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Background. Avian and swine influenza viruses circulate worldwide and pose threats to both animal and human health. The 
design of global surveillance strategies is hindered by information gaps on the geospatial variation in virus emergence potential and 
existing surveillance efforts.

Methods. We developed a spatial framework to quantify the geographic variation in outbreak emergence potential based on 
indices of potential for animal-to-human and secondary human-to-human transmission. We then compared our resultant raster 
model of variation in emergence potential with the global distribution of recent surveillance efforts from 359 105 reports of surveil-
lance activities.

Results. Our framework identified regions of Southeast Asia, Eastern Europe, Central America, and sub-Saharan Africa with 
high potential for influenza virus spillover. In the last 15 years, however, we found that 78.43% and 49.01% of high-risk areas lacked 
evidence of influenza virus surveillance in swine and domestic poultry, respectively.

Conclusions. Our work highlights priority areas where improved surveillance and outbreak mitigation could enhance pandemic 
preparedness strategies.
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In the last century, only 4 influenza virus subtypes have spread 
from animals to humans resulting in pandemics; however, 
these viruses represent a small fraction of the influenza virus 
subtypes circulating in nature [1, 2]. Animal influenza viruses 
vary in their likelihood of causing a pandemic, but their vast 
diversity makes the systematic assessment of the risks posed 
by each virus subtype logistically infeasible. Current pandemic 
influenza risk assessments largely focus on viruses with a prior 
history of animal-to-human transmission under the assump-
tion that they pose a greater threat to human health (eg, A/
H5N1 and A/H7N9). However, this intuitive assumption has 
little empirical support [3].

Surveillance is vital for the early detection of disease threats 
and the development of more efficient influenza pandemic miti-
gation strategies [4]. Information on the geographic variation of 
influenza virus emergence risk and/or spillover, framed within 

concurrent surveillance efforts, is essential for the design of 
future influenza surveillance and pandemic mitigation strate-
gies. However, to date, there is no centralized global data repos-
itory on animal influenza surveillance. Institutions such as the 
World Organisation for Animal Health (OIE) have turned to 
voluntary surveys of veterinary health officers to estimate lev-
els of surveillance in different parts of the world [5]. Existing 
surveillance efforts vary considerably by host and geographic 
region, largely in response to prior threats, with only a fraction 
of the gathered information entering the public domain [3, 
5–7]. Furthermore, surveillance in domestic livestock is largely 
focused on the safeguarding of animal health with regards to 
its impact on international trade [5], and therefore it does not 
capture the extent of all animal viruses circulating globally. 
In poultry, surveillance activities prioritize highly pathogenic 
avian influenza (HPAI) viruses H5 and H7 subtypes, which 
require OIE notification, because of their potential for high 
pathogenicity [8]. Non-H5/H7 influenza A  viruses (ie, H1–4, 
H6, and H8–16) do not require formal reporting [9], allowing a 
variety of animal viruses to circulate globally unmonitored [10].

The systematic integration of known factors of animal influ-
enza transmission can be used to develop zoonotic risk profiles, 
providing surveillance targets and situational awareness of con-
ditions that may be indicative of outbreak emergence potential 
[11, 12]. This approach could alert public health officials of 
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elevated risk conditions and trigger targeted interventions and 
surveillance activities [11]. The ecological factors associated 
with the animal-to-human spillover of influenza viruses are 
subject of debate; most studies aimed at quantifying these fac-
tors have focused solely on HPAI viruses within a limited geo-
graphic extent [13–15]. Nevertheless, certain factors have been 
consistently associated with HPAI risk in domestic poultry [14, 
16], including the presence of domestic livestock populations 
[17, 18], lower altitudes [15, 16], proximity to bodies of water 
[14], and travel accessibility [19].

In this study, we used evidence from previous studies [14–19] 
to develop a spatial framework utilizing a factor-based approach 
to quantify the geographic variation of animal influenza out-
break emergence potential (OEP) on a global scale. We built an 
OEP metric to identify geographic areas with increased poten-
tial for animal-to-human virus spillover and onward trans-
mission. We compared the resultant risk profiles with a global 
index of surveillance activities for domestic poultry and swine 
between 2000 and 2014. The combination of spatially explicit 
metrics and surveillance data highlighted potentially important 
gaps in recent surveillance activities.

METHODS

Ecological Vulnerability

The OEP metric was based on the arithmetic mean of 2 equally 
weighted indices: (1) the ecological vulnerability index (EVI), 
representing the potential for animal-to-human transmission 
and (2) the onward transmission index (OTI), representing 
the potential for secondary human-to-human transmission. 
Different EVIs were calculated for domestic poultry and swine. 
For domestic poultry, the EVI incorporated 5 equally weighted 
indicators previously linked with avian-to-human influenza 
virus transmission: magnitude of co-occurrence of human and 
chicken populations, altitude, distance-to-water, and global 
distributions of extensively and intensively farmed chickens 
[16, 20]. Chickens were used as a proxy for domestic poultry 
because they were the only poultry group with available global 
distribution data. For swine, the EVI incorporated 5 equally 
weighted factors: magnitude of co-occurrence of human and 
swine populations, altitude, and global distributions of exten-
sively, and intensively and semi-intensively farmed pigs [21].

Layers representing the magnitude of human and animal 
population co-occurrence were used to capture the density and 
spatial extent where both human and animals were present and 
where animal-to-human transmission could occur. Global lay-
ers of farming activities by management type were used because 
they represent contact points for increased animal-to-human 
transmission [22]. Distance-to-water was included in the avi-
an-to-human transmission metric because it represents a proxy 
for potential interactions between wild birds and domestic 
poultry near open bodies of water [14, 23]. Altitude has been 
identified as a significant risk predictor [15, 16] and a surrogate 

indicator of other variables (eg, slope, land cover type). Other 
known factors associated with animal-to-human transmission 
(eg, live bird markets [24] and agricultural fairs [25]) were 
excluded because global distribution data were unavailable. 
In addition, climatic factors were omitted because their effects 
vary by region throughout the globe [16].

We compiled a human population density dataset using the 
Gridded Population of the World, version 4 (http://sedac.ciesin.
columbia.edu/data/set/gpw-v4-population-density). Chicken 
and swine population density datasets, together with global 
distribution of extensive, intensive, and semi-intensive farm-
ing systems, were sourced from Livestock Geo-Wiki [26, 27]. 
Altitude data were gathered from WorldClim, version 1 [28], 
and a distance-to-water dataset was obtained as previously 
described [29].

Onward Transmission

Our OTI incorporated 5 equally weighted indicators promoting 
secondary human-to-human transmission: human population 
density, travel accessibility (a measure of travel time to major 
cities, see [30]), national gross domestic product (GDP) per 
capita, national healthcare expenditure per capita, and national 
human seasonal influenza surveillance data (calculated from the 
mean number of samples submitted per country to the World 
Health Organization’s FluNET database [www.who.int/flunet/] 
from 2011 to 2015, divided by the country’s human population 
density). Datasets of national GDP and healthcare expend-
iture per capita were obtained from the International Monetary 
Fund (http://www.imf.org/external/pubs/ft/weo/2016/01/
weodata/index.aspx) and INFORM (http://www.inform-in-
dex.org/Results-and-data/INFORM-2015-Results-and-data), 
respectively.

Outbreak Emergence Potential Metric

Global datasets for each of the factors described above were 
imported into ArcGIS, version 10.2 (ESRI Inc., Redlands, CA) 
and converted into raster format for preprocessing and data 
management. All factors were assembled at a spatial resolution 
of 0.08333 decimal degrees (approximately 10 km2 at the equa-
tor) and resampled as necessary using bilinear interpolation 
corresponding to the coarsest resolution of input available for 
analysis. All datasets (except human seasonal influenza surveil-
lance) were log10(x  +  1) transformed to approximate normal 
distributions to reduce the skewness of indicator data and to 
maintain the proportion of difference in the indicators’ real val-
ues [31]. A Box-Cox transformation was applied to the human 
seasonal influenza surveillance dataset because its distribution 
was strongly zero-inflated. A lambda value of 0.2906 was used to 
transform the human seasonal surveillance data into an approxi-
mate normal distribution using the “forecast” package in R.

The development of EVI and OTI required the rescaling of 
raw indicator data values [32]. Minimum-maximum normal-
ization was applied to each indicator to preserve the rescaling 
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factor and exclude the distortion effect caused by outliers within 
the dataset. All indicator raster layers were transformed to val-
ues between 0.0 and 10.0, where higher values corresponded 
to increased risk. Any indicator factor that negatively con-
tributed to the development of either index was inversely 
rescaled (eg, low altitude was associated with increased risk). 
Uniqueness among factors within each composite index was 
identified by both correlation and principal component anal-
ysis, and redundant factors (ie, national GDP) were removed. 
Two separate EVIs were developed for domestic poultry and 
swine by calculating the arithmetic mean of all variables associ-
ated with animal-to-human transmission. We calculated a sin-
gle OTI by using the arithmetic mean of all factors associated 
with increased human-to-human transmission. Two separate 
OEP metrics were developed for domestic poultry and swine 
by calculating the arithmetic mean of their respective EVI and 
the OTI. Each factor was equally weighted because the trade-
offs between indicator dimensions were unknown and the 
assignment of differential weights could not be justified (see 
Supplementary Data 1 for details).

Ecological Vulnerability Index Validation

Human infections with swine- and avian-derived influ-
enza viruses between January 2000 and December 2014 were 
extracted from the Food and Agricultural Organization (FAO) 
EMPRES-i Global Animal Disease Information System data-
base (http://empres-i.fao.org/eipws3g/). To identify additional 
records, we performed a systematic analysis of all influenza 
virus hemagglutinin sequences available in the Global Initiative 
on Sharing All Influenza Data (GISAID) platform (platform.
gisaid.org) designated as being of human origin. For each 
sequence, we collected the top 50 search hits that included a 
year stamp before the query sample year and performed a sim-
ilarity analysis against all virus sequences regardless of host 
species origin. For each query, we parsed the host information 
from these top 50 hits and classified the virus to be of recent 
zoonotic origin if the closest search hits were from animal 
hosts [33]. In total, our validation dataset contained 742 human 
infections of avian origin and 273 human infections of swine 
origin with location information to the state/province level. 
There were >1000 other documented cases of human infections 
with animal influenza viruses, but these only contained coun-
try-level location data and were thus excluded (for full details, 
see Supplementary Data 1).

To investigate the robustness of the EVI, we compared the 
distribution of reported human infections with avian or swine 
influenza viruses against estimated maximum EVI scores at the 
state/province level, because the travel history of most human 
cases was unknown. In contrast, the OEP metric could not be 
validated because comprehensive data on sustained secondary 
human-to-human transmission of influenza virus spillover 
events were unavailable.

Global Surveillance Metric

We compiled a database of 359 105 reported animal influenza 
surveillance activities from January 2000 to December 2014, 
incorporating viral genetic sequences, records of influenza-posi-
tive animals, and data from documented surveillance programs. 
Animal influenza sequences were obtained from GISAID. 
Records of influenza-positive animals were derived from the FAO 
EMPRES-i database. Data from surveillance studies on avian and 
nonhuman mammalian species were acquired from the Influenza 
Research Database (www.fludb.org). We performed 2 systematic 
literature reviews, screening 10 327 published studies indexed in 
PubMed and following recognized guidelines [34], for both poul-
try and swine influenza virus surveillance (see Supplementary 
Data 2). To identify national surveillance initiatives that may not 
have shared their findings through any of the above mechanisms, 
we performed a supplemental web search for information from 
national registrars and reports.

We collated and georeferenced all records to the finest level of 
spatial resolution available (ie, points for exact locations and pol-
ygons for administrative units). Administrative boundaries were 
obtained from the FAO in the form of Global Administrative 
Unit Layers (GAUL), where GAUL_0 indicates national 
boundaries, GAUL_1 indicates state/province boundaries, and 
GAUL_2 indicates county/district boundaries [35]. For viral 
sequences from GISAID, information from the sequence name 
itself often added geographic details beyond the accompanying 
sequence metadata, which were used to improve georeferenc-
ing. The resulting database was used to develop the surveillance 
metric by assigning a score of 1 for each calendar year in which 
evidence for any surveillance activity was reported for each geo-
graphic area. Scores for the surveillance metric ranged from 0 
(no surveillance) to 15 (surveillance for every year from 2000 
to 2014). Years of surveillance did not need to be consecutive, 
and all records were treated equally to reduce inherent reporting 
biases due to surveillance activities not producing any positive 
reports (eg, a single record of animal influenza from a country 
would receive the same surveillance score as 100 records from 
a different country collected within the same year). Maps were 
produced to illustrate the spatial extent of influenza surveillance 
in domestic poultry and swine at each of the 3 GAUL between 
the January 2000 and December 2014 (see Supplementary Data 
2 for further details on methodologies and databases).

RESULTS

Outbreak Emergence Potential Metric

Mapping of the EVI illustrated areas of potential avian-to-hu-
man influenza virus spillover, with hotspots identified in regions 
of South and Southeast Asia, Eastern Europe, the Southeastern 
United States, Central America, West Africa, the Maghreb, and 
the Nile River Delta. Moreover, considerable foci for potential 
swine-to-human virus spillover events were concentrated in 
Southeast Asia, Eastern Europe, and Central Mexico. Mapping 
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of the OTI displayed areas likely to promote secondary human-
to-human transmission, largely in Central Asia, Eastern Europe, 
and sub-Saharan Africa (Figure 1).

The OEP metric displayed considerable global variation. 
Regions with elevated EVI scores for domestic poultry and/
or swine resulted in both higher and lower OEP scores (eg, 
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Figure 1. Variation in the estimated ecological vulnerability index (EVI) and onward transmission index (OTI) for animal influenza virus transmission. Chicken-to-human EVI 
(A), swine-to-human EVI (B), and secondary human-to-human OTI (C) transmission risk at 10 km2 resolution is displayed on a gradient from blue (ie, low risk) to red (ie, high risk).
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West Africa and the Southeastern United States, respectively) 
due to their OTI ranking. Overall, regions either with (eg, 
Southeast Asia) and without (eg, Eastern Europe and West 
Africa) prior history of human infection outbreaks for avian 
and/or swine influenza viruses were ranked highly in our OEP 
metric (Figure 2).

Ecological Vulnerability Index Validation

Our EVI highlighted substantial geographic variability in the 
potential for influenza virus spillover events from domestic 
poultry and swine populations. We compared the estimated EVI 
at the state/province level to the number of human infections 
with animal influenza viruses from that state/province. For 
human infections with influenza viruses of avian origin, 79.91% 
of the reported cases (593 of 742) came from states/provinces 
with maximum EVI scores ≥8 of 10 (10 being the highest 
potential for animal-to-human transmission [Figure  3A]). Of 

the remaining 149 human cases observed in areas with maxi-
mum EVI scores <8, 77 were from locations adjacent to areas 
with maximum EVI scores ≥9, whereas 72 were adjacent to 
areas with maximum EVI scores ≥8. For example, in Jakarta, 
Indonesia, 47 human cases of infection with avian influenza 
virus were reported. Although Jakarta had a maximum EVI 
score of 5.6, the Indonesian provinces bordering it have maxi-
mum EVI scores of 9.6 (Jawa Barat) and 9.5 (Banten).

For human infections with influenza viruses of swine origin, 
comparisons were not informative because 262 of 273 reported 
cases in our dataset came from the United States where max-
imum EVI scores ranged from 2.0 to 6.7. In contrast, many of 
the highest EVI scores (≥9) came from provinces in China, 
whereas only 3 cases were observed there. The remaining 8 
human cases were observed in the states/provinces of Canada, 
Hong Kong, Kazakhstan, and Spain with maximum EVI 
scores <8 (Figure  3B). It is interesting to note that the EVI 
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Figure 2. Variation in the estimated outbreak emergence potential metric for animal influenza from domestic poultry (A) and swine (B) at 10 km2 resolution is displayed on 
a gradient from blue (ie, low risk) to red (ie, high risk).
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for swine-to-human transmission risk (Figure  1B) was high 
in central Mexico, including the area of La Gloria (maximum 
EVI score ≥8) (Figure 3C), the putative site of emergence of 
the 2009 “swine flu” pandemic [36]. The high EVI and mod-
erate OTI scores of the area around La Gloria resulted in an 
overall OEP score, suggesting that this region had substantial 
potential for the emergence and spread of animal influenza 
viruses (Figure 2).

Global Surveillance Metric

We found substantial variability in surveillance activities over 
space and time despite applying conservative assumptions in 
the metric development. For most countries, we found evidence 
of animal influenza surveillance at a national level, although 

it varied substantially each year. Evidence for surveillance 
decreased markedly when filtered by data available at subna-
tional spatial resolution (ie, GAUL_1 and GAUL_2). Data aggre-
gation to the GAUL_1 level (state/province) showed that the 
majority of domestic poultry surveillance activities were con-
centrated in areas at high risk for avian-to-human transmission 
of influenza viruses (Figure 4A). However, 49.01% of the states/
provinces at high risk (maximum EVI ≥8) lacked any evidence 
of surveillance in the last 15 years (Figure 4C). Furthermore, 25 
of the 124 countries reporting surveillance in domestic poultry 
had data spanning longer than 10 years, whereas 42 countries 
reported surveillance for ≤3  years. Countries with high-risk 
areas (maximum EVI ≥8), such as Belarus, Brazil, Honduras, 
and the Philippines, had ≤3 years of national surveillance.
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Little overlap was found between areas at elevated risk (max-
imum EVI ≥8) for swine-to-human transmission of influenza 
viruses and evidence of surveillance. Most states/provinces with 

multiple consecutive years of surveillance activities were in the 
United States, which had maximum EVI scores <8. In areas at 
higher risk of zoonotic transmission, only southeastern China 
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and Hong Kong had multiple consecutive years of surveillance. 
In contrast, the remaining states/provinces at higher risk had 
intermittent surveillance activities despite the high numbers of 
swine present (Figure 4B). Of the states/provinces identified as 
high risk (maximum EVI ≥8), 78.43% lacked any surveillance 
activities in our dataset (Figure  4D). Furthermore, 15 of the 
67 countries reporting surveillance in swine had data span-
ning longer than 10 years, whereas 32 reported surveillance for 
≤3  years. Countries with high-risk areas, such as Guatemala, 
Philippines, Serbia, and Romania, had ≤3 years of national sur-
veillance. Details on data analysis at the GAUL_0 and GAUL_2 
levels are provided in Supplementary Data 2.

DISCUSSION

Our results indicate (1) substantial geographic variation in 
global virus spillover potential from domestic poultry and 
swine populations to humans and (2) substantial heterogeneity 
in onward transmission risk. With limited funding allotted to 
active surveillance, our global framework could identify prior-
ity areas to make the best use of available resources. A variety 
of countries in Central America (eg, Guatemala, Honduras), 
Eastern Europe (eg, Romania, Serbia), West Africa, and 
Southeast Asia scored highly in their EVI, OTI, and OEP, sug-
gesting that they are key areas for future investments in surveil-
lance and pandemic preparedness. It is interesting to note that 
the area of La Gloria, Mexico, scored highly in the swine EVI 
and moderately in the OTI, displaying elevated OEP conditions. 
This finding provided support for our OEP metric’s ability to 
indicate situational awareness of elevated risk conditions and 
emphasized the need for more surveillance in areas with sim-
ilarly high scores.

We found that the majority of surveillance efforts in domes-
tic poultry were focused in areas where avian-to-human virus 
spillover risks were high and previous human infections had 
been documented (eg, China, Hong Kong, Thailand). However, 
we also found areas at equally high risk but without any evi-
dence of surveillance in poultry (eg, Belarus, Honduras). 
For swine, the greatest concentration of high-risk areas for 
swine-to-human transmission was in Southeast Asia, whereas 
similarly high-risk areas were found in Eastern Europe and 
Central America.

Our study has several limitations, such as the variety of eco-
logical factors, which could not be included in our metrics on 
a global scale. For example, live bird markets and agricultural 
fairs are important settings for the transmission of influenza 
viruses between animals and humans [24, 25]. However, global 
data on domestic animal movement and trade are unavailable. 
The generation of such datasets would require enormous time 
and financial commitments. Nevertheless, this information 
could be integrated into the modeling framework used here, 
improving the risk assessment of animal influenza outbreak and 
spillover potential.

A second limitation is the uncertainty surrounding the fac-
tors facilitating cross-species transmission and contributing to 
onward pathogen spread. Our models could be improved with 
more information on the ecology of cross-species transmission. 
Likewise, our approach could be used as a framework to quan-
tify these ecological variables. For example, the EVI validation 
for avian influenza virus spillover suggests that this metric can 
be used to identify areas with increased potential for zoonotic 
transmission.

A third limitation is that reporting of human infections with 
animal influenza viruses in areas with low EVI scores suggests a 
potential detection/recording bias, or this may be due to other 
risk factors not accounted for in our model. Although very few 
human infections with influenza viruses of swine origin were 
reported in states/provinces with EVI scores ≥8, this pattern is 
likely to be associated with detection biases. Human infections 
with swine influenza viruses are rarely severe [37], and most 
reported cases are from countries with substantial human influ-
enza surveillance programs [38]. By contrast, human infections 
with avian influenza viruses are often fatal and more likely to be 
detected and reported.

Our study, derived solely from publicly accessible data, pro-
vides a new illustration of the temporal and geographical var-
iation in global animal influenza surveillance activities. We 
attempted to be comprehensive in identifying reported surveil-
lance activities, but there are undoubtedly some efforts that we 
might have missed either because they were not reported pub-
licly or because the reports fell outside of our search strategies. 
Nevertheless, there is a clear need to increase levels of surveil-
lance in key locations worldwide.

Our approach to standardizing and georeferencing each 
surveillance record highlights the necessity of a unified global 
influenza virus surveillance data management plan where 
active and passive surveillance components are linked and their 
results made readily available to the international community 
[5]. Currently, animal influenza virus data are caught in the 
void between international organizations responsible for ani-
mal welfare and trade and those responsible for human health. 
The absence of a single authoritative organization responsible 
for surveillance inhibits a global response system for influenza 
virus tracking. In addition, the lack of data standardization and 
quality control impedes the effective use of the relatively limited 
amount of information that enters the public domain. Similar 
shortcomings were identified during a recent Ebola outbreak, 
catalyzing a call for global public health agencies to coordinate 
an improved epidemiological data management system for dis-
ease surveillance [39, 40].

CONCLUSIONS

Expanded surveillance in both domestic poultry and swine is 
imperative to identify novel strains of potential importance 
and to understand the factors driving cross-species virus 
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transmission. Our global framework highlights priority areas 
where improved influenza outbreak prevention and mitigation 
strategies are paramount, enabling national and international 
agencies to evaluate prepandemic preparedness needs and tar-
get surveillance resources.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility of 
the authors, so questions or comments should be addressed to the corre-
sponding author.
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