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Introduction
Spinal muscular atrophy (SMA) is the leading genetic cause of 
infant mortality affecting 1 in every ~10,000 live births.1,2 Low 
levels of the Survival Motor Neuron (SMN) protein due to 
deletion of or mutation in the SMN1 gene is the primary cause 
of SMA.3 A nearly identical copy of SMN1 universally present 
in humans, called SMN2, cannot compensate for the loss of 
SMN1 since SMN2 exon 7 is predominantly skipped. Skipping 
of exon 7 leads to production of a truncated unstable protein, 
SMNΔ7.4 SMA has a broad disease spectrum that is catego-
rized into 5 types: 0, 1, 2, 3, and 4.5 Type 0 is the most severe, in 
which patients die before birth.6 Patients suffering from type 1 
SMA (also called Werdnig-Hoffmann disease) need ventilatory 
support, cannot sit or walk and succumb to death before their 
2nd birthday.7 The onset of type 2 SMA (also called Dubowitz 
disease) occurs before 18 months of age; here patients cannot 
walk but can sit.7 Type 3 SMA (also called Kugelberg-Welander 
disease) is manifested after 18 months of age; and patients can 
sit, walk, and survive into adulthood.7,8 Type 4 SMA is charac-
terized by mild symptoms, it manifests during early adulthood, 
and patients are expected to have a normal lifespan.6,9 SMN is a 
multifunctional protein involved in RNA metabolism, DNA 
repair, cytoskeletal dynamics, and macromolecular traffick-
ing.10-13 Low levels of SMN were shown to affect multiple sign-
aling cascades, including STAT5, RhoA/ROCK, AKT/CREB 
and JNK pathways.14-18 SMN can bind RNA, preferentially 
interacting with GA-rich motifs.19,20 A recently published 
study indicated that the protein might play a critical role in the 
translation of a specific subset of mRNAs linked to SMA 
pathogenesis by “priming” ribosomes in a tissue-specific man-
ner.21 A much broader role of the SMN genes could be envi-
sioned based on a vast repertoire of transcripts generated from 

the SMN loci. These transcripts include alternatively spliced 
mRNA isoforms, non-coding antisense RNAs, and circular 
RNAs.22-31 Loss of SMN1 affects all tissues, including skeletal 
muscle, central, peripheral and autonomic nervous system, 
heart, liver, lung, kidney, pancreas, spleen, ovary, and testis.32-52 
Hence, an ideal therapy for SMA must “target/remedy” the 
body-wide defects caused by the loss of SMN1. The severity of 
SMA correlates inversely with the SMN2 copy number: the 
higher the copy number, the lower the severity.53-56 Several fac-
tors, including Plastin (PLS3), Neuritin 1 (NRN1), Neurocalcin 
delta (NCALD), TIA1 cytotoxic granule associated RNA 
binding protein (TIA1), Ubiquitin specific peptidase 9 X-linked 
(USP9X), Ubiquitin like modifier activating enzyme 1 (UBA1), 
Stathmin-1 (STMN1), Myostatin (MSTN), ZPR1 zinc finger 
protein (ZPR1), and Senataxin (SETX), have been suggested to 
modify SMA severity.57-69 Due to broad differences in the age 
of the SMA onset and the diversity of SMA phenotypes, devel-
oping an ideal therapy for the disease remains a challenging 
task.

Considering SMN2 is universally present in SMA patients, 
correction of SMN2 exon 7 splicing remains one of the most 
promising avenues for the treatment of the disease.70 A critical 
C-to-T mutation at the 6th position (C6U substitution in RNA) 
of exon 7 is associated with the skipping of SMN2 exon 7.71,72 In 
general, skipping of exons is triggered by suboptimal splice sites 
defined by a combinatorial control of splicing cis-elements and 
transacting factors that recognize them.73 Being close to the 3′ 
splice site (3′ss), C6U substitution is proposed to weaken the 3′ss 
of SMN2 exon 7.74 Various other mechanisms including abroga-
tion of an enhancer, creation of a silencer and strengthening of 
an extended inhibitory context (Exinct) have been put forward 
to explain  
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the C6U substitution-induced skipping of exon 7.75-78 A break-
through in our understanding of exon 7 splicing regulation came 
from a study performing in vivo selection of the entire exon that, 
among other important observations, confirmed that the 5′ss of 
exon 7 was suboptimal.79 Of note, in vivo selection of the entire 
exon 7 was the first experiment of its kind: here the relative sig-
nificance of every exonic nucleotide was functionally analyzed in 
a single experiment.80 In addition, the unbiased method of in 
vivo selection revealed that not only the linear sequence(s) but 
also putative structural motifs were critical for inclusion of SMN 
exon 7.81,82 Significantly, findings of in vivo selection of the 
entire exon 7 of SMN1 turned out to be useful for validating the 
outcome of a machine learning program that analyzed the path-
ogenicity of all known point mutations within the human 
genome.83 As discussed below, two splicing modulating com-
pounds currently approved for SMA therapy as well as an addi-
tional small molecule are currently in clinical trials are linked to 
the strengthening of the 5′ss of SMN2 exon 7.

Context of the Suboptimal 5′ss of SMN2 Exon 7
Most human introns, including all introns in the SMN genes, 
belong to the U2-type. The 5′ss of U2-type introns is defined 
by a total of eleven nucleotides, specifically the last 3 exonic 

residues and the first 8 intronic residues.84 An RNA:RNA 
duplex (U1:5′ss duplex) formed between these 11 nucleotides 
and the 5′-end of U1 snRNA, a component of U1 snRNP, sets 
the stage for exon definition and intron removal.84 With very 
few exceptions, a GU dinucleotide at the first 2 positions of the 
U2-type introns is required for the exon definition.85 Additional 
splicing cis-elements come into play when the size of the 
U1:5′ss duplex is less than 6 base pairs and/or the 5′ss is seques-
tered in a RNA structure.86,87 The finding that the 5′ss of exon 
7 is suboptimal as revealed by the in vivo selection paved the 
way for the discovery of a number of inhibitory cis-elements 
located in the 5′ss vicinity.88 These include the intronic splicing 
silencer N1 (ISS-N1), the terminal stem-loop 2 (TSL2), the 
GC-rich sequence (GCRS) overlapping ISS-N1, and the 
internal stem formed by a long-distance interaction 1 (ISTL1) 
(Figure 1).89-94 Of note, as per recent estimates, more than 30 
cis-elements and an even higher number of transacting factors 
have been implicated in the regulation of SMN exon 7 splic-
ing.95,96 However, subsequent studies showed that some of 
these splicing factors were dispensable. For instance, SF2/ASF 
was initially thought to be critical for exon 7 inclusion.75 Yet, in 
cells lacking SF2/ASF no effect on exon 7 splicing was 
observed.76 Similarly, Tra2-β1, a positive regulator of exon 7 

Figure 1. Diagrammatic representation of cis-elements and transacting factors that regulate SMN2 exon 7 splicing. (a) Relative positioning of cis-

elements within exon 7 and downstream intron 7 of SMN. Cis-elements and transacting factors that bind them are highlighted in different colors. Note, the 

diagram presented here is not inclusive of all reported exon 7 splicing regulators. Please refer to recent reviews for more comprehensive information.95,96 

Positive and negative regulators of exon 7 splicing are indicated by (+) and (−), respectively. Neutral numbering of nucleotides starts from the first position 

of exon 7. Positive numbering of nucleotides starts from the first position of intron 7. Exonic and intronic sequences are shown in upper- and lower-case 

letters, respectively. SMN2-specific C6U substitution is marked. Exinct, the Conserved tract and the 3′-Cluster were identified by in vivo selection of the 

entire exon 7. In vivo selection of the entire exon also revealed the strong negative effect of an “A” residue at the 54th position (54A) of exon 7 and (b) 

structural context of the 5′ss of SMN exon 7. Numbering is the same as described in panel A. Only a portion of exon 7 and intron 7 is shown. Cis-elements 

that promote exon 7 skipping are highlighted in colors. Abbreviations: 3′ss, 3′ splice site; 5′ss, 3′ splice site; Exinct, extended inhibitory context; GCRS, 

GC-rich sequence; ISS-N1, intronic splicing silencer; ISTL1, an internal stem (inhibitory RNA structure) formed by long-distance interaction; TSL2, 

terminal stem-loop structure 2; TSL3, terminal stem-loop structure 3.
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splicing, turned out to be dispensable for inclusion of this exon 
in a Tra2-β1-deficient mouse model.97,98 These observations 
are not entirely surprising given the redundancy and cross-
regulation of splicing factors as, for example, observed for PTB, 
CELF2, and hnRNP C.99-101

The discovery of the 15-nucleotide long ISS-N1 propelled 
the development of an antisense oligonucleotide (ASO)-
directed therapy for SMA.89,102,103 Based on its strong inhibi-
tory effect, ISS-N1 was dubbed as a master regulator of both 
splicing checkpoint and exon definition.104 Nusinersen 
(Spinraza™), the first FDA-approved drug for SMA, is an ISS-
N1-targeting ASO that is intrathecally delivered for the treat-
ment of the disease.105,106 Methods and mechanisms associated 
with the splicing correction by an ISS-N1-targeting ASO are 
reviewed elsewhere.107-109 Collaborative studies conducted in 
the Krainer lab at Cold Spring Harbor Laboratories, New York 
and by Ionis Pharmaceuticals, Carlsbad, California played a piv-
otal role in the therapeutic development of nusinersen.110 
Several recent reports describe the efficacy of nusinersen in 
SMA patients.111-113 Of note, similar to ISS-N1, GCRS and 
ISS-N2 are additional targets that could be potentially exploited 
for correction of SMN2 exon 7 splicing by abrogating the inhib-
itory context at the 5′ss of exon 7.91,93,114,115 Indeed, in vivo  
studies employing ASOs targeting GCRS and ISS-N2 have  
shown therapeutic benefits in mouse models of SMA.116,117 
Zolgensma®, an adeno-associated virus 9 (AAV9) based gene 
delivery, became the second FDA-approved therapy for 
SMA.118 The success of gene therapy was enabled by pre-clini-
cal and clinical studies conducted by Kaspar and colleagues at 

Nationwide Children’s Hospital, Columbus, Ohio.119 Unlike 
nusinersen that relies on the endogenous SMN2 transcripts for 
the production of SMN, gene therapy produces SMN from 
exogenously delivered DNA coding for SMN1. Hence, risks of 
the generation of autoantibodies against SMN due to overex-
pression of this protein as a consequence of gene therapy could 
not be ruled out. Of note, a recent study has found a correlation 
between autoantibodies against SMN and systemic sclerosis.120 
Both nusinersen and gene therapy have the limitations of an 
invasive administration process and having poor body-wide 
delivery/distribution.121 The recent approval of risdiplam 
(Evrysdi™), an orally deliverable small molecule, addresses 
these concerns.122-124 Here we review the mechanism of action 
of risdiplam, its target specificity, and potential off-target effects. 
We also discuss how available SMA drugs would potentially 
complement each other for a better treatment of the disease. 
Other SMA therapies currently in preclinical and clinical stud-
ies/trials have been described elsewhere.5,125,126

Discovery of Risdiplam as a Therapeutic Candidate
A joint endeavor by PTC-Roche (PTC Therapeutics, South 
Plainfield, New Jersey and Hoffmann-La Roche, Basel, 
Switzerland) to identify an orally available molecule for the treat-
ment of SMA began about a decade ago. Investigators at these 
companies screened a library of small molecules and reported 
three orally deliverable compounds, namely SMN-C1 (isocou-
marin), SMN-C2 (coumarin), and SMN-C3 (pyrido-pyrimidi-
none derivative); each promoted exon 7 inclusion from SMN2 
minigene expressed in HEK293H human embryonic kidney cell 

Figure 2. Structure of orally available small molecules used in pre-clinical and clinical studies for the treatment of SMA. SMN-C1, SMNC-2, and SMN-C3 

were the first set of compounds reported by PTC-Roche (PTC Therapeutics, South Plainfield, New Jersey and Hoffmann-La Roche, Basel, Switzerland) 

to correct SMN2 exon 7 splicing with high specificity. Most mechanistic studies have been done using SMN-C3 and SMN-C5. Clinical trial of RG-7800 by 

PTC-Roche was terminated due to its toxicity in cynomolgus monkeys. Risdiplam has gone through multiple clinical trials by PTC-Roche and has recently 

been approved by FDA. Branaplam is in clinical trial by Novartis Pharmaceuticals. PK4C9 and TEC-1 are the newly reported compounds to show specific 

splicing correction of SMN2 exon 7.
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line127 (Figure 2). These compounds also promoted exon 7 inclu-
sion in mRNAs generated from the endogenous SMN2 and 
increased SMN levels in SMA patient fibroblasts and patient-
derived induced pluripotent stem cells (iPSCs). The results of 
RNA-seq conducted using type 1 SMA fibroblasts treated with 
500 nM of SMN-C3 showed high target specificity of the com-
pound for SMN2 exon 7 splicing correction, although limited 
off-target effects were also captured. For instance, expression of 
important genes including DNA polymerase N (POLN) and PAP-
associated domain containing 4 protein (PAPD4) were significantly 
altered.127 Also, SMN-C3 promoted inclusion of several exons in 
mRNAs generated from Pyridoxal-dependent Decarboxylase 
Domain Containing 1 (PDXDC1), a gene associated with an 
increased risk for brain cancer.127,128 In vivo studies employing a 
mild SMA mouse model (allele C model) as well as a severe 
SMA mouse model (SMA Δ7 model) confirmed splicing correc-
tion of SMN2 exon 7 and upregulation of SMN upon oral or 
intraperitoneal (IP) administration of SMN-C3.127 IP adminis-
tration of SMN-C3 conferred substantial gain of lifespan and 
improvement of neuromuscular junction (NMJ) phenotype of Δ7 
mice. However, based on their potential genotoxicity, phototoxic-
ity, and/or chemical instability in plasma or aqueous buffers, none 
of the above-mentioned molecules advanced on to the human 
clinical trials.

With the realization that the compounds present in the 
existing library have a high potential for direct clinical applica-
tions, PTC-Roche began the process of designing improved 
versions of their active small molecules. As a result, three novel 
pyrido-pyrimidinone derivatives were “created,” namely, com-
pounds 3, 4, and 5; all displayed negative genotoxicity in the 
universally used Ames assay and showed very high therapeutic 
efficacy in the SMAΔ7 mouse model.129 Compound 3, also 
known as RG7800, was selected for the subsequent human 
clinical trial that began in 2014. In parallel to the human clinical 
trial, RG7800 was also evaluated in cynomolgus monkeys for 
chronic toxicity. Due to nonreversible adverse effects on mon-
key retina, RG7800 clinical trial was put on hold.129 Uncertain 
about the success of RG7800, PTC-Roche chose another small 
molecule, risdiplam (also known as RG7916), an improved ver-
sion of RG7800, for clinical trials.123 Risdiplam selection was 
based on its superior in vivo efficacy in the SMAΔ7 mouse 
model as well as its reduced off-target effects tested in SMA 
patient fibroblasts as compared to RG7800.99 Risdiplam went 
through a relatively rapid clinical development, from the phase 
1 clinical trial ( January of 2016) to its FDA approval (August of 
2020).130 The fast approval of risdiplam was possible in part due 
to the well-defined parameters of therapeutic efficacy estab-
lished during the preclinical and clinical studies of nusinersen 
and gene therapy.

Mechanism of Action of Risdiplam
Currently, there is no consensus on the mechanism by which 
risdiplam (molecular mass 401.46 Da) promotes SMN2 exon 7 

inclusion with high specificity. A study led by investigators at 
California Institute for Biomedical Research (CIBR) showed 
that SMN-C3, one of the analogs of risdiplam, interacts with 
an AG-rich motif, AGGAAG, located in the middle of exon 7 
(Figure 3).131 Authors employed a series of in vitro and in vivo 
techniques to demonstrate a high specificity of direct interac-
tions between SMN-C3 and this AG-rich motif. Further, 
binding of SMN-C3 to this AG-rich motif was proposed to 
recruit stimulatory splicing factors Far Upstream Element 
Binding Protein 1 (FUBP1) and its homolog KH-type Splicing 
Regulatory Protein (KHSRP) (Figure 3).131 Supporting this 
hypothesis, depletion of FUBP1/KHSRP diminished the 
effect of SMN-C3 on SMN2 exon 7 splicing, particularly at 
low nanomolar concentrations of SMN-C3.131 A different 
study led by investigators at Hoffmann-La Roche suggested 
that the interaction of SMN-C class of compounds with the 
AG-rich motif displaces hnRNP G.132 Previous studies have 
implicated the role of hnRNP G in promoting of SMN2 exon 
7 inclusion, although it has been also argued that the stimula-
tory effect of hnRNP G on exon 7 splicing is mediated through 
Tra2-β1, which in turn interacts with the purine-rich motif 
located in the middle of exon 7.133,134 It is likely that the dis-
placement of hnRNP G is accompanied by the recruitment of 
stimulatory factors, including FUBP1/ KHSRP as proposed by 
investigators at CIBR.

In addition to the interaction with the AG-rich motif, 
SMN-C class of compounds have been shown to interact with 
the 5′ss of exon 7, particularly with the adenosine residue at the 
last exonic position (54A) (Figure 3).132 Of note, the inhibitory 
effect of 54A was first uncovered by in vivo selection of the 
entire exon 7.79 Consistently, replacement of 54A with 54G 
(A54G substitution) fully restores SMN2 exon 7 inclusion 
even when the Tra2-β1-binding site in exon 7 is destroyed.79 
Importantly, 54A also strengthens a stem-loop structure 
(TSL2) that sequesters the 5′ss of exon 7 (Figure 1). When it 
comes to the 5′ss recognition, 54A creates a bulge (a mismatch 
base pair) in the duplex formed between the U1 snRNA and 
the 5′ss of exon 7.90 Strengthening of the U1:5′ss duplex by a 
compensatory mutation within U1 snRNA has been shown to 
have the similar stimulatory effect on SMN2 exon 7 inclusion 
as the one observed with the A54G substitution.90

A recent study by Allain and colleagues employing NMR 
confirmed the interaction between SMN-C5 and 54A in 
the context of the U1:5′ss duplex (Figure 3).135 The authors 
proposed that SMN-C5 stabilizes the U1:5′ss duplex by 
“5′ss bulge repair,” restoring the accessibility of the U1-C 
zinc finger for the interaction with the minor groove of the 
duplex.135 While stabilization of the U1:5′ss duplex by 
SMN-C5 seems to be sufficient to promote SMN2 exon 7 
inclusion, the authors did not rule out the role of additional 
factors recruited by SMN-C5 to the AG-rich motif. A 
caveat in the SMN-C5-induced U1:5′ss duplex model is its 
inability to explain why lower concentrations of SMN-C 
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series of compounds were ineffective in the promotion of 
SMN2 exon 7 inclusion upon depletion of splicing factors 
FUBP1/KHSRP.131

All mechanistic studies proposed thus far have been per-
formed employing risdiplam analogs but not risdiplam itself. 
Some of the disparities in the proposed mechanisms of action 
could lie in the methods employed and risdiplam analogs used. 
Given the structural differences between risdiplam and its ana-
logs (Figure 2), it is not a matter of fact that the mechanism 
proposed for a risdiplam analog will also hold true for risdiplam 
itself. Additional studies including analysis of exons associated 
with the off-target effects of risdiplam would be needed to fully 
understand its mechanism of action.

Off-Target Effects of Risdiplam
The first RNA-seq performed on transcripts isolated from 
SMN-C3-treated SMA type I fibroblasts provides insight into 
the nature of off-target effects of C-series of small molecules 
that are analogs of risdiplam.127 Analysis of this RNA-seq 
revealed that SMN-C3 treatment altered splicing of 42 exons, 
6 of which underwent a change of greater than 40%. The effect 
on splicing of the top 10 candidate exons including SMN2 
exon 7 is shown in Figure 4a. Analysis of the sequences sur-
rounding the 3′ss of the affected exons revealed a slight, but not 
significant enrichment in the AG-rich motif (Figure 4b). 
However, similar motifs were not enriched in total exonic 
sequences or in the vicinity of the 5′ss (Figure 4b). SMN-C3-
affected “off-target” exons had a strong enrichment for a GA 
dinucleotide at their two last positions followed by a consensus 

GUAAGU 5′ss sequence (Figure 4b and c). Interestingly, 
SMN-C3 also triggered the inclusion of previously unanno-
tated exons and in at least one case promoted intron retention 
(Figure 4d). For instance, inclusion of an unannotated exon 
positioned between exons 3 and 4 of the SNAP23 gene was 
accompanied by a significant retention of the downstream 
intron (Figure 4d). As compared to its precursors, low concen-
trations of risdiplam showed similar off-target effects on pre-
mRNA splicing in a cell culture model.123 However, it is 
predicted to exhibit superior target specificity and stability in 
vivo due to novel modifications that were introduced to prevent 
its conversion into potentially harmful active metabolite(s).123 
It should be noted that at high concentrations, risdiplam did 
produce off-target effect on splicing of several genes, including 
STRN3, FOXM1, APLP2, MADD, and SLC25A17 (Figure 
4).123 The off-target effect of risdiplam on splicing of exons of 
several genes could be attributed to the similarity of the 5′ss 
context and sequence motifs present within the affected “off-
target” exons (Figure 4).

In Vivo Efficacy of Risdiplam in Mouse Models
Risdiplam showed enhancement in expression of SMN in 
brain and quadriceps muscle upon oral administration in a 
mild SMA mouse model (allele C model).123 Intraperitoneal 
(IP) mode of delivery was used to monitor the efficacy of ris-
diplam in severe (SMAΔ7) mouse model. IP administration of 
risdiplam at a concentration as low as 1 mg/kg of body weight 
produced a robust enhancement in SMN levels in brain and 
quadriceps muscle of these mice.123 Also, risdiplam-treated 

Figure 3. Potential mechanism of action of risdiplam. Risdiplam analogs SMN-C3 and -C5 are depicted as red stars. SMN-C3 has been shown to interact 

with an AG-rich motif (shown in green letters) located in the middle of exon 7.131 SMN-C3 has been proposed to recruit splicing factors FUBP1 and 

KHSRP.107 SMN-C5 has been proposed to promote recruitment of U1 snRNP by directly binding to 54A at the 5′ss of exon 7.135 Interaction of U1 snRNP 

with the 5′ss of exon 7 has been depicted. Drawing is not to scale.
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SMAΔ7 mice showed a dose-dependent improvement of NMJ 
phenotype and an increase in the number of motor neurons 
and the size of the extensor digitorum longus (EDL) muscles. 

Higher IP doses of risdiplam (10 mg/kg of body weight) pro-
vided one of the best life expectancy gains reported in the lit-
erature.123 For instance, more than 70% of SMAΔ7 mice 

Figure 4. Off-target effects of risdiplam or its analog SMN-C3. (a) Splicing pattern of SMN2 exon 7 and ten other splicing events affected by SMN-C3 

treatment as reported by Naryshkin and coworkers.127 Y axis indicates the proportion of total spliced transcript that has the exon in question included. X 

axis labels indicate the host gene and exon number of the target exons. NE: novel (unannotated) exon, (b) top enriched sequence motifs near the 3′ and 

5′ss of the exons, splicing of which was changed by SMN-C3. Letter height in each motif corresponds to nucleotide enrichment at that position, (c) the 

sequences of 5“off-target” exons, splicing of which was affected by risdiplam, as reported by Ratni and coworkers.123 Numbering is given relative to the 

first position of each exon. Uppercase letters represent exonic sequences, lowercase letters represent intronic sequences. The longest AG-rich motif in 

each exon is boxed. The last two exonic nucleotides and the first six intronic nucleotides of the 5′ss are shown in bold. Each shaded/clear area “cover” ten 

consecutive nucleotides. An additional 5′ss within exon 9 of FOXM1 is indicated with an asterisk, and (d) genomic overview of two examples of splicing 

events induced by SMN-C3 treatment. POMT2 (top panel) contains a novel, unannotated exon located in the region between exons 11 and 12. Inclusion 

of this unannotated exon is caused by SMN-C3 treatment, as shown by the increased read depth. SNAP23 (bottom panel) has a novel exon (between 

exons 3 and 4) that undergoes inclusion. This is coupled with intron retention, as indicated by increased read depth in the flanking introns.
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survived beyond seven months upon treatment with risdiplam 
at 10 mg/kg of body weight. In further studies in several SMA 
mouse models as well as in rats and non-human primates, ris-
diplam displayed excellent pharmacokinetic and pharmacody-
namic properties, such as body-wide distribution and stable 
plasma levels over extended dosing periods.124 These results 
were sufficient to launch clinical trials of risdiplam for its eval-
uation in SMA patients.

Clinical Trials and FDA Approval of Risdiplam
Several clinical trials of risdiplam have been performed to eval-
uate the safety, tolerability, and efficacy of the drug in both 
healthy and SMA patients. Two of these clinical trials, first in 
the infantile-onset (NCT02913482) and second in the later-
onset SMA patients (NCT02908685) were significant for the 
approval of risdiplam.130 The clinical trial for infantile-onset 
SMA was an open-label study in which 21 patients, whose 
average age was ~6.7 months, participated.130 About 41% 
patients showed ability to independently sit after 12-month 
treatment. Also, the patients showed more than 81% survival 
without permanent ventilation after 23 or more months of 
treatment. These results were considered as a significant 
improvement over the untreated patients in a similar category. 
The clinical trial with the later-onset SMA patients was rand-
omized and placebo-controlled in which 180 SMA patients 
aged from 2 to 25 years participated.130 Risdiplam-treated 
patients performed significantly better in motor function tests 
than untreated patients. On August 7, 2020 FDA granted 
approval of risdiplam (Evrysdi™) under the fast-track designa-
tion and rare pediatric disease priority review process.130

Side Effects of Risdiplam
The most common side effects in clinical trials of risdiplam 
were fever, rash, ulcers of the mouth area, joint pain (arthral-
gia), diarrhea, and urinary tract infections.130 The infantile-
onset population receiving risdiplam had additional side effects 
including upper respiratory tract infection, pneumonia, vomit-
ing, and constipation.130 Currently, it is not known if the side 
effects are directly linked to the off-target effects of risdiplam.

Conclusion
Recent approval of risdiplam, an orally deliverable small mol-
ecule, is a major advancement for the treatment of SMA. The 
noninvasive mode of administration coupled with body-wide 
distribution provide risdiplam with clear advantages over other 
approved therapies. Risdiplam availability is particularly great 
news for a group of SMA patients that might have tolerability 
and/or immune response concerns when it comes to nusinersen 
and gene therapy. Storage and shipping at ambient tempera-
tures as well as its comparatively low cost are added benefits of 
risdiplam for its worldwide availability/distribution. In com-
parison to its “parent analogs,” risdiplam is predicted to exhibit 
reduced off-target effect in vivo, particularly at lower concen-
trations. Similar to other approved drugs for SMA, side effects 

encountered during the clinical trials of risdiplam remain a 
cause of concern. Future studies will reveal if the side effects 
associated with the frequent administration of risdiplam would 
pose a hurdle for its acceptance for the long-term treatment. In 
addition, risdiplam may not be useful for SMA patients that 
carry pathogenic mutations at the 5′ss of SMN exon 7.136 
Activation of a cryptic 5′ss downstream of exon 7 by an engi-
neered U1 snRNP could be an alternative therapeutic approach 
in this case.136,137 In fact, in vivo efficacy of the engineered U1 
snRNP has been validated in a mouse model of SMA.138 
Future studies aimed at the activation of the cryptic 5′ss down-
stream of exon 7 of the SMN genes by a small molecule will 
cater to the needs of a broader patient population.

One of the exciting aspects of risdiplam’s approval is the vali-
dation of the utility of a small molecule for targeted splicing 
correction as a promising therapy. Another orally available small 
molecule, branaplam, that modulates SMN2 exon 7 splicing 
with high specificity is about to conclude the phase 2 clinical 
trial (NCT02268552) conducted by Novartis Pharmaceuticals 
(Figure 2).139,140 Branaplam (synonyms: NVS-SM1 and 
LMI070) was identified by high-throughput screening of the 
Novartis compound library, followed by chemistry optimiza-
tion.139,141 It was shown to modulate splicing, elevate levels of 
the full-length SMN protein and increase the survival of a 
severe SMA mouse model.141 Despite structural differences 
between branaplam and risdiplam, the proposed mode of action 
of branaplam appears to be similar to that of risdiplam.141 Both 
drugs stabilize the U1:5′ss duplex at the 5′ss of SMN2 exon 
7.135,141 Two more small molecules, PK4C9 and TEC-1, have 
been recently reported to enhance SMN2 exon 7 inclusion with 
high specificity (Figure 2).142,143 TEC-1 has been found to be 
permeable to the central nervous system and confer therapeutic 
efficacy in a mouse model of SMA.142 While the mechanism of 
TEC-1 action has not yet been examined, PK4C9 has been 
shown to interact with a structural element, namely the tri-loop 
of TSL2.142,144 Incidentally, sequences encompassing the tri-
loop of TSL2 has been found to overlap the “3′-cluster,” a nega-
tive element identified by in vivo selection of the entire exon 7 
(Figure 1).79,81 These findings expand the number of potential 
targets that could be exploited for developing small molecules 
therapies for SMA. In addition, several orally available small 
molecules that work downstream of SMN or independent of 
SMN are currently undergoing pre-clinical and clinical stud-
ies.5,140,145 Diverse treatment options currently being exploited 
for SMA are commensurate with the varied needs of the broad 
spectrum of SMA patients.

To harness the full potential of available treatment options, it 
is likely that the combined therapies would become the desired 
approach for the treatment of SMA. Recent studies of the com-
bined therapies (in mouse models of SMA) in which one of the 
components was an ISS-N1 targeting ASO have shown prom-
ising results.25,146-148 Now that risdiplam is approved, future 
studies will reveal if it could be combined with other drugs for a 
better therapeutic outcome. For example, risdiplam could be 
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used together with an “SMN-independent” treatment(s) target-
ing muscle or neurological functional deficits observed in SMA 
to further alleviate symptoms of the disease. Using risdiplam 
together with other splicing-modulating drugs that work by 
complementary mechanisms, such as nusinersen, holds the 
promise to enhance the expression of full-length SMN, while 
maintaining minimum off-target effects on other splicing 
events due to lowering the treatment dose. With the prece-
dence-setting success of risdiplam coupled with the discovery of 
additional small molecules capable of modulation of SMN2 
exon 7 splicing with high specificity, prospects of small molecule 
therapeutics for the treatment of SMA appears to be on the fast 
track. In addition, these advancements should serve as a catalyst 
for the development of novel therapeutics for other genetic dis-
eases amenable by splicing modulation.
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