency correlates
with Oct4 downregulation in epiblast and thus, EpiSCs could
be obtained up to E8.0 [92]. ESCs and EpiLCs/EpiSCs
differ from each other by the presence of specific markers,
signalling and culture conditions [102,104]. While ESCs
are mainly dependent on leukaemia inhibitory factor
(LIF), EpiLCs/EpiSCs require bFGF/Activin for self-
renewal [98,99,105]. The Pou5f1 gene is subject to complex
transcriptional regulation: it has three key regulatory
elements—the distal enhancer (approx. 2 kb 50 from TSS),
the proximal enhancer (approx. 1 kb 50 from TSS), and the
proximal promoter—targets of a variety of transcriptional reg-
ulators [2,90,106–108]. The distal enhancer is active in the
pluripotent epiblast of preimplantation embryos and, as
expected, in its cultured counterparts, ESCs, while the proxi-
mal enhancer is active in the epiblast of post-implantation
embryos and the cells derived thereof, EpiSCs [109]. An
additional enhancer element, which is located within the first
intron of POU5F1 gene, was found to be active in naive
human ESCs. This enhancer is conserved across placental
animals but it is not active in mouse ESCs [110].

4.1. Oct4 functions in mammals before implantation
Early functional studies pointed to an Oct4 role as an antagon-
ist to Cdx2 during morula separation into ICM (Oct4+) and
trophectoderm (TE, Cdx2+) [4,17,111]. Nichols et al. showed
that while Oct4-null blastocysts were initially established,
they gave rise to only trophoblast giant cells in outgrowth
experiments and no implanted mutant embryos were found
at E5.5 [17]. A further study by Niwa et al. with a regulatable
Oct4 transgene system showed that less than two-fold down-
regulation of Oct4 in ESCs led to ESC differentiation into
trophoblast, while comparable Oct4 upregulation drove ESC
differentiation into primitive endoderm (PrE) and mesoderm
[4]. This study pointed to Oct4 roles in differentiation to both
extraembryonic cell types—TE and PrE—via unknown mech-
anisms. Another work with Oct4 knockdown in ESCs
showed upregulation of Cdx2, Hand1, Eomes and Mash2
mRNAs [112]. Further research revealed an important role
for Cdx2 in trophoblast stem cell specification and mainten-
ance, while Oct4 downregulation induced trophoblast
differentiation normally in Cdx2-null cells [111,113]. However,
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more recent in vitro and in vivo studies brought to light an
alternative view of the role of Oct4 levels in lineage choice.
It was clearly shown that in ESCs, Oct4 level could be reduced
two-fold [114], and even seven-fold, resulting in the emergence
of a robust naive pluripotent state [5]. Those cells with
constitutively low Oct4 level could be maintained in both
defined N2B27 and serum-containing media without LIF and
additional inhibitors. The authors also showed that Oct4 over-
expression resulted in differentiation of ESCs into all three
embryonic lineages [5]. Nonetheless, elimination of Oct4 in
ESCs led to loss of pluripotency—first, ‘naive’ markers were
downregulated, then, trophectodermal genes were upregu-
lated [115]. Interestingly, at early timepoints after rapid Oct4
depletion via an auxin-inducible degron approach, Nanog
binding to its genomic targets was enhanced, within both
Oct4-occupied and Oct4-free regions, ruling out the possibility
of physical competition between Oct4 and Nanog [115]. The
derivation of maternal and zygotic Oct4-knockout mouse
embryos surprisingly revealed that TE-ICM segregation and
epiblast specification proceeded normally without Oct4; how-
ever, PrE formation was abolished [116–118]. These studies
showed several interesting facts. First, the formation of
Nanog-positive pluripotent epiblast is not affected, and at
E3.0-E4.0 stage, the average number of outside and inside
cells is similar between wild-type and Oct4-null embryos.
Second, Cdx2 mRNA level is elevated as early as E4.5 in
Oct4-knockout embryos, pointing to the notion that reciprocal
interaction between Oct4 and Cdx2 is needed for the mainten-
ance rather than the establishment of the ICM and TE. Third,
initial PrE marker Gata6 expression is not affected; however,
further Sox17 and Gata4 activation with subsequent PrEmatu-
ration is not observed in Oct4 mutants. Finally, a recent study
by Stirparo et al. showed that in Oct4-deficient ICM of an
early blastocyst (E3.5), the TE markers Gata2, Gata3, Eomes,
but not Cdx2, are upregulated [119]. Moreover, the authors
pointed to failure of activation of both epiblast- and PrE-
specific genes in late blastocyst (E4.5), decline in P-STAT3
level and glycolytic gene activity, and upregulation of genes
associated with autophagy and lysosomes, which is most
likely a response of energy-insufficient metabolism [119]. Of
note, in line with the results of Livigni et al. on the conserved
role of POUV proteins in cell adhesion [13], an enrichment in
modulated genes associated with cell adhesion and tight junc-
tion formation was observed in mutant E4.5 blastocysts [119].
Considering that Pou5f3 is important for zebrafish endoderm
development but is indispensable for Oct4-deficient mESC
maintenance, it would be interesting to investigate whether
zebrafish Pou5f3 could rescue PrEmaturation in Oct4-deficient
mouse embryos.

Initial work by Niwa et al. [4] showed another interesting
feature: artificial expression of Oct4 to wild-type level in
ESCs, together with LIF withdrawal, led to differentiation of
ESCs into PrE, as did Oct4 overexpression in the presence of
LIF [4]. LIF is amember of the IL-6 family of cytokines. Its bind-
ing to its target receptor promotes STAT3 phosphorylation,
which in turn regulates Oct4 expression through the occu-
pation of the Pou5f1 distal enhancer [105,120]. The data by
Niwa et al. suggest that LIF/p-STAT3 are needed to
not only activate Oct4 transcription but also provide a regu-
latory context supportive of Oct4’s role as a pluripotency
gatekeeper rather than a lineage specifier. Oct4 dimerizes
with Sox2, but Oct4 can also dimerize with Sox17 on the
so-called compressed motifs near PrE genes [121,122]. Oct4
dephosphorylation at T343 amino acid leads to a shift in
Oct4 dimerization preference, from Oct4-Sox2 dimers to
Oct4-Sox17 dimers [123]. Thus, one can hypothesize that,
directly or indirectly, LIF/p-STAT3 signalling modulates
Oct4 activity, for example, by phosphorylation to favour
Oct4 interaction with Sox2 instead of Sox17. The model can
explain, for example, the robust pluripotent state of ESCs
with low Oct4 level [5,114]—the decrease of the total
amount of Oct4 protein may shift the equilibrium toward
the phosphorylated form. However, this idea is not sup-
ported by the observation that ESCs can be maintained
with seven-fold downregulated Oct4 level, even without
LIF [5]. On the other hand, the ‘LIF/p-STAT3 context’
hypothesis agrees with another recent study from the same
research group [124]. Following the generation of mouse chi-
meras by introducing ESCs with constitutive Oct4 expression,
the authors could successfully obtain Oct4-expressing MEFs.
These cells could be reprogrammed into iPSCs simply by
addition of LIF and simultaneous transfection with IL6 and
IL6 receptor-encoding constructs—i.e. by LIF/p-STAT3 path-
way activation [124]. Interestingly, while STAT3-knockout
embryos at E3.5 demonstrate normal morphology, as well
as normal Cdx2, Oct4, and Nanog expression, those at E4.5
consist almost entirely of Cdx2-positive (but Oct4- and
Nanog-negative cells) and very few Gata6-positive cells
[120]. Of note, it appears that p-STAT3 and Oct4 regulation
is consistent with the previously discussed work showing
that p-STAT3 level declines in response to Oct4 knockdown
in the mouse blastocyst [119]. The role of Oct4 in PrE devel-
opment is also related to Fgf4 activation. Oct4 plus Sox2
together occupy the Fgf4 enhancer and drive Fgf4 transcrip-
tion [125]. Secreted by pluripotent epiblast, Fgf4 binds to
the Fgf receptors Fgfr1 and Fgfr2, thereby activating the
MAPK/ERK-signalling pathway and driving the PrE differ-
entiation programme [126,127]. Inhibition of the FGF
pathway leads to the conversion of all ICM cells into
Nanog-positive epiblast cells at E4.5 [128], while addition of
exogenous Fgf4 induces the conversion of ICM cells into
Gata6-positive PrE cells [129].

Though the role of the Oct4 in pre-implantation develop-
ment is well studied in mouse, some differences in Oct4
function are seen across other placental animals. During
bovine and human Oct4-null blastocyst development, ICM-
TE segregation was found to occur as in mouse but without
Nanog activation [130]. It was also shown that Oct4 knockout
leads to some difficulties in expansion of human blastocyst:
47% (8 of 17) of control Cas9-injected embryos developed
to the blastocyst stage, whereas 19% (7 of 37) of Oct4-tar-
geted-Cas9 embryos matured to this state [131]. There are
also significant differences in the role of FGF during epi-
blast–PrE segregation. While activation or inhibition of the
FGF pathway in mouse is critical for PrE or epiblast establish-
ment, respectively, it has little role in bovine and no role in
human pre-implantation development [132,133].

4.2. Oct4 functions in mammals after implantation
There is also substantial evidence about the importance of
Oct4 in cell differentiation within the embryo proper. Based
on zebrafish and Xenopus Pou5f3 studies and a one report
showing that under serum-free conditions, Oct4 upregulation
leads to ESC differentiation into neuroectoderm, it is possi-
ble that Oct4 plays a similar role in the neuroectoderm
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development of mammals [134]. However, most studies point
to a key role of Oct4 in mesendoderm specification. Upregu-
lation of Oct4 via transgenesis or by TGF-beta induction
triggered differentiation toward the cardiac lineage [135].
While Sox2 and Oct4 cooperate to maintain the pluripotent
state in ESCs, they act oppositely during ESC differentiation
into neuroectoderm (NE) and mesendoderm (ME), respect-
ively. At initial steps of specification of both mouse and
human ESCs, Sox2 and Oct4 levels are strongly predictive
of subsequent ME and NE fate—i.e. before the expression
of corresponding markers [136,137]. During differentiation
of mouse ESCs, Oct4 suppresses the NE state and does not
colocalize with Sox1, while Sox2 antagonizes ME (Brachy-
ury+) specification. It was also shown that ME specification
is driven by Nac1 in cooperation with Oct4 and that NE
specification is driven by Tcf3 and Sox2, as Nac1 and Tcf3
downregulation compromised the corresponding differen-
tiation [138]. In human ESCs, robust Oct4 expression, in
cooperation with BMP signalling, led to ME specification,
while Oct4 knockdown, along with BMP repression, pro-
moted the NE state [139]. Using mouse primed EpiSCs, Yu
et al. demonstrated that inhibition of FGF signalling leads to
Oct4 downregulation, abrogation of ME markers, and sub-
sequent NE differentiation by a default mechanism that
does not require additional factors in the media [140].

These results, along with the observation that the ME
factor Gata3 can substitute for Oct4 in Yamanaka’s cocktail
for fibroblast reprogramming toward iPSCs, suggest that
pluripotency may be maintained by antagonism of NE and
ME specifiers [141,142]. Shu et al. proposed a ‘seesaw’
model that postulates that a delicate balance between Oct4
and Sox2 levels prevents differentiation into NE or ME
[141]. However, this hypothesis was refuted by several
facts, as discussed in a recent work by Velychko et al. [143].
First, forced expression of Oct4 could rescue the pluripotent
state in Sox2-knockout ESCs [144]. Second, Velychko and col-
leagues showed that only KSM—that is, the reprogramming
cocktail without Oct4—could reprogram fibroblasts into
iPSCs, and that Oct4 and Gata3 work primarily to enhance
proliferation during reprogramming [143]. Finally, to the
best of our knowledge, there were no successful attempts to
obtain stable ESC lines with substitution of Oct4 and Sox2
by ME and NE factors, for example, by Brachyury and
Sox1, respectively.

An interesting difference is observed in Oct4 partner
choice during PGC maturation in mouse and human. Sox2
is expressed throughout the establishment of murine PGCs
[100], whereas Sox17 substitute for Sox2 in human PGCs
[145]. As it was pointed above, the Sox17-Oct4 complex
occupies compressed motifs, which are 1 bp shorter that the
canonical Sox2-Oct4 motif [121]. Analyses of open chromatin
during hPGC maturation have revealed the compressed
Sox-Oct motif occurs across active DNA elements [146,147].
As Sox17 is associated with endoderm specification, the
rationale for Oct4 partner switching from Sox2 to Sox17 in
human PGC development remains unclear. This may have
to do with differences in the mechanism of germ cell differen-
tiation between mouse and human. While mouse germ cells
are induced from the murine primed EpiLCs, human ESCs
are supposed to go through the so-called pre-mesendoderm
condition [148].

Although in vitro works usually point to rather definite
roles for Oct4 in the specification of one or another cell type
of the embryo proper, in vivo data are more comprehensive.
Depletion of Oct4 in PGCs by Cre/loxP gene targeting
led to apoptosis of these cells between E9.5 and E10.5,
pointing to a specific Oct4 role in PGC viability and matu-
ration [94]. Further development of germ cells differentially
requires Oct4 expression. Spermatogonial stem cells depend
on Oct4 for their self-renewal, and Oct4 knockdown
leads to a reduced ability to colonize the seminiferous tubules
[149]. ZP3-dependent Oct4 depletion in growing oocytes
do not affect oocyte maturation and embryogenesis
immediately after fertilization (discussed above) [116]. In
other works, DeVeale et al. and Mulas et al. used conditional
systems that allowed them to knock out Oct4 after embryo
implantation and thus, to dissect Oct4 function in the
early gastrulating embryo [19,150]. Oct4 depletion from
approximately E7.0 onward led to multiple defects—
craniorachischisis, posterior truncation, random heart tube
orientation, defective somitogenesis and failed anterior–
posterior orientation. Mulas et al. demonstrated that in
Oct4-null epiblasts, Nanog expression was elevated and
endoderm was expanded at the expense of mesoderm [150].
An interesting observation of this work is that beating
structures were successfully obtained from Oct4-depleted
embryos, pointing to a successfully launched mesendoderm
programme and, again, contradicting the view that Oct4 is
a factor indispensable for differentiation into ME. However,
the epithelial-to-mesenchymal transition was impaired due
to E-cadherin upregulation and overall, the anterior-posterior
axis was abnormal. DeVeale et al. also pointed to an Oct4
role in primitive streak (mesendoderm) proliferation and
suggested a conserved Oct4 function in posterior extension,
consistent with the observed posterior truncations in both
zebrafish and Xenopus POUV mutants [11,18,65]. The data
is also in accordance with the demonstrated Oct4 role in regu-
lation of the trunk length in snakes and mice. While
prolonged Oct4 expression in mice (via Cdx2 enhancer-
driven posterior expression up to E12.5) led to an abnormal
increase in number of ribs, exceptionally long snake trunks
might be a result of heterochronic changes in Oct4 activity
during body axis extension [86].

Finally, a very recent study revealed that Oct4 is reacti-
vated in premigratory cranial neural crest cells (CNCCs) at
early somitogenesis (E8.0), endowing CNCCs with the pluri-
potent state [151]. CNCCs present a specific population of
cells with ectodermal origin and are responsible for craniofa-
cial skeleton development—not only neurons and glia but
also bone, cartilage, and muscles. In their study, Zalc et al.
demonstrated that Oct4 ablation at E7.5 leads to complete
absence of the front nasal mass. The pluripotent state was
confirmed by the observation that in the absence of Oct4,
neural derivatives of CNCCs developed normally, while
ectomesenchyme maturation was affected. Furthermore,
ATAC-seq of Oct4-positive CNCCs revealed that these cells
clustered with EpiSCs, while the Oct4-positive trunk cells,
which were also present during early somitogenesis, did
not [151]. Notably, artificially maintained constitutive Oct4
levels do not prevent any type of differentiation during chi-
mera formation up to E12.5 of mouse development [5,124].
Overall, as we discussed earlier with an example of LIF/
p-STAT3 signalling, it appears that Oct4 is a context-
dependent transcription factor. In some cases, it safeguards
pluripotency, while in other cases, it maintains proliferation
or at least does not prevent differentiation.
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There were numerous reports about Oct4 expression in
different somatic cells of the adult organism, prompting
Lengner et al. [152], using a Cre/lox-based genetic approach,
to examine the role of Oct4. The authors found that Oct4 does
not play a role in the compartments of several somatic tissues,
such as intestinal epithelium, bone marrow (haematopoietic
and mesenchymal lineages), hair follicle, brain and liver
[152]. The investigation appeared to settle the debate about
whether Oct4 functions outside of the mammalian germline
(epiblast and PGCs); however, a recent study again sparked
the debate. In that study, investigators relied on a similar
Cre/lox-based genetic approach and the same Oct4flox

mouse line and demonstrated that Oct4 is induced in
mouse atherosclerotic lesions. Oct4 expression was observed
in smooth muscle cells (SMCs) and thought to promote a
specific atheroprotective SMC phenotype switch involved in
the formation of a protective fibrous cap. SMC-specific
depletion of Oct4 led to an increase in the size of atherosclero-
tic lesions and, consequently, in reduced lumen size,
increased necrotic core area, and increased intraplaque haem-
orrhage [153]. It might be that under specific pathological
conditions, adult somatic cells can engage Oct4 function,
and the reported case with atherosclerotic SMCs might not
be unique in that respect.
5. Conclusion
Despite the huge amount of data about POUV-class proteins,
there are still a lot of questions about their origin and mechan-
isms of their action. Absence of any POUV member in
lampreys complicates our understanding about the emergence
of this class. Considering the similar early development of lam-
prey and zebrafish, and the early lethal phenotype of zebrafish
with Pou5f3 knockout, it is unclear how lampreys develop
without POUV. Future works should look to uncover whether
there are some alternative regulatory mechanisms that enable
normal development in the absence of POUV or that other
proteins present in these organisms control the same processes.

It appears that the main function of the POUV-class pro-
teins is maintenance of the undifferentiated state through
activation of their genome targets. Though there was some
evidence about their role in transcriptional repression, it
was also shown that specific protein fusion making only
the active form of Xenopus Pou5f3 or mouse Oct4 is sufficient
for performing the whole range of functions [154]. The invol-
vement of POUV proteins in different processes enables
maintenance of the undifferentiated state. During Xenopus
neuroectoderm development, Pou5f3 function is related to
the maintenance of neural progenitors [14] and prevention
of ectodermal differentiation [79]. The conservative role of
POUV in posterior extension [11,18,19] also indicates that
proteins of this class prevent immature differentiation, delay-
ing the onset of further body patterning, for example, by
prevention of Hox genes activation [86]. Finally, as the most
notable member of the POUV class, Oct4 functions in main-
tenance and induction of the undifferentiated state, thus
being a key determinant of mammalian pluripotent stem
cells [3,17,155,156].

The facts indicate that the mechanisms of POUV-class
protein functioning are species and stage dependent. As we
have previously discussed [8], these proteins are inextricably
linked to zygotic genome activation in zebrafish and Xenopus,
and, to a limited extent, in mammals. The ability of murine
Oct4 to rescue Pou5f3-deficient zebrafish in early develop-
ment [84] or Xenopus Pou5f3 to substitute for Oct4 in
mouse ESCs [11] indicates that POUV class homologues did
not undergo significant structural changes. At the same
time, Pou5f3 from zebrafish could not rescue the pluripotent
properties of murine ESCs [11]. Moreover, while Pou5f3 is
needed for endoderm establishment in zebrafish [26,65],
Pou5f3 orthologues suppress mesendoderm maturation in
Xenopus [11,27]. Additionally, POUV could exert a different
function in the same species depending on the developmen-
tal stage. A striking example of context-dependent activity is
the behaviour of murine Oct4 during embryogenesis. While
murine Oct4 maintains the pluripotency of the epiblast
[17,119] and induces this cell state in CNCCs [151], when
introduced artificially, it does not prevent any type of differ-
entiation at subsequent development up to E12.5 [124].
Moreover, when Oct4-expressing MEFs were isolated at this
stage, they were successfully reprogrammed into iPSCs
only via LIF/p-STAT3 pathway activation. It appears that to
arrive at a better understanding of the POUV-class protein
function, one should take into consideration their functional
amino acids and the regulatory environment engaged
depending on the developmental stage.

We have also previously discussed that the functional
novelty of the POUV class is the ability to dimerize in vivo
with proteins of the SoxB class. This property was immedi-
ately linked to participation of POUV members in ZGA
(figure 3) [75,76]. It is most likely that POUV-class proteins
have emerged from some of the POUIII-class proteins,
which are known to be regulators of neuroectodermal devel-
opment. Taking this into account, it appears that the function
of zebrafish and Xenopus Pou5f3 in neurogenesis is an evol-
utionary inherited feature. The Pou5f1 orthologue (Oct4),
which is present in mammals, has probably lost this feature,
as it acts primarily in pluripotency control [5] and mesendo-
derm development [137,150]. Nevertheless, murine ESCs,
which harbour only this Pou5f1 orthologue, are characterized
by epithelial morphology, E-cadherin expression, and the
default capacity for neuroectodermal differentiation [157].
These features, along with the ancient role of POUV-class
proteins in preventing differentiation by securing uncom-
mitted ectodermal epithelium [13], point to a close link
between ectoderm and cells expressing POUV, enhancing
our understanding of the nature of cellular pluripotency.
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Abbreviations
royalsoc
POU
ietypublish
name of transcription factor class, which name is
originated by first letters of the names of the found-
ing members of the family—mammalian Pit1, Oct1,
Oct2, and C. elegans Unc86
ing
ZGA
 zygotic genome activation
.org
POUs
 POU-specific subdomain
/jo
POUh
 POU-homeodomain
 urna
WGD
 whole-genome duplication
l/rs
PGCs
 primordial germ cells
ob
MHB
 midbrain hindbrain boundary
O
MZspg
pen
maternally and zygotically knocked-out Pou5f3
(abbreviation for studies with zebrafish)
PVD2
 ‘POUV-depleted 2’, designation of the morpholino
antisense oligos combination for POUV-proteins
knockdown in Xenopus [13]
ICM
 inner cell mass

PrE
 primitive endoderm

TE
 trophectodem

ESCs
 embryonic stem cells

EpiSCs
 epiblast stem cells

EpiLCs
 epiblast-like stem cells

LIF
 leukaemia inhibitory factor

NE
 neuroectoderm

ME
 mesendoderm

CNCCs
 cranial neural crest cells
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