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A body of research demonstrates examples of in vitro and in vivo synergy between natural

products and anti-neoplastic drugs for some cancers. However, the underlying biological

mechanisms are still elusive. To better understand biological entities targeted by natural

products and therefore provide rational evidence for future novel combination therapies

for cancer treatment, we assess the targetable space of natural products using public

domain compound-target information. When considering pathways from the Reactome

database targeted by natural products, we found an increase in coverage of 61% (725

pathways), relative to pathways covered by FDA approved cancer drugs collected in

the Cancer Targetome, a resource for evidence-based drug-target interactions. Not

only is the coverage of pathways targeted by compounds increased when we include

natural products, but coverage of targets within those pathways is also increased.

Furthermore, we examined the distribution of cancer driver genes across pathways to

assess relevance of natural products to critical cancer therapeutic space. We found

24 pathways enriched for cancer drivers that had no available cancer drug interactions

at a potentially clinically relevant binding affinity threshold of <100nM that had at least

one natural product interaction at that same binding threshold. Assessment of network

context highlighted the fact that natural products show target family groupings both

distinct from and in common with cancer drugs, strengthening the complementary

potential for natural products in the cancer therapeutic space. In conclusion, our study

provides a foundation for developing novel cancer treatment with the combination of

drugs and natural products.

Keywords: natural product, antineoplastic drug, cancer, synergy, therapeutic targets

INTRODUCTION

While treatment for cancer has seen great strides in recent decades, we still face many open
challenges in cancer therapy. In particular, adaptive resistance to cancer therapies has necessitated
a move into rational combination therapies if we are to achieve a sustained therapeutic benefit for
patients. An active area of interest is the inclusion of natural products in combination therapies
for cancer treatment. In this work, our core premise is that the target space associated with natural
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products (NPs) will increase the number of potentially
therapeutically accessible targets and lead to novel combination
therapies for cancer treatment. To investigate this premise,
we will not only quantify these new therapeutic targets and
associated molecular pathways, but also assess the functional
qualities and complementarity with FDA-approved cancer drugs
of this space by using a variety of network methods.

Currently, the National Cancer Institute lists eight categories
of cancer treatments: surgery, radiation, chemotherapy,
immunotherapy, targeted therapy, stem cell transplant, and
precision medicine1. Historically, surgery, radiation, and
chemotherapy were the primary forms of treatment. In the late
1990s the FDA started approving targeted therapies for cancer,
i.e., therapies directed toward unique molecular characteristics
that drive oncogenesis. The first such therapy, imatinib, has
shown an 80% decrease in 5-year mortality with chronic
myeloid leukemia patients (Druker, 2009). While some of
the early targeted therapies have resulted in dramatic clinical
responses, drug resistance often develops after an initial positive
response. This adaptation to treatment is known as acquired
drug resistance, as opposed to intrinsic resistance, which exists
prior to any cancer therapy (Holohan et al., 2013).

Acquired drug resistance is seen with both cytotoxic
chemotherapies and targeted therapies, although mechanisms
differ. Knowledge of the molecular mechanisms of resistance
can inform therapeutic strategies. In cancer, these mechanisms
can include compensatory and redundant molecular signaling,
target mutations acquired during treatment, increased expression
of the targeted proteins, inactivation of pro-apoptotic pathways,
inhibition of DNA repair mechanisms, epithelial-mesenchymal
transition, activation of pro-survival signaling, and upregulation
of tumor cell efflux transporters (Holohan et al., 2013; Housman
et al., 2014). For drug resistance caused by mutations in drug
targets or redundant cell pathways, “rational combinatorial
targeted therapy” is a possible solution (Al-Lazikani et al.,
2012). This “rational” approach is done within the framework of
network pharmacology, which brings together systems biology,
network analysis, redundancy, and consideration of all drug
target effects, beyond therapeutic intention, for designing
therapies (Hopkins, 2008). Knowledge of molecular signaling
pathways can be used to design multi-target strategies to block
redundant pathways or newly mutated targets. Simultaneous
targeting of multiple cancer hallmarks is another approach
(Hopkins, 2008). Along with reduction in drug resistance, this
approach can also lead to decreased adverse effects and increased
efficacy (Hanahan andWeinberg, 2011). For these combinations,
multiple therapeutic agents can be used, but these methods can
also take advantage of poly-pharmacological characteristics of
each single agent (Hu et al., 2014). Drugs can also work together
through pharmacokinetic mechanisms, coalistic mechanisms (Jia
et al., 2009), and through independent actions when used in
combination (Palmer and Sorger, 2017). A interaction is coalisitic
when two compounds interact in a biological context to form a
new third compound.

1National Cancer Institute. Types of Treatment. Available online at: https://www.

cancer.gov/about-cancer/treatment/types

Natural products can be broadly defined as any compound
derived from a living source (animal, plant, microbial, fungi).
This absolute definition would include “natural” cosmetics,
“natural” foods, wood, silk, bioplastics and even coal. A more
specific definition was based on the following from the National
Center for Complementary and Integrative Health (NCCIH)
(Milshteyn et al., 2014):

“Natural products include a large and diverse group of substances

from a variety of sources. They are produced by marine

organisms, bacteria, fungi, and plants. The term encompasses

complex extracts from these producers, but also the isolated

compounds derived from those extracts. It also includes vitamins,

minerals and probiotics.”

We have further refined this definition with the following
inclusion and exclusion criteria. Only NPs from plants and fungi
were included, and only isolated compounds. In addition, only
plants and fungi that have a history of traditional medicinal use
were included. These compounds already have some historic use
as therapeutic agents, and some are already classified as safe for
human consumption by the FDA’s Dietary Supplement Health
and Education Act of 1994.

Natural product compounds show greater structural diversity,
bioactivity and complexity than compounds in synthetic drug
libraries, have the ability to inhibit some targets considered
“undruggable,” such as protein-protein interactions, and
inherently target biologically relevant space since they are mostly
secondary metabolites, or signaling molecules (Harvey et al.,
2015). There is also limited overlap between the molecular space
targeted by natural products and targeted by synthetic drug
libraries (Harvey et al., 2015). These characteristics not only
indicate the potential for new targets for therapy, but also can
help reduce the cost of the development of new treatments, since
these molecules already exist in nature, and offer additional
options for combination therapies. Natural products, or natural
product derivatives, are the source of 33% of cancer drugs
developed between 1981 and 2014 (Newman and Cragg, 2016).
While the use of natural products for cancer treatment by
patients is sometimes considered “complementary medicine,”
there is also a body of literature demonstrating in vitro and
in vivo natural product synergies with cancer drugs (Cote
et al., 2015; Cheng et al., 2016), overcoming drug resistance
with the addition of natural products (Pearson et al., 2017),
and paradoxical synergy in cancer cells while demonstrating
antagonism in healthy tissue (Cote et al., 2015). Therefore, the
exploration of the natural product target space could offer the
potential to improve existing drug therapy outcomes and reduce
side effects. Computational methods, including approaches in
graph theory (Sun et al., 2015) and assessment of differential
gene expression (Liu and Zhao, 2016), have been successfully
developed to predict synergy between compounds in silico.
Predicting these effective drug combinations often requires up-
to-date, comprehensive knowledge of the target space associated
with a set of compounds.

However, natural product-target information in the public
domain has several high need areas to address if we are to harness
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natural products in computational methods for predicting and
prioritizing compounds for high throughput screens. There is
a need not only to compile a comprehensive set of natural
product targets from public sources, but also to characterize these
compound-target relationships with respect to their supporting
evidence, within a variety of relevant contexts (Figure 1). Such an
evidence- characterization was recently completed for all FDA-
approved antineoplastic drugs from multiple public resources
by Blucher, et al. in the Cancer Targetome (CT) (Blucher
et al., 2017). The methods and evidence framework from
that project were applied here to develop and characterize a
natural product target network (natural product compounds
linked to associated targets). By comparing our results with
natural products to the results of the Cancer Targetome, we
provide a quantitative assessment of the potential of natural
products, when added to FDA-approved cancer drug space,
to increase novel cancer therapies. This characterization of
the natural product network includes assessment of target and
pathway coverage, compound promiscuity, established cancer
driver genes, and the potential to inhibit molecular compensatory
signaling mechanisms. This characterization of NP target space
serves to not only identify potential new targets, but also
evaluate the importance of these targets in a molecular context
for therapeutic targeting in cancer treatment. In particular, we
evaluate the dual space of natural products and FDA- approved
cancer drugs from the Cancer Targetome for potential synergy
in drug combination therapy. To assess this potential, we
propose using a variety of network methods to evaluate natural
products and their targets in the context of biological networks.
First, by mapping natural product targets of interest into large
protein-protein interaction networks, we can characterize their
importance to the network using measures of “centrality” as
well as their proximity to known cancer driver genes. Second,
we create a network where entities are biological pathways,
which allows us to assess potential pathway cross-talk. This
is critical for efforts to prioritize combinations of natural
products and FDA-approved drugs to interfere with pathway-
based mechanisms of drug resistance. Finally, we create a
network that contains both the natural product compounds
and FDA-approved cancer drugs as entities, with connections
between entities indicating shared protein targets. This network
allows us to assess targets with respect to class of compound and
can potentially be harnessed in rational combinations, such as
combining compounds that target different families of targets for
a complementary treatment strategy.

METHODS

Data Collection
Seven public databases were used to construct the natural
product target network used in this project, as sources of both
compounds and targets (Table 1). Two of the seven databases
were the source of natural product chemical compounds, TarNet
(2016) (Hu et al., 2016), and the Traditional Chinese Medicine
Integrated Database for herb molecular mechanism analysis
(TCMID, version 2.01) (Xue et al., 2013). These databases were

TABLE 1 | Public resources for natural product ligands and associated target

interactions.

Database Ligands? Target interactions?

TarNet Yes Yes

Traditional Chinese Medicine

Integrated Database (TCMID)

Yes Yes

DrugBank No Yes

Therapeutic targets database No Yes

International Union of Basic and

Clinical Pharmacology (IUPHAR)

No Yes

BindingDB No Yes

Universal Natural Products Database

(UNPD)

No Yes

chosen because they contain only compounds from plants used
from medicinal traditions.

Four of the target source databases used were not specific to
natural product compounds and were also used in the creation
of the Cancer Targetome. These included DrugBank, version
5.0.7 (Law et al., 2014); Therapeutic Targets Database, version
4.3.02 (Qin et al., 2014); the International Union of Basic
and Clinical Pharmacology (IUPHAR)/British Pharmacological
Society (BPS) database, version 2017.4 (Harding et al., 2017);
and BindingDB (7/1/2017). Additional human target interactions
were included from three natural product databases. These
include TarNet, TCMID and the Universal Natural Products
Database (Gu et al., 2013). For full details of data analyzed in this
article seeData Sheet 1.

Base Natural Product Compounds
The TarNet database, the first of the two sources of NP
compounds, contains information about 12,187 compounds
derived from 894 medicinal plants. These plants are used in four
traditions of botanical medicine: Chinese, Japanese, European
and American (Hu et al., 2016). This database also contains
10,783 targets associated with the plant compounds through
direct regulation or indirect effect. Both the plant-compound
and compound-biotarget relationships were derived by text-
mining and manual curation. A random sample of 91 literature
references, used by TarNet to support the compound-biotarget
relationships, was manually checked for the presence of binding
affinity data in the source.

The second source, TCMID, comprises plants, associated
compounds, and bio-targets curated from Traditional Chinese
Medicine (TCM). The goal of this database is to translate
the common factors between modern western medicine and
TCM. The TCMID database contains 8,159 plants, 43,413
associated compounds, and 17,521 bio-targets compiled through
a combination of other databases and text mining (Hu et al., 2016;
Traditional Chinese Medicine Integrated Database, 2018).

The compounds from these two databases were combined
and redundancies were removed. This was done through the
use of the multiple keys associated with each compound in
each database. TarNet compounds were classified by chemical
name, Chemical Abstracts Service (CAS) number, simplified
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FIGURE 1 | Framework for natural product target network evaluation. The targets associated with both NPs and anti-neoplastic drugs were evaluated in different

contexts of increasing complexity. Complementary and distinct coverage of protein targets and pathways by the two compound classes were assessed. Target

importance and relationships were evaluated in biological contexts, which include protein-protein interaction networks and molecular pathways. Pathway relationships

and shared target space were assessed through the construction of a pathway-pathway network and a compound-compound network. Red lines indicate the

existence of an edge between nodes in these networks. Two compounds have an edge if they share at least one target, and two pathways have an edge if they share

at least one protein (Mahira and Umehara, 2018; Mykhal, 2004; Hinemash6, 2010).

molecular-input line-entry system (SMILES), and International
Union of Pure and Applied Chemistry’s International Chemical
Identifier Key (INCHIKEY). TCMID compounds were classified
by PubChem Compound ID, SMILES and chemical name.
The Chemical Translation Service (CTS) from the University
of California at Davis was used to help resolve some of the
missing key data in TarNet (Wohlgemuth et al., 2010). The two
compound lists were then combined and scrubbed for possible
drugs that are not of NP origin using lists from DrugBank
(Law et al., 2014) and the FDA. The five keys found in the
source databases: chemical name, SMILES, INCHIKEY, Pubchem
Compound ID, and CAS number, were then used to retrieve
target information from a variety of sources as detailed below.

Biological Target Retrieval
Molecular target interaction information for the NP compounds
was retrieved from seven publicly available data sources. Four
widely used data sources were chosen based on the rationale used
by Blucher et al. for the Cancer Targetome (Blucher et al., 2017).
These sources include DrugBank (Law et al., 2014), Therapeutic
Targets Database (Qin et al., 2014), IUPHAR/BPS Guide to
Pharmacology (Harding et al., 2017), and BindingDB (Gilson
et al., 2016). These four sources contain substantial information
about NPs but are not limited to this class of compounds. Three
additional sources of target interaction data that are limited
only to NPs were also used. These include TarNet (Hu et al.,
2016), TCMID (Xue et al., 2013), and the UNPD (Gu et al.,
2013). All of the interaction data used for this project were based
on experimental data from the literature, no computationally
predicted interactions were used.

These data were retrieved by systematically merging each of
the five NP keys, from the base NP data, individually to the
seven target data sources. The data retrieved by the individual
key were then associated back to the unique five key combination
of values from which they were derived and data redundancies
were resolved to create the final NP target network database.

The Evidence Level framework developed by Blucher et al.
(2017) was then applied to these data as follows. Each NP-
target interaction could have more than one piece of supporting
evidence. Each piece of evidence was assigned one of three levels.
Evidence Level I had an entry in only one of the databases
for the interaction, without a supporting literature reference or
experimental binding value. Evidence Level II had a supporting
literature reference in the database but without binding affinity
value, and Evidence Level III had both an experimental binding
value and a literature reference. For NP-target interactions with
multiple evidence entries from different databases, the maximum
Evidence Level was assigned. For a single target, the maximum
Evidence Level from all associated NP-target interactions was
assigned. Analyses for this project considers all levels of evidence
when appropriate and also focuses on interactions only with
evidence of strong binding affinity, <100 nM (IC50, EC50, Ki,
or KD). Less stringent levels can still be considered biologically
relevant, but below 100 nM is considered significant for drug
binding (Paolini et al., 2006; Wang et al., 2016).

Target, Pathway, Tumor Type, and Cancer
Driver Coverage
Analyses compared the two target networks above, i.e., the
NP target network and the Cancer Targetome (CT). First, the
sets of targets associated with the NP and CT drug networks
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were mapped to the two associated sets of molecular pathways.
The Reactome Pathway Knowledgebase (Fabregat et al., 2017),
which leverages biological entity reactions, was the source of the
pathway information. A total of 1,944 hierarchically structured
pathways was used from this database for the first pathway
mapping. For the second pathway mapping, a set of pan-cancer
aberrant pathways was derived from the full set of Reactome
pathways by performing an over-representation analysis with
likely cancer driver genes. The genes cataloged for the Cancer
Genome Interpreter (Tamborero et al., 2017) were used for this
analysis. These genes have either experimental, clinical or in silico
evidence showing that their mutations can drive tumorigenesis.
There are 837 genes cataloged, representing 193 different tumor
types. A hypergeometric test identified pathways enriched with
these driver genes. The Benjamini-Yekutieli method was used
to control the false discovery rate for multiple testing with
dependencies (Benjamini and Yekutieli, 2001). If a pathway
contained at least one molecular target with evidence of an
interaction with either a NP or a CT drug, then the entire pathway
was considered targeted by the respective compound category.
Pathways were then classified as either targeted by NP only,
CT drugs only, both NP and CT drugs, or neither. This same
mapping classification was also applied at the protein target level,
as opposed to the pathway level, to all of the targets associated
with both target networks, and to targets only associated with
the pan-cancer aberrant pathways. Finally, tumor types were
identified that were associated with cancer driver genes targeted
only by NPs. Only high-affinity interactions (IC50, EC50, Ki, or
KD <100 nM) were considered for this analysis.

The multi-targeting aspect of these two compound classes
(NP and CT drug) is considered the basis for their poly-
pharmacological effects (Hu et al., 2014). These effects can
be undesirable, such as adverse events, or they could be the
mechanism of the therapeutic effect. For this reason, it is
important to map and compare the average interactions (targets,
pathways, tumor types, and cancer drivers) per compound
between the two target networks and to understand how NPs
might differ from the CT drugs. For most analyses in this project
we considered only <100 nM target interactions, but for this
analysis we considered two binding affinity thresholds: <1,000
and <100 nM. Distributions of interactions per compound were
then compared between NPs and CT drugs for the four categories
mentioned. A two sample Kolmogorov-Smirnov test was used to
compare the two distributions, NP and CT drugs.

Molecular Interaction Network Topology
For molecular interaction analysis, the NP targets, CT drug
targets and cancer driver gene products were projected onto
biological networks, and the topological features of these targets
were evaluated and compared. Target-oriented topology research
often uses a large non-specific protein-protein interaction
network (PPI) for the biological context, but it has also been
suggested that the base network should be either be more
specific to the tissue or disease of interest, or have greater
biological relevance (Peng and Schork, 2014). For this reason, two
specific interaction networks were used for this evaluation. For
the first biological network, the protein functional interactions

from the Reactome Functional Interaction Network were used.
This network integrates uncurated relationships from sources
such as PPI databases and others with curated interaction
information derived from pathway data in Reactome and other
databases (Wu et al., 2010). These functional interactions have
a higher likelihood of being functional in a biological context
than an interaction from an uncurated PPI database. The
second network is a PPI constructed by Wang (2014) from the
integration of four manually curated human cancer signaling
networks with protein interactions from BioGRID (Awan et al.,
2007; Cui et al., 2007; Li et al., 2012; Newman et al., 2013;
Chatr-Aryamontri et al., 2015).

Network measures that were considered include degree
centrality, betweenness centrality, eigenvector centrality, and
average shortest distance to cancer driver genes in the network.
Degree centrality is the number of connections a node in a
network has to neighboring nodes. In a biological network this
could be the number of different interaction partners a single
protein might have. Betweenness centrality is the number of
shortest paths in a network that pass through a specific node. In
a biological network this measure can capture the node’s ability
to control communication (Peng and Schork, 2014). Eigenvector
centrality is a measure of how connected the nodes are that are
connected to the node of interest. This is ameasure of importance
of the node’s neighbors in the biological network. The average
shortest distance is the path between two nodes that contains
the minimum number of nodes, or steps. In a biological network
this can be related to the number of reaction steps between two
proteins (Yildirim et al., 2007; Li et al., 2012). Proteins that are
closer could have a higher likelihood of impacting each other, if
used as a therapeutic target.

To compare the topology measures, the nodes in the network
were classified in four ways: targeted only by NPs, targeted only
by CT drugs, targeted by both, and not targeted by either. These
were compared to each other for similarities and differences
to evaluate any additional therapeutic potential achieved with
the addition of NPs. Only targets with strong binding affinities,
<100 nM, were considered.

Compensatory Pathways
Chen et al. (2016), constructed a pathway-pathway interaction
network to evaluate drug pair synergy and as a possible model
for the inhibition of pathway crosstalk. In this network, a
node represents an entire molecular pathway and an edge
represents an interaction between two pathways. Three types of
interactions were used to construct three networks. The three
edges were defined by manually curated interactions from the
KEGG database (Kanehisa and Goto, 2000), protein-protein
interactions, and shared genes. Two sets of pathways were defined
by associating the two drugs via the projection of the associated
drug target networks onto the pathways. Chen et al. found that
drug synergy was correlated with the average shortest distance
between the two sets of pathways in this network, most strongly
in the network with edges representing shared genes.

This structure was chosen as a good method to evaluate the
NP and CT drug target network’s crosstalk inhibition potential,
since it is possible to measure global patterns in this framework
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and assess the two target sets in their entirety. Pathways in
this network were then classified as being associated with NPs
only, CT drugs only, both or none. A compound was associated
with a pathway only if there was at least one target with
a strong binding affinity, <100 nM, in a pathway. Average
shortest path distance between NP associated pathways and
CT associated pathways was assessed to estimate the possible
synergistic potential between NPs and CT drugs, and also to
estimate increased cross talk inhibition by considering NPs.
Reactome entity level pathways (non-hierarchical) were chosen
to construct the network, of which there are 290. In addition, the
previously described cancer driver genes were used to do an over-
representation analysis on this set of 290 pathways, identifying
possible aberrant cancer pathways in this network. Orientation
to these cancer pathways in this network was then assessed for
the pathways associated with NPs only, CT drugs, and both NPs
and CT drugs.

Compound-Compound Network
In this network, a node represents a compound, either NP or CT
drug, and an edge exists if they share at least one target, both
having a binding value of<100 nM. The edges were also weighted
based on the number of targets shared. This network analysis
has also been used for FDA approved drugs (Yildirim et al.,
2007). Network communities were identified and assessed for
enrichment in either NPs or CT drugs to see if they are clustering
around the same targets, or separate sets of targets. The targets
of each network community were also classified based on protein
families, defined in IUPHAR. Multilevel clustering was used as
the community detection method. This method is a “greedy”
algorithm—that is, it creates an optimal solution at each step to
find a good global optimum—that creates communities based on
maximizingmodularity and is recommended for networks of this
size. This method is also appropriate for unconnected networks
and can use edge weights to determine community structure
(Yang et al., 2016).

Analysis Tools
The analysis was conducted using R (v3.3.1) (https://www.r-
project.org/). Packages used included dplyr (v0.7.4) (https://
dplyr.tidyverse.org) and iGraph (v1.1.2) (http://igraph.org).
Network visualization was also performed in Cytoscape
(v3.4.0) (http://cytoscape.org).

RESULTS

Natural Product Data Distributions
Our final set of natural products, compiled from TarNet and
TCMID, contained 50,109 compounds, uniquely identified by the
five keys found in the source databases: chemical name, SMILES,
INCHIKEY, Pubchem Compound ID and CAS number. Of these
compounds, target interaction data was retrieved for 4,991 from
seven public databases. To contrast this with approved cancer
drug space, there are only 137 anti-neoplastic drugs in the Cancer
Targetome, which included all FDA approved drugs for cancer as
of 2017.

Most of the NP-target interactions were classified as Evidence
Level I (94%), and most CT interactions were classified as
Evidence Level III (95%), although the absolute counts of
interactions were much larger for NPs given the overall
number of NPs (Figure 2A). For stronger affinity interactions
(Evidence Level III Exact), the raw numbers of interactions
were comparable between natural products and cancer drugs
(Figure 2B). The large volume of Level I evidence for NPs is
primarily from the TarNet database, which is populated via text
mining of the public literature for natural products, combined
with manual curation. All of these interactions are supported
by literature references (and therefore technically are Evidence
Level II), but the linkage to these literature references is not
made publicly available in the TarNet database, therefore these
interactions are restricted to Evidence Level I due to accessibility
issues. Curation of a random sampling of these data showed that
approximately 37% of the supporting literature has binding data
available and would therefore could potentially be assigned Level
III were the linkage to this supporting evidence made accessible.

Targets are reported according to the highest evidence level
of all of the associated compound interactions for each target
(Figure 2C). This approach allows us to take a target-focused
perspective and determine the maximum strength of evidence
supporting any compound/drugs interacting with it. For a target
set of interest, this framework now us to prioritize those targets
with stronger evidence for natural product or drug interactions.
As with the target-interaction distribution, most of the NP
associated targets had a maximum Evidence Level I (83%) and
most of the CT drug associated targets had a maximum Evidence
Level III (85%), but the distributions were more comparable
within Evidence Level III (Figure 2D).

Natural Product Targets and Cancer
Targetome Targets Show Similar Topology
Characteristics in Selected
Biological Networks
In addition to descriptively evaluating pathway and target
coverage by NP compounds compared to coverage by FDA-
approved antineoplastic drugs, it is also important to consider
the target sets associated with NPs and CT drugs in the
context of molecular interaction networks, such as PPI networks.
The topology of these networks can be related to biological
function (Winterbach et al., 2013). Some topology measures
commonly considered relevant to biological function include
degree centrality, betweenness centrality, eigenvector centrality,
average shortest paths, and clustering coefficients (Zhu et al.,
2007; Pavlopoulos et al., 2011). These measures, and others, have
been suggested as a guide to identify potential therapeutic targets
for drug development (Hwang et al., 2008; Arrell and Terzic,
2010; Winterbach et al., 2013; Peng and Schork, 2014).

Two biological networks (PPIs) were used to evaluate
functional relevance of the targets. One is the Reactome
Functional Interaction network, and the other was created by
Wang (2014) based on interactions specific to cancer biology.
The three target node categories include nodes targeted by NPs
only, targeted by CT drugs only, or targeted by both CT drugs

Frontiers in Pharmacology | www.frontiersin.org 6 May 2019 | Volume 10 | Article 557

https://www.r-project.org/
https://www.r-project.org/
https://dplyr.tidyverse.org
https://dplyr.tidyverse.org
http://igraph.org
http://cytoscape.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Chamberlin et al. Natural Product Target Network

FIGURE 2 | Assessment of evidence levels for target and compound-target interactions. CT, Cancer Targetome; NP, Natural Product Target Network. (A) Comparison

of interaction distribution by evidence level between NPs and CT drugs. (B) Comparison of interaction distribution at high affinity only (evidence level III exact values in

nM). (C) Comparison of maximum target evidence level distribution between NPs and CT drugs. (D) Comparison of maximum target evidence level distribution at high

affinity only (evidence level III exact values in nM).

and NPs. In Reactome, these three node categories represented
393 of the 12,227 total nodes contained in the network. In the
wang (cancer) network, these three node categories represented
364 of the 6,306 total nodes in the network. Comparisons were
done for the following topology measures: degree, betweenness,
and eigenvector centrality.

Betweenness Centrality
In the Reactome network, betweenness for all three target
node categories was significantly higher than it was for non-
targeted nodes in the network. There was no significant
difference between these three categories. Consistent with
previous research, betweenness was significantly higher for the
cancer driver nodes than for non-driver nodes in this network.

In the wang (cancer) network (Wang, 2014), as with the
Reactome network, all three target node categories had higher
betweenness than the non-target nodes. The nodes targeted only
by NPs were not different from the nodes targeted only by CT
drugs, but the betweenness for these nodes was less than that for
the nodes targeted by both NPs and CT drugs. Consistent with
previous research, the cancer driver nodes were also significantly
higher for betweenness than the non-cancer driver nodes.

The results for this statistic were mostly consistent between
the two networks. Overall, nodes targeted by NPs are similar for
this characteristic to nodes targeted by CT drugs, and different
from non-targeted nodes. The average value for the nodes
targeted by both NPs and CT drugs was higher for this measure
than the average for nodes targeted by either NP only or CT

drugs only, although this difference was not significant when
compared to CT only drug targets, and there were only 39 nodes
in this category.

Betweenness measures the number of shortest paths in a
network that pass through a given node. The target with the
highest betweenness in the Reactome network, interacting with
only NPs at binding affinity <100 nM, was nuclear factor kappa
beta subunit 1 (NFKB1). The interacting NP compound was
rocaglamide, extracted from a variety of Aglaia plant species.
This gene functions in a dozen large molecular pathways,
ranging in size from 72 to 758 genes, most of which are
enriched with cancer drivers. This protein is a transcription
factor found in almost all cell types and is involved in a wide
variety of cell processes, including some that are related to
cancer, such as inflammation, tumorigenesis, apoptosis and cell
growth. This protein is activated by many intracellular and
extracellular stimuli, which is consistent with a high degree of
betweenness centrality.

A literature search for the natural product “rocaglamide”
returned 68 articles, many of which were in-vitro and mouse
xenograph cancer studies with positive results. Cancers
tested with positive results included renal cell carcinoma
(Nalli et al., 2018), non-small cell lung cancer (Yao et al.,
2018), multiple myeloma, T-cell leukemia (Wu et al.,
2017). This natural product was also found to protect
non-malignant cells (Becker et al., 2014). This body of
literature also addressed infectious disease applications for
this compound.
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Degree Centrality
In the Reactome network, degree was not significantly different
between all three target node categories, but each of these three
categories were all significantly higher than non-targeted nodes
in the network, as was seen with betweenness. The cancer driver
nodes were also higher for this measure than non-driver nodes.

In the wang (cancer) network, the nodes targeted by NPs only
were not significantly different from non-targeted nodes, and
they were significantly lower for this measure than nodes targeted
by CT drugs only or nodes targeted by both NPs and CT drugs.
The cancer driver nodes were also significantly higher for this
measure in this network.

For degree centrality, the two networks were not in agreement.
The nodes targeted only by NPs were similar to CT drug nodes in
the Reactome network, but not in the wang (cancer) network. But
nodes targeted by both NPs and CT drugs were again higher on
average than either of the other two categories, NP only and CT
drugs only, although it was only significant for the comparison to
the NP-only targeted nodes.

The node with the highest degree targeted only by NPs at a
binding affinity <100 nM in the Reactome network is the same
as the top node for betweenness for this category, nuclear factor
kappa beta subunit 1 (NFKB1). In this network, there were 515
interactions with other proteins for this protein target. Of these
515 proteins, 90 (17.5%) were cancer drivers.

Eigenvector Centrality
For this measure, in the Reactome network, nodes targeted
only by NPs were not different from non-targeted nodes, were
significantly higher than nodes targeted by CT drugs only, and
significantly lower than nodes targeted by both CT drugs and
NPs. The nodes targeted only by CT drugs were significantly
lower than non-targeted nodes, but not different from nodes
targeted by both CT drugs and NPs. The nodes targeted by both
CT drugs and NPs were significantly higher than non-targeted
nodes. Cancer driver nodes were significantly higher for this
measure than non-cancer driver nodes in this network.

In the wang (cancer) network, nodes targeted only by NPs
were not different from non-targeted nodes but were significantly
less than nodes targeted only by CT drugs and nodes that were
targeted by both CT drugs and NPs. Nodes targeted by CT
drugs only and those targeted by both CT drugs and NPs were
significantly higher than non-targeted nodes. CT only nodes were
not different from nodes targeted by both CT drugs and NPs.
Cancer driver nodes were significantly higher than non-cancer
driver nodes for this measure.

The two networks were not in agreement for these node
categories for this measure. Generally, nodes targeted by NP only
were not the same as other targeted nodes in both networks, but
the direction of these differences was not the same. This was
partly because the CT drug only nodes in the Reactome network
were generally lower than most other categories, including non-
targeted nodes.

The node targeted only by NPs that exhibited the
highest eigenvector centrality in the Reactome network was
Heterogeneous Nuclear Ribonucleoprotein A1 (HNRNPA1).
This means that the other nodes directly connected toHNRNPA1

had a high level of connectivity. There were 185 proteins
interacting with this protein in this network, with an average
degree of 217, which was significantly higher than the network
average of 38. While there were only 27 cancer drivers in this
list, or 15% of the 185 proteins, one of these proteins, E1A
Binding Protein P300 (EP300), has over 1000 interactions listed
in Reactome. HNRNPA1 is an abundant core protein found in
the cell nucleus and functions in alternative splicing of RNA.

There was a high level of overlap for the top genes ranked by
betweenness and degree centrality for the three target categories
(Table 2). There was less overlap between these genes and the
genes with the highest eigenvector centrality.

In both networks, the average shortest path distances from
either NP only, CT drug only, and both CT/NP nodes to cancer
driver nodes were significantly shorter than a set of randomly
selected nodes. The nodes targeted by both CT drugs and
NPs were the closest to the cancer driver nodes, on average.
This proximity to cancer drivers indicates fewer reaction steps
between the targeted node and the cancer driver node and greater
potential to interfere with an oncogenic signal from the driver.
These nodes also had higher betweenness and degree. These
nodes represent a subset of both CT drug nodes and NP nodes
that appear to be more critical in both networks. These 39 nodes
also contained a higher percentage of cancer drivers than the
other categories.

Pathway Interactions Reveal Potential
Synergistic Relationships Between Natural
Products and Cancer Drugs
The use of compensatory and redundant molecular pathways
by the cancer cell is a likely mechanism of acquired drug
resistance, suggesting that rational drug combination therapy
could inhibit these processes. Several methods have been
proposed to select and predict drug combinations that could
inhibit this phenomenon (Peng and Schork, 2014; Sun et al.,
2015; Chen et al., 2016; Jaeger et al., 2017).

For this analysis, we used the pathway network model
developed by Chen et al. using shared genes as the criterion for
an edge between two pathway nodes. Our network contained
285 pathways (nodes) with 9,152 edges. These 285 were
non-hierarchical Reactome entity-level pathways. Of the 285
pathways, 90 were enriched with cancer drivers. The majority of
the cancer pathways were targeted by both NPs and CT drugs
(73%), andmost of the non-cancer pathways were not targeted by
either NPs or CT drugs (48%). Only target interactions <100 nM
were considered.

The average shortest path in this network between pathways
targeted by CT drugs, those targeted by NPs, and between
NP-targeted pathways and CT-drug targeted pathways were all
similar, and closer than random controls. Based on previous
research, this short distance could correlate with synergy between
these classes of compounds, particularly between NPs and CT
drugs. Pathways targeted by both CT drugs and NPs were
closer on average to cancer pathways than random controls.
Pathways targeted by NPs only and those targeted by CT drugs
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TABLE 2 | Top genes for the three topology measures (betweenness, degree, eigenvector centrality).

NP only CT only Both CT and NP

Gene Value Driver? Gene Value Driver? Gene Value Driver?

BETWEENNESS CENTRALITY

Nuclear Factor Kappa B Subunit 1 (NFKB1) 901,715 No SRC Proto-Oncogene, Non-Receptor Tyrosine

Kinase (SRC)

911,785 Yes Epidermal Growth Factor Receptor (EGFR) 947,674 Yes

RELA Proto-Oncogene, NF-KB Subunit (RELA) 613,037 No FYN Proto-Oncogene, Src Family Tyrosine

Kinase (FYN)

616,175 No Histone Deacetylase 1 (HDAC1) 669,591 No

Cyclin Dependent Kinase 1 (CDK1) 532,453 No Janus Kinase 2 (JAK2) 504,217 Yes Estrogen Receptor 1 (ESR1) 575,569 Yes

MDM2 Proto-Oncogene (MDM2) 395,265 Yes Retinoid X Receptor Alpha (RXRA) 460,453 No Histone Deacetylase 2 (HDAC2) 510,638 Yes

Protein Kinase C Beta (PRKCB) 315,021 No Mitogen-Activated Protein Kinase 14 (MAPK14) 389,578 No Androgen Receptor (AR) 445,269 Yes

Protein Kinase C Alpha (PRKCA) 251,601 No Retinoic Acid Receptor Alpha (RARA) 300,939 Yes Cyclin Dependent Kinase 4 (CDK4) 299,008 Yes

DEGREE CENTRALITY

Nuclear Factor Kappa B Subunit 1 (NFKB1) 521 No SRC Proto-Oncogene, Non-Receptor Tyrosine

Kinase (SRC)

569 Yes Epidermal Growth Factor Receptor (EGFR) 569 Yes

RELA Proto-Oncogene, NF-KB Subunit (RELA) 470 No FYN Proto-Oncogene, Src Family Tyrosine

Kinase (FYN)

497 No Histone Deacetylase 1 (HDAC1) 497 No

Cyclin Dependent Kinase 1 (CDK1) 468 No Janus Kinase 2 (JAK2) 398 Yes Histone Deacetylase 2 (HDAC2) 398 Yes

Protein Kinase C Alpha (PRKCA) 297 No Mitogen-Activated Protein Kinase 14 (MAPK14) 332 No Histone Deacetylase 3 (HDAC3) 332 Yes

Protein Kinase C Beta (PRKCB) 296 No Phosphatidylinositol-4,5-Bisphosphate

3-Kinase Catalytic Subunit Delta (PIK3CD)

324 Yes Cyclin Dependent Kinase 4 (CDK4) 324 Yes

MDM2 Proto-Oncogene (MDM2) 260 Yes LYN Proto-Oncogene, Src Family Tyrosine

Kinase (LYN)

311 No Estrogen Receptor 1 (ESR1) 311 Yes

EIGENVECTOR CENTRALITY

Heterogeneous Nuclear Ribonucleoprotein A1

(HNRNPA1)

0.77 No Retinoic Acid Receptor Alpha (RARA) 0.14 Yes Histone Deacetylase 3 (HDAC3) 0.13 Yes

Cyclin Dependent Kinase 7 (CDK7) 0.25 No Aurora Kinase B (AURKB) 0.13 No Histone Deacetylase 1 (HDAC1) 0.10 No

Cyclin T1 (CCNT1) 0.18 No Retinoid X Receptor Alpha (RXRA) 0.12 No Epidermal Growth Factor Receptor (EGFR) 0.09 Yes

Cyclin Dependent Kinase 9 (CDK9) 0.17 No Nuclear Receptor Corepressor 1 (NCOR1) 0.12 Yes Histone Deacetylase 2 (HDAC2) 0.08 Yes

Cyclin Dependent Kinase 1 (CDK1) 0.17 No SRC Proto-Oncogene, Non-Receptor Tyrosine

Kinase (SRC)

0.10 Yes Cyclin Dependent Kinase 4 (CDK4) 0.07 Yes

RELA Proto-Oncogene, NF-KB Subunit (RELA) 0.11 No Retinoic Acid Receptor Beta (RARB) 0.09 No Hypoxia Inducible Factor 1 Alpha Subunit

(HIF1A)

0.06 No

The top 6 genes with the highest values of betweenness, degree and eigenvector centrality are shown for each node category: targeted by NP only, targeted by CT drugs only, or targeted by both NP and CT drug. All interactions are

<100 nM binding affinity.
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only were not closer to cancer pathways than random controls
(Supplemental S1).

There were 559 examples of neighboring pathways (nodes)
in this network, where one pathway is targeted by NPs
only and the other pathway is a cancer-enriched pathway
targeted by either CT drugs or both CT drugs and NPs.
An example is DAG and IP3 signaling and Signaling

by FGFR1. In the Reactome database, these two pathways
share the gene PLCG1 (1-phosphatidylinositol 4,5-bisphosphate
phosphodiesterase gamma-1), which created an edge between
them in this network. The pathway Signaling by FGFR1

was enriched with cancer drivers and had a CT drug
target with an interaction <100 nM, BRAF (B-Raf Proto-
Oncogene, Serine/Threonine Kinase). This pathway initiates
intracellular signaling pathways involved with cell proliferation
and migration, and other functions. DAG and IP3 signaling

was not enriched with cancer drivers and did not have any low
affinity CT drug targets, but did have six high affinity NP targets:
PRKCG, E,A,D (Protein Kinase C), PDE1A (Phosphodiesterase
1A) andADCY1 (Adenylate Cyclase 1).DAG (diacylglycerol) and
IP3 (inositol 1,4,5-trisphosphate) are secondary messengers used
in intracellular signaling.

Natural Products Show Target Family
Groupings Both Distinct From and in
Common With Cancer Drugs
There was a total of 253 compounds and 1,238 edges in the
compound network, which included 68 CT drugs and 185 NPs.
This network contained 26 unconnected subnetworks, with the
majority of nodes (163) in one large connected component.
Multilevel clustering created 35 communities, most of which
contained 5 or fewer compounds. Of interest were the three
largest communities, each containing over 30 compounds. One

community was dominated by CT drugs, but also contained
a substantial number of NPs. The other two communities
contained primarily NPs.

The first community contained 32 CT drugs and 11 NPs.
The community clustered primarily around kinase and other
cancer-related target families (Table 3). Kinases are extremely
well-targeted by current FDA-approved cancer drugs and have
been an active area of research following the breakthrough kinase
inhibitor imatinib. The next largest community comprised 39
NPs and 4 CT drugs. This community contained a variety of
cytochrome P450 families and other target families considered
therapeutic targets, such as the carbonate dehydratases, which
are inhibited for the treatment of glaucoma and other conditions
(Table 3). The third largest community contained no CT drugs
and 30 NPs. The target protein families here were primarily
hormone and neurotransmitter receptors (Table 3).

Natural Products Increase Coverage of
Cancer Pathways, Targets, and
Tumor Types
Coverage is assessed at two thresholds: (1) at all levels
of supporting evidence, and (2) for when restricting to
interactions supporting by binding evidence <100 nM. Of the

1,944 hierarchically structured Reactome pathways, 533 were
considered pan-cancer aberrational based on over-representation
analysis. For all Reactome pathways, at all levels of evidence,
natural products increased coverage by 61%, relative to pathways
covered by CT drugs. Reactome pathway coverage at the
100 nM level was increased by 29%, relatively (Table 4). For the
aberrational cancer pathways, the NP relative coverage increase
for all evidence levels was 12%, and the increase at the 100 nM
level was 6% (Table 5). The percentage of aberrational cancer
pathways targeted by both NPs and CT drugs was higher than
it was for all Reactome pathways, which would be expected since
the Cancer Targetome is specific to the disease domain associated
with this subset of pathways.

When considering the NP contributions within pathways
targeted by both NPs and CT drugs, 51% of the individual target
interactions in the 1,196 Reactome pathways were with NPs only.
For the 495 Reactome pathways targeted by both at the 100 nM
level, 43% of the target interactions were with NPs only. For
cancer pathways targeted with affinities <100 nM there was a
high degree of overlap by compound classes at the pathway level,
but very little overlap at the target level (Figure 3). Not only were
the number of pathways targeted increased when considering the
NP target space, but coverage of targets within pathways was
increased in those pathways already targeted by CT drugs.

When considering all of the targets contained in both target
networks, a large number of interactions were with NPs only
(Table 4). We found the same result for the 7,339 targets
associated with the aberrational cancer pathways (Table 5). The
vast majority of these interactions were Level I evidence from
the TarNet database. At the stronger binding affinity (<100 nM),
there is a relative increase in target coverage of 65% for all targets
from the two networks, and 60% for targets from the aberrational
cancer pathways.

Target interactions were then assessed for the 837 cancer
drivers, which are then mapped back to their associated tumor
types. There were twelve tumor types for which NPs increased
driver coverage (Table 6). For these tumor types, five cancer
drivers were targeted only by NPs at <100 nM, including
Adenylate Cyclase 1 (ADCY1), Matrix Metallopeptidase 2
(MMP2), Aryl Hydrocarbon Receptor (AHR), Cyclin Dependent
Kinase 2 (CDK2), and Mitogen-Activated Protein Kinase 11
(MAP3K11). Some of the plant derived NPs targeting these
drivers include forskolin (from the Indian coleus plant, ADCY1),
caffeic acid (found in many foods including coffee, MMP2),
kaempferol (found in many common foods including apples,
grapes, tomatoes and green tea, AHR), and flavopiridol (a semi-
synthetic derivative from the Pithraj tree, CDK2). MAP3K11 is
targeted by staurosporinone, which is of bacterial origin so is out
of the scope of the NP definition for this paper. While there is a
significant body of in-vitro cancer research associated with these
natural products, there are 65 clinical trials listed for flavopiridol,
many of which are either single agent or combination trials for
cancer2.

There were 24 pathways in Reactome that were enriched for
cancer drivers, had no CT drug interactions at <100 nM, and

2ClinicalTrials.gov. Available online at: https://clinicaltrials.gov
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TABLE 3 | Natural products (NP) and approved cancer drugs (CT) interact with disjoint and shared target sets.

Largest community (32 CT drugs,

11 NPs)

# Targets Second largest community (4 CT

drugs, 39 NPs)

# Targets Third largest community (0 CT

drugs, 30 NPs)

# Targets

Type XIII RTKs: Ephrin receptor family 12 4.2.1.1 Carbonate dehydratases 3 5-Hydroxytryptamine receptors 11

Src family 11 CYP1 family 3 Adrenoceptors 6

Tec family 5 1.-.-.- Oxidoreductases 1 Ionotropic glutamate receptors 4

Type III RTKs: PDGFR, CSFR, Kit,

FLT3 receptor family

5 1.13.11.- Dioxygenases 1 Melatonin receptors 2

Death-associated kinase (DAPK)

family

4 ABCC subfamily 1 Acetylcholine receptors (muscarinic) 1

HIPK subfamily 4 Aryl hydrocarbon receptor complex 1 Adenosine receptors 1

Janus kinase (JakA) family 4 Carrier proteins 1 CYP2 family 1

KHS subfamily 4 CFTR 1 Dopamine receptors 1

Myosin Light Chain Kinase (MLCK)

family

4 Cyclooxygenase 1 Glucagon receptor family 1

RSK subfamily 4 CYP11, CYP17, CYP19, CYP20 and

CYP21 families

1 Glutamate transporter subfamily 1

Type I RTKs: ErbB (epidermal growth

factor) receptor family

4 Nucleoside synthesis and metabolism 1 Metabotropic glutamate receptors 1

The top 11 target families in the three largest compound-compound network communities are shown, along with the NP/CT distribution in each. The largest community is dominated

by approved cancer drugs and the other two communities are dominated by NPs.

TABLE 4 | Consideration of natural product targets increases both pathway and target coverage in all Reactome pathways.

Evidence and binding # Unique targets # Reactome pathways targeted % of Reactome pathways

NP only CT only Both NP only CT only Both NP only (%) CT only (%) Both (%)

Evidence levels I, II, III 7,978 27 630 725 0 1196 37.29 0.00 61.52

Evidence levels II, III 964 129 521 385 21 1174 19.80 1.08 60.39

Evidence levels III 453 80 478 275 30 1070 14.15 1.54 55.04

Evidence level III, binding LT100 160 210 37 218 266 495 11.21 13.68 25.46

This pathway data includes hierarchically nested Reactome pathways.

TABLE 5 | Consideration of natural product targets increases both pathway and target coverage in cancer pathways.

Evidence and binding # Targets in cancer pathways # Cancer pathways % of cancer pathways

NP only CT only Both NP only CT only Both NP only (%) CT only (%) Both (%)

Evidence levels I, II, III 3,488 16 387 59 0 474 11.07 0.00 88.93

Evidence levels II, III 422 87 313 24 2 472 4.50 0.38 88.56

Evidence levels III 250 51 279 35 4 450 6.57 0.75 84.43

Evidence level III, binding LT100 102 145 26 24 97 286 4.50 18.20 53.66

The cancer pathways include 533 pathways and 7,339 associated targets from the Reactome hierarchically nested pathways.

had at least one target interaction with a NP with a binding
affinity <100 nM. In some of these pathways, such as “RUNX1
regulates transcription of genes involved in differentiation

of myeloid cells,” the NP interaction was not with a driver
gene (Supplemental S2). In this example, the interacting NP
is a phorbol ester isolated from croton oil. Phorbol esters
have been called “double-edged swords,” showing both tumor
promoting and tumor inhibiting activities, depending on the
cancer (Goel et al., 2007). This pathway is involved with the
differentiation of myeloid progenitors and also with apoptosis

of mature myeloid cells (Ntie-Kang et al., 2013). The three
driver genes in this pathway are associated with over 20 tumor
types, including acute myeloid leukemia, acute lymphoblastic
leukemia, chronic myeloid leukemia, myelodysplastic syndrome,
and non-Hodgkin’s lymphoma. In other pathways, such as “TP53
Regulates Transcription of Genes Involved in G1 Cell Cycle

Arrest,” the NP interaction was directly with a driver gene
(Figure 4). The interacting NP for this example is flavopiridol,
which is a semisynthetic derivative of a compound extracted from
the Pithraj tree. This compound is already in numerous clinical
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FIGURE 3 | Evaluation of cancer pathway overlap at affinities <100 nM. There

is a high level of pathway overlap between those targeted by NPs and CT

drugs, but little overlap at the individual target level.

TABLE 6 | Natural products improve coverage of cancer drivers across cancer

types.

Tumor type CT only NP only Both NP

and CT

Total cancer

drivers

Cutaneous melanoma 20 2 4 291

Prostate adenocarcinoma 10 2 3 153

Bladder 10 1 2 195

Esophagous 3 1 3 124

Head and neck squamous 9 1 4 188

Hodgkin lymphoma 0 1 0 12

Large B-cell lymphoma 1 1 0 3

Lung adenocarcinoma 18 1 3 209

Neuroblastoma 2 1 0 31

Renal clear cell 6 1 2 116

Small cell lung 2 1 0 59

Uterine corpus endometroid

carcinoma

9 1 4 158

Twelve tumor types have increased driver coverage from NPs, at binding values of 100 nM

or less. The ‘NP Only’ column lists the number of drivers targeted only by NPs.

trials for several cancer types (Tse et al., 2016). This pathway
primarily inhibits the cell cycle transition from the G1 phase
to the S phase through multiple mechanisms (Ntie-Kang et al.,
2013). Over 40 tumor types are associated with the five cancer
drivers in this pathway, including breast, bladder, esophagus,
head and neck, lung, prostate, ovary, and hepatocellular.

There were also 286 pathways in Reactome that were enriched
for cancer drivers that were targeted by both NPs and CT drugs
at binding affinities <100 nM. One smaller pathway example
of this is “MAPK3 (ERK1) activation” (Supplemental S3).
The two NP compounds targeting the three proteins in this
pathway are flavopiridol, and arctigenin, which is extracted
from the burdock plant. This pathway is involved in a wide
range of cellular processes, including cytoskeleton remodeling,
proliferation, differentiation and regulation of inflammatory
responses (Ntie-Kang et al., 2013). Over 20 tumor types are
associated with the four cancer drivers found in this pathway,
including leukemias, lung cancers, colorectal cancer, melanoma,
and head and neck squamous cell cancer.

FIGURE 4 | Cancer pathway gene set targeted only by natural products for a

cancer driver target. Another Reactome functional interaction network (TP53

Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest)

targeted only by NPs at <100 nM (green border). No FDA-approved cancer

drugs target this pathway with <100 nM evidence. Cancer drivers are shown

in yellow. In this pathway the NP target is also a cancer driver. Dashed lines are

predicted interactions.

We found significant differences between the distributions of
the number of targets and pathways interacting per compound
for NPs vs. CT drugs. Additionally, we found that the significant
distribution differences for tumor types per compound and
cancer driver interactions per compound were dependent on
the binding affinity threshold (Table 7). But it is difficult to
draw any further conclusions about these differences, since the
motivations for studying the relationships are not necessarily the
same between NPs and FDA-approved cancer drugs. Different
experiments could be designed to compare promiscuity by
running matched assay panels on both NPs and FDA-approved
drugs. Previous research has shown an increasing number of
target interactions per compound as they progress along the
drug development pipeline, with approved drugs having the
highest number of interactions (Hu and Bajorath, 2013; Hu
et al., 2014). Importantly, we note that the total number of
targets tested for each of these compounds (for both NPs and
CT drugs), is not captured in the public data resources used
for this project. This information is important both to explain
therapeutic polypharmacological effects and undesirable adverse
events. Finally, there is always the problem of incomplete data for
this characteristic since all possible target interactions that occur
in a biological context cannot be known.

DISCUSSION

Natural products show much potential for combination therapy
in cancer treatment; but barriers in the public domain of
natural product-target interactions make it difficult to harness
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TABLE 7 | Distribution comparisons for targets, pathways, tumors and cancer

drivers.

Type Affinity level KS test

p D

Targets LT100 all targets* 0.002222 0.26364

LT1000 all targets* 0.0002767 0.27611

LT100 cancer pathway targets* 0.003176 0.28632

LT1000 cancer pathway targets* 0.001013 0.27778

Pathways LT100 all pathways* 7.37E-12 0.52679

LT1000 all pathways* 3.28E-13 0.51282

LT100 cancer pathways* 2.35E-10 0.54144

LT1000 cancer pathways* 9.88E-13 0.54069

Tumors LT100 0.02306 0.45714

LT1000* 0.0008806 0.42083

Drivers LT100 0.1024 0.37302

LT1000* 0.003771 0.37917

Differences between the number of targets, pathways, cancer drivers and tumors

interactions per compound for NPs and CT drugs were tested using a two sample

Kolmogorov Smirnov test to detect differences in the distributions. This testing was

assessed for binding levels of 100 nM or less, and 1000 nM or less. Tumor associations

made via cancer driver interactions. *indicates significance at p threshold of <0.004

(Bonferroni adjustment).

this information in a high throughput manner. Here, we
applied an evidence framework to public domain natural
product information and quantitatively assessed the added
value of natural product space when used in conjunction
with approved cancer drug space. Natural products increase
the cancer-relevant targetable space from both a target and a
pathway perspective, as well as providing additional coverage of
key cancer driver genes. Given current challenges in acquired
drug resistance to approved cancer drugs, the inclusion of
natural products in combination therapies may allow us to
broaden our scope of targetable cancer-relevant pathways for
therapeutic advantage.

We have demonstrated that the projection of this natural
product target network into various biological contexts can
identify candidate natural products for cancer treatment, and
provided examples with substantial support in the literature.
This previous research is most likely the source of some of the
public target data we used. To test the ability of this network
to identify novel natural product cancer candidate treatments
that have not been previously reported, we are projecting these
network targets into molecular pathways associated with head
and neck oral squamous cell cancer (HNSCC), identified by
using the HNSCC cohort data from The Cancer Genome
Atlas. Further, we are testing cell viability of patient derived
HNSCC tumor cells exposed to over 160 cancer drugs and
natural products. In preliminary analyses we identified two
natural products among the top five compounds to which
one patient’s tumor cells were sensitive, the other three
being cancer drugs approved or under development (Vigoda,
unpublished). These findings are encouraging for the potential
of these public data, efficiently mined through the methods
detailed herein, to reveal new natural product candidates for
cancer treatment.

The natural product-target interaction space in the public
domain still faces challenges that will need addressing in order
to more fully harness the therapeutic potential of natural
products. For instance, our work here brought attention to
several key quality issues in publicly available resources for
natural product–target interaction data. The two databases
chosen, TarNet and TCMID, are not the only available for NPs,
but they were appropriate choices given our criteria for defining
natural products. The heavy reliance on text mining for these
resources could explain some of the data quality issues that we
encountered. For instance, some of these data sources appear to
contain drugs that do not have a “true” NP source, or include
compounds used in the extraction of these NP compounds.
For this reason, we removed any compounds with a synonym
match to drugs using FDA and DrugBank compound lists.
We also manually curated our high binding affinity natural
product compounds and removed about 11% due to quality
concerns, such as the inclusion of synthetic compounds. Another
issue encountered with these data sources was the inability to
download the entire database from the website. There are well-
curated proprietary natural product databases, such as NapAlert
and The Dictionary of Natural Products, for future application
of these methods and findings beyond our current analyses
including only public resources.

While we did find an increase in relevant target and pathway
coverage by considering NP target interactions in public data
sources, it is also important to consider and compare these two
target spaces (CT and NP) in a biological context. We used
two networks to do this, the Reactome network and the cancer-
specific network. Of these two, the Reactome network is more
comprehensive. In this network, the new targets identified by
considering NPs were similar to drug-targeted nodes and less
similar to non-targeted nodes, when considering betweenness
and degree. This similarity was not seen for eigenvector
centrality. Degree and betweenness are strong measures of
criticality in a network and the fact that the new NP targets
are similar to CT drug targets could indicate potential for novel
combination therapies. Also, of interest is that the nodes targeted
by both NPs and CT drugs tended to have higher average
values for these measures than either CT drug only or NP
only targets.

In general, biological networks are scale-free, meaning that
many nodes have low connectivity and are not critical to the
function of the network, but some nodes are highly connected
and more critical, possibly making good therapeutic targets.
Topology measures can guide the identification of these critical
nodes. Both degree and betweenness are considered measures of
strong importance to the network, but nodes with high values
of either can be considered too lethal or toxic to target (Hwang
et al., 2008; Arrell and Terzic, 2010; Winterbach et al., 2013;
Peng and Schork, 2014). It is possible to identify nodes with
network influence that have lower essentiality (Winterbach et al.,
2013) by using measures such as eigenvector centrality, bridging
centrality, and others (Hwang et al., 2008; Arrell and Terzic, 2010;
Peng and Schork, 2014). Eigenvector centrality is a measure of
the connectivity of the nodes that are connected to the node
of interest. Bridging centrality, developed by Hwang et al. is a
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measure of how well a node connects separate modular sub-
regions in a network. Other strategies for reducing adverse effects
consider targets that influence critical nodes without targeting the
critical nodes themselves (Peng and Schork, 2014; Laderas et al.,
2015). For this reason, assessing the shortest path distances from
critical nodes, such as cancer driver genes, is important. This
distance could also be considered an estimate of the number of
molecular steps from this node (Yildirim et al., 2007). It has also
been shown that cancer driver genes have topology measures in
biological networks that are distinctly different from other nodes.
These differences include higher degree and betweenness, shorter
paths between them and weaker clustering coefficients (Sun and
Zhao, 2010; Xia et al., 2011; Winterbach et al., 2013).

Biological network topology has also been used to predict
therapeutic synergy between compounds, an aspect of interest for
designing novel combination therapies (Yin et al., 2014). Several
in-silico methods for prediction of synergy in combination
therapy use topology measures (Li et al., 2011; Huang
et al., 2014; Sun et al., 2015). Generally, higher values of
measures, such as degree and betweenness, are preferred in
these models.

The clustering patterns seen in the larger communities in
the compound-compound network seem to indicate NP target
interaction research driven by known therapeutic targets as seen
in drug therapeutic classifications. Since the only therapeutic
classification for the drugs used in this study is cancer, it
follows that there is one large cluster containing a majority
of the CT drugs and also some NPs, indicating interest in
NPs for cancer research. If this analysis were expanded to
include drugs from other therapeutic classifications, the other
communities might also contain the associated drugs, along with
the NPs. The drugs from these other therapeutic classifications
could also be investigated for cancer therapies. In this study,
we did not investigate non-cancer drugs that interact with
the targets found to interact only with NPs. That we saw
compound clustering around target families common to NPs
and CT drugs, and also clustering around families unique
to NPs, when compared to CT drugs, supports the potential
of complementary therapeutic relationships between the two
compound classifications.

From the perspective of combination therapy and synergy
discovery, the focus of this research was on a pharmacodynamic
framework. There is a large body of literature for predictive
algorithms for combination therapies that is based on network
pharmacology, which influenced this work. Many of these
methods use compound-target networks, such as what we have
developed for natural products, to derive the predictive features
used in these models. However, NPs can also interact with
compounds, either synergistically, additively, or antagonistically,
through other mechanisms. These can include pharmacokinetic
interactions, drug efflux transporter interactions, and other
cell microenvironment interactions. Furthermore, some synergy
effects of NPs are not mediated by direct interaction with
a protein target, but through the up- or down-regulation
of the expression of the protein of interest. Since binding
assay results do not necessarily provide functional information

about the compound-target interaction, the presence of a
strong binding assay may not necessarily indicate a positive
therapeutic effect for cancer. In fact, some of the interactions
could promote tumor growth, as is the case in some
cancers whose growth can be stimulated with phorbol esters
isolated from croton oil (Goel et al., 2007). Future efforts
should consider both the strength of compound-target binding
and the functional effect of the interaction. All of these
mechanisms could be considered in future algorithms to predict
combination therapies.

Overall, the intent of this work was to assess both the
natural product therapeutically targetable space and also to assess
the potential complementarity of natural products with FDA-
approved cancer drugs. As discussed previously, while we were
often not able to verify the direct link between supporting
literature and the large amount of Level I interactions due
to accessibility issues, our random sampling of this space
indicates that a sizeable portion of this Level I evidence is
actually supported by literature and/or binding assay values.
This presents a high need and actionable area for natural
product-target curation. Improved curation and accessibility of
natural product-target interactions will greatly enable efforts
to harness natural products in the cancer therapeutic space.
While further work is needed to improve the quality of evidence
associated with natural product target interactions, our work
here shows that there is a clear benefit to the inclusion of
natural products along with FDA-approved cancer drugs in
this effort.
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