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Abstract: The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, is important
for xenobiotic metabolism and binds to various endogenous and exogenous ligands present in the
skin. AhR is known to be associated with diseases in various organs; however, its functions in chronic
inflammatory skin diseases, such as atopic dermatitis (AD) and psoriasis (PS), have recently been
elucidated. Here, we discuss the molecular mechanisms of AhR related to chronic inflammatory
skin diseases, such as AD and PS, and the mechanisms of action of AhR on the skin immune system.
The importance of AhR molecular biological pathways, clinical features in animal models, and AhR
ligands in skin diseases need to be investigated. In conclusion, the therapeutic effects of AhR ligands
are demonstrated based on the relationship between AhR and skin diseases. Nevertheless, further
studies are required to elucidate the detailed roles of AhR in chronic inflammatory skin diseases.

Keywords: aryl hydrocarbon receptor; CYP1A1; psoriasis; TCDD; 2,3,7,8-tetrachlorodibenzo-p-dioxin

1. Introduction

The aryl hydrocarbon receptor (AhR), which binds to exogenous and endogenous
chemicals and regulates the expression of several genes, is a ligand-dependent transcription
factor. It is ubiquitously expressed in various cells, including those of the skin derived from
early evolutionary organisms, and exhibits either a positive or negative effect [1].

AhR is a sensor for xenobiotic chemicals that modulates adaptive and toxic responses
to a variety of chemical contaminants, including polycyclic aromatic hydrocarbons and
polychlorinated dioxins, especially 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [2]. It also
acts as a modulator of enzymes such as cytochrome P450 that metabolize these chemicals.
According to a previous study, AhR plays a multifaceted physiological role as an environ-
mental, dietary, or microbial signal [2]. For instance, the action of AhR in liver and breast
inflammation has been examined [2]. The role of AhR in various immune responses is also
crucial [3].

AhR has been shown to have important functions in the differentiation of many
developmental processes, including those related to hematopoiesis, the lymphatic system, T
cells, neurons, hepatocytes, and hematopoietic stem cells. AhR has recently been recognized
as a crucial modulator of host-environment interactions in immune and inflammatory
responses [3–5]. AhR is highly expressed in all skin cell types and regulates many genes
that are important for basic skin function [6]. AhR signaling plays an important role in the
development of skin barrier and melanogenesis in human skin cells [7]. Furthermore, AhR
signaling is critically involved in the pathogenesis of several diseases involving organs
such as the lungs [8], kidneys, liver [2], breast [6], and central nervous system [9]. The
role of the AhR signaling pathway in cardiac toxicity associated with acute lead poisoning
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has been studied under in vitro and in vivo conditions in murine models [9]. Therefore,
AHR may be a potential therapeutic target gene. In recent years, interest in the effects of
AhR on psoriasis (PS) and atopic dermatitis (AD) has steadily increased. It started with
the discovery that exogenous AhR ligands related to activities such as smoking and air
pollution exacerbate these two chronic inflammatory skin diseases. AhR is involved in the
regulation of skin immunity and barrier function through a complex mechanism rather
than simply exacerbating these inflammatory diseases. These factors may play conflicting
roles in inflammation. Keeping this in mind, the purpose of this review is to organize the
research outputs related to AhR and inflammatory diseases. Towards this end, we review
in vivo and in vitro studies on AhR, primarily focusing on psoriasis and atopic dermatitis.

2. Molecular Mechanisms of AhR Pathway in the Skin
2.1. Canonical

In a recent study, AhR was found to regulate canonical and non-canonical pathways
(Figure 1). The canonical signaling pathways are described as follows. First, AhR canonical
signaling begins in the cytoplasm, wherein AhR is bound by a chaperone complex [10].
AhR regulates xenobiotic-metabolizing enzymes, such as cytochrome P450 1A1 (CYP1A1),
which are expressed widely throughout the human body [11]. In the canonical AhR signal-
ing pathway, CYP1A1 is induced by AhR activation [12–14]. AhR exists in the cytoplasm
as a multi-protein complex consisting of two chaperone proteins [15]. Activated by a
ligand, the AhR complex eventually binds to a DNA-recognized genomic region, the
dioxin response element (DRE) located upstream of the CYP1A1 and AhR repressor (AhRR)
genes (Figure 1) [16]. Induction of transcription of additional phase 1 xenobiotic metab-
olizing enzymes such as CYP1A2 and CYP1A1 is driven by the AhR complex signaling
pathway [17,18]. It regulates AhR activation by three different checkpoints in the canonical
AhR signaling pathway: (a) proteasomal degradation of AhR, (b) metabolism of ligands
by CYP1A1, and (c) disruption of the AhR:ARNT complex by AhRR [17–19]. The role of
aryl hydrocarbon receptor nuclear translocation proteins in the action of aryl hydrocarbon
(dioxin) receptor is also known. The Aryl hydrocarbon receptor nuclear translocator (Arnt)
is a basic helix-loop-helix transcription factor that heterodimerizes with AhR to mediate
signal transduction pathways stimulated by 2,3,7,8-tetrachlorodibenzo-p-dioxin [19]. In ad-
dition, it may result in activation of the tyrosine kinase c-Src by ligand-induced dissociation
of the cytoplasmic multiprotein complex, which in turn activates epidermal growth factor
receptor and downstream mitogen-activated protein kinase (MAPK) signaling [19]. TCDD
is one of the ligands that mediate signal transduction through the protein phosphorylation
pathway and c-Src, an essential component of the cytoplasmic AhR complex [19].

2.2. Non-Canonical

AhR is activated in the absence of DRE at different transcription start sites in AhR-
responsive genes, suggesting a non-canonical pathway (Figure 1) [20,21]. A direct inter-
action between AhR and nuclear factor-κB (NF-κB) decreases the expression of CYP1A1
and induces the expression of cytokines and chemokines, such as the B cell-activating
factor of the tumor necrosis factor family and the transcription factor interferon responsive
factor [22].

The involvement of RelB in AhR-mediated induction of chemokines is also known [22].
This was also confirmed by the results of our study on AhR and NF-kapaB interaction
at the epigenetic stage. Our published data indicates that treatment with Bay-117082, an
inhibitor of NF-κB activation, reduces the activation of AhR-related genes (e.g., CYP1A1
and AhRR) [23].

Research on AhR often leads to contradictory interpretations of inflammatory skin
diseases. Recent studies have shown that blocking AhR activation is desirable in some
skin conditions; however, in the opposite case, stimulating AhR activation inhibits skin
inflammation. In the following section, we examine the conflicting findings.
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P4501A1 (CYP1A1), a canonical pathway, and activates in the absence of DRG at different transcrip‐
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canonical AhR pathway AhR regulates xenobiotic metabolizing enzymes such as cytochrome P4501A1
(CYP1A1), a canonical pathway, and activates in the absence of DRG at different transcription start
sites of AhR responsive genes, suggesting a non-canonical pathway.

3. AhR Is an Exacerbation Factor for Inflammatory Skin Disease
3.1. Cutaneous Immune Function

AhR regulates cell differentiation and plasticity, and its overactivation causes severe
skin lesions in humans [24]. Dioxin, one of the ligands of AhR, has been reported to
induce skin inflammation in vivo. In an in vivo study, Rudyak et al. reported that TCDD
treatment alone increased dermal infiltration by mast cells, macrophages and several
inflammatory cells in HRS/h/hairless mice. Induction of an increase in inflammatory
expression by TCDD was also demonstrated. In addition, increased expression of cytokines
such as inflammatory markers IL1β, IL6, IL22, TNF-α and cysteine-rich protein 61 was also
confirmed [25].

3.2. In Vivo Studies on AhR

To date, many scientists have examined the effects of exposure to TCDD (an AhR
agonist) in humans and the mechanisms of AhR activation. Takanori Hidaka et al. con-
firmed that epidermal keratinocyte-specific constitutive AhR activation is induced in atopic
dermatitis (AD)-like inflammation [26]. Moreover, several investigators have attempted to
confirm the previously observed role of TCDD in AhR metabolic enzyme activities, and
AhR-null mouse models were created in the mid-1990s. In fact, the generation of such mice
led to a full-blown transformation of studies on AhR [27]. An AhR-null mouse model was
generated to characterize mice lacking AhR expression [28–30]. In general, AhR deficiency
in non-hematopoietic cells exacerbates skin inflammation [31].

3.3. In Vitro AhR Assay

According to a previous study, AhR is involved in mediating the effects of antioxidant
phytochemicals in atopic dermatitis [32]. AhR is a chemical sensor abundantly expressed in
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epidermal keratinocytes. Oxidative AhR ligands induce the production of reactive oxygen
species (ROS) [32]. Upon ligand binding, cytosolic AhR undergoes nuclear translocation,
and transcription of various AhR-responsive genes is induced by CYP1A1. Although it
detoxifies polyaromatic compounds, AhR can be detrimental because the activity of the
CYP1A1 enzyme generates ROS in mutant metabolites [1,7,33,34]. It is the environmental
pollutant benzo(a)pyrene that induces oxidative stress-mediated interleukin-8 production
in human keratinocytes via the AhR signaling pathway [33,34].

4. AhR as a Mitigating Factor in Inflammatory Skin Disease
4.1. Cutaneous Immune and Barrier Function

In skin tissue, AhR plays an important role in maintaining skin homeostasis, such
as environmental toxin metabolism, intracellular redox balance, response to ultraviolet
(UV) light, diseases related to melanogenesis, regulation of immune processes and epi-
dermal barrier function (Figure 2) [35]. Therefore, the relationship between AhR and
skin homeostasis has been studied in the context of barrier physiology, immunology and
toxicology [35]. Activation of the OVO-like 1 (OVOL1) transcription factor is initiated by
the AhR:ARNT complex, which, in turn, enhances the expression of filaggrin (FLG) and
loricrin (LOR), accelerates epidermal barrier formation in the epidermis, and differentiates
keratinocytes [36]. Additionally, AhR-mediated activation of transcription factors such
as Nrf2 induces cytoprotective antioxidant responses that suppress oxidative stress and
restore skin homeostasis (Figures 3 and 4) [37,38].
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Studies have also provided insights into the potential the role of tryptophan-derived
AhR ligands by physiological and pathological processes in the skin. AhR-mediated
immune response may be associated with high AhR expression in skin cells [39]. AhR is
expressed on immune cells including antigen-presenting cells, T cells, fibroblasts, macroph-
ages, mast cells and other skin immune cells.; The function of antigen-presenting cells,
including Langerhans cells, and cytokine expression are required by the expression of
AhR [27]. Terminal differentiation of CD4+ T helper (Th) 17 and Th 22 cells and expression
of IL-17 and IL-22 cytokines have been shown to be regulated by AhR signaling [40,41].
AhR is known to regulate the peptidoglycan-induced expression of inflammatory genes in
human keratinocytes. Bacterial peptidoglycan-induced skin inflammation in keratinocytes
is regulated by AhR, which modulates the expression of inflammatory genes [42]. In brief,
AhR is involved in many skin functions, including those of the skin immune network as
well as in cell homeostasis (Figure 3).

4.2. In Vivo Studies on AhR

In one study, the dorsal skin of AhR-null mice showed hyperkeratosis, acanthosis, and
marked dermal fibrosis, suggesting a role for AhR in controlling skin differentiation [43].
Consequently, skin wounds of AhR-null mice healed faster, probably because of reduced
inflammation [44]. Paola Di Meglio et al. confirmed that AhR agonist 6-formylindolo[3,2-
b] carbazole attenuates imiquimod-induced psoriasis (PS)-like dermatitis [31]. Several
mice experiments were also investigated to investigate AhR function. Andreola F et al.
confirmed that AhR-deficient mice are defective in retinoic acid metabolism [45]. Resistance
to benzo[a]pyrene-induced carcinogens was confirmed [46]. Bettina Jux et al. suggest that
AhR-deficient mice have defective Langerhans cell (LC) maturation [47], and Stephanie
Kadow et al. found AhR-deficient mice are lacking dendritic epidermal T cells [48]. Chien-
Hui Hong et al. confirmed that selective AhR knockout in the epidermal LC causes the
loss of LC and immune phenotype skewing [49]. In addition, the association between
AhR and skin barrier function has been studied [44]. In experiments performed by Hass
et al. conditionally AhR-deficient mouse lines exhibited AhR targets identified by many
barrier-associated genes by analysis of weak intercellular connectivity and gene expression
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in the epidermis of keratinocytes. Kim et al. reported that rapamycin, a molecule that
reduces the formation of ROS, alleviated TCDD-and imiquimod-induced psoriasis-like
skin dermatitis via AhR and autophagy modulation [50]. In a study performed on mouse
keratinocytes, Rico-Leo et al. used AhR−/− mice to investigate the effect of AhR by
receptor depletion [24]. These findings support that AhR regulates skin regeneration and
homeostasis by ensuring epidermal stem cell identity, thus highlighting this receptor as a
potential target for the treatment of skin pathologies [51].

4.3. In Vitro AhR Assay

AD is characterized by increased expression of the type 2 cytokines IL-4 and IL-13;
in particular, IL-13 has been highlighted as having pathological significance. This has
been shown by accumulating evidence of skin barrier function regulated by competition
between the AhR axis (barrier upregulation) and the IL-13/IL-4-JAK\STAT6/STAT3 axis
(barrier downregulation). (Figure 4) [52]. Kim et al. discovered AhR antagonists that
block TCDD-driven enzymatic activity [53]. They identified a novel compound, 2-methyl-
2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191), which
potently inhibited TCDD-induced AhR-dependent transcription. Currently, CH-223191 is
used to block the binding of TCDD to AhR, which inhibits the TCDD-mediated nuclear
translocation and DNA binding of AhR.

Studies on the regulation of FLG, LOR, and IVL expression mediated by AhR have
also been reported. AhR activation restores FLG expression by OVOL1 in AD. IL-13/IL-4
has been shown in epidermal keratinocytes to bind to the heterodimeric IL-4Rα/IL-13Rα1
and activate the downstream JAK1/TYK2/JAK2 and STAT6/STAT3 axes [54]. Inhibition of
AhR-mediated upregulation of FLG, LOR and IVL appears to correlate with activation of
the IL-13/IL-4-JAK-STAT6/STAT3 axis [28,55,56]. On the other hand, inhibiting IL-13/IL-4
mediated STAT6 phosphorylation, and restoring IL-13/IL-4 mediated FLG reduction is
achieved by activation of the AhR axis [57]. In addition, cytoplasmic-to-nuclear transloca-
tion of OVOL1 and inhibition of FLG and LOR expression are induced by activation of the
IL-13/IL-4-JAK-STAT6/STAT3 axis (Figure 4) [28,56]. AhR has effects of inflammatory skin
diseases, but there is still a long way to go before its practical against inflammatory diseases.
Further studies are needed to better understand clinical and pathological correlations.

5. Ligands of AhR in Skin

AhR activation depends on a specific ligand, a structurally diverse spectrum of syn-
thetic and environmental chemicals including dietary components, microbiota-derived
factors, and endogenous tryptophan metabolites, as well as the interaction with specific
co-modulators of gene transcription and/or other transcription factors [58,59]. AhR, at
the intersection of these interaction signaling networks, has been reported to demonstrate
therapeutic value [59]. The list of AhR ligands is impressive and strikingly diverse. Because
of the abundance of AhR, it plays an important role in several physiological processes,
including ligand pleiotropic function, AhR, xenobiotic metabolism, immune response, cell
proliferation, differentiation and apoptosis [60,61].

In the skin, FLG expression in keratinocytes is dependent on AhR activity, by which
AhR ligation leads to nuclear translocation of OVOL1 and subsequent FLG transcrip-
tion [62]. The AhR-ARNT-FLG signaling pathway can be activated by rapidly metabolized
AhR ligands such as indole-3-aldehyde (IAId) or 6-formylindolo[3,2-b] carbazole (FICZ),
as well as by exogenous dioxins [63,64]. AhR ligands are formed from several sources,
including exogenous and endogenous ligands (Figure 5).
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5.1. Exogenous Environmental Pollutants

Environmental pollutants of AhR ligands include dioxins, polycyclic aromatic hydro-
carbons (PAHs), and halogenated aromatic hydrocarbons [65–68]. For example, benzopy-
rene, the major PAH in smoke, recruits Langerhans cells and polarizes the Th2/17 response
during epidermal protein sensitization via AhRs. The relationship between smoking and
the clinical severity of PS has also been demonstrated [52]. The AhR ligand in environmen-
tal pollutants is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [69]. TCDD is a most toxic
compounds and one of a family of isomers known chemically as dibenzo-p-dioxins. It has
various systemic effects at a wide range of exposure concentration, such as developmental
defects, cancer, wasting syndrome, hepatosteatosis, thymus involution, and dysregulation
of immune responses, which are widely observed in different species [70–74]. Additionally,
it binds to AhR and balances mucosal reactivity through interleukin-22 [74].

5.2. Particulate Matter (PM)

In addition, PM consisting of ions, organic compounds, metals and PAHs induce
ROS formation and autophagy in human keratinocytes [75,76]. PM2.5 led to keratinocyte
proliferation and differentiation via AhR activation as a result of the hyperkeratotic epi-
dermis [57,77]. It was confirmed that AhR expression is increased in patients with chronic
inflammatory skin disease [77]. In a recent study, Kim et al. showed that PM2.5-induced
TNF-α and FLG deficiency through AhR activation pathways, inducing skin barrier dys-
function [78]. Furthermore, a recent study on PM2.5 suggested that it can induce melano-
genesis in keratinocytes via AhR-MAPK signaling pathways [78]. Although our results
have not yet been published, the regulation of PM2.5-induced inflammatory cytokines by
AhRs has been confirmed.
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5.3. Endogenous Ligands

Endogenous ligands include tryptophan metabolites such as FICZ, kynurenines, and
ligands provided by commensal microbiota [74]. The tryptophan catabolites of the micro-
biota bind to AhRs and balance mucosal reactivity via interleukin-22 [74].

Tryptophan-derived AhR ligands, kynurenine (KYN), kynurenic acid (KYNA), and
FICZ also regulate melanoma cell proliferation, cell cycle regulation, and apoptosis [79].
KYN, the main metabolite of tryptophan in mammals, is a direct precursor of KYNA,
anthranilic acid, and 3-hydroxykynurenine. The expression of KYNU, which encodes an
enzyme involved in tryptophan metabolism, is upregulated in psoriatic skin lesions [79].
KYN activates CYP1A1 and plays a more important role in AhR-dependent immunological
responses than in the metabolism of xenobiotics [80]. Moreover, KYN participates in
disease tolerance pathways and represents a link between tryptophan catabolism and the
AhR signaling pathway through immunosuppressive mechanisms [81]. Even in vitiligo,
L-tryptophan metabolism influences the immune response, ROS, and aryl hydrocarbon
receptor-mediated immune response signaling.

5.4. Tryptophan Metabolites Generated by UV Irradiation

UV light, which is a typical source of physiological ligands, generates a high-affinity
ligand, FICZ, from tryptophan. In addition, hydrogen peroxide in the skin of vitiligo
patients can lead to the formation of FICZ [79,81]. FICZ is known to be effectively metabo-
lized by CYP1A1, which is an important link in AHR–CYP1A1 feedback regulation [82].
In human keratinocytes, FICZ promotes wound healing in an AhR-independent manner,
through extracellular signal-regulated kinase (ERK) signaling. [83].

5.5. Tryptophan Metabolites Are Produced by the Skin Microbiome

AhR ligands, such as bioproducts of microbiota, may permeate through the stratum
corneum, epidermis, and skin appendages, such as hair follicles, sweat, and sebum glands,
which serve as a “port d’entrée” for skin microbiota to colonize the deeper layers of the
stratum corneum [83,84]. Host-microbial interactions are also mediated via AhRs in skin
treatment applications [83]. Tryptophan, a major source of AhR ligand precursors, is
converted into derivatives or by-products through the metabolic activity or biochemical
reactions of the microbiota [85,86]. Some microbiota can metabolize tryptophan into
indole derivatives, such as indole-3-acetaldehyde and indole acetic acid, which are AhR
agonists [74,87–90]. Previous reports have demonstrated the importance of microbiota-
derived indole in regulating homeostasis through AhR activation [91–93].

6. AhR in Skin Diseases
6.1. Atopic Dermatitis (AD)

AD is a common and heterogeneous eczematous skin disorder characterized by Th
2-deviated skin inflammation, barrier disruption, and chronic pruritus [94–96]. Skin barrier
dysfunction is associated with reduced production of terminal differentiation molecules
such as FLG [57,97]. During targeted ablation, a complex of AhRs in the mouse epidermis
induces severe defects in ablation and epidermal barrier function [98]. The presence of
a AhR protein and mRNA levels of AhR have been reported in AD [63,77]. Hong et al.
has suggested increased AhR and ARNT expression without CYP1A1 induction in AD
skin lesions compared to normal control skin [98]. Alternatively, Kim et al. has suggested
increased expression of ARNT and CYP1A1 but not AhR in skin lesions of AD [77]. These
findings collectively suggest that there is a lack of physiological ligands for AhR in the Th
2-prone milieu in AD. Air pollution contributes to the exacerbation and development of
AD via the AhR pathway [99].

6.2. Psoriasis (PS)

The pathogenesis of increased skin infiltration and activation of effector CD4+ T cells,
including upregulation of Th 17 and Th 22 cells, are hallmarks of PS [100,101]. It is character-
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ized by the observation of unregulated AhR expression in psoriasis patients. Increased AhR
expression levels in serum from peripheral blood monocytes and PS patients compared to
healthy individuals ae associated with increased Th 22 cell and IL-22 expression [31,102].
Increased AhR expression in patients with chronic inflammatory skin disease has been
confirmed in several studies [77]. Increased AhR expression has been demonstrated in
skin biopsy samples of patients with PS, and treatment of skin cells with AhR ligands
in vitro results in the modulation of genes, including IL-6, IL-8, and type I and II interferon
pathway genes implicated in the pathogenesis of psoriasis [31,77]. Furthermore, in pso-
riasis, abnormal epidermal differentiation and impaired skin barrier function have been
associated with the downregulation of the expression of skin barrier proteins such as FLG
and LOR [103].

6.3. Vitiligo

Patients with vitiligo show significant upregulation of AhR transcription
factor [103–105]. AhR functions in melanogenesis and melanocyte proliferation and differ-
entiation and can modulate the production of cytokines such as IL-17a and IL-22 [103–105].
IL-17A and IL-22 are involved in vitiligo pathogenesis. In particular, AhR plays an im-
portant role in controlling the production of IL-22 in Th 22 cells [103,105]. Indeed, AhR
expression was significantly lower in CD4+ T cells and the skin of vitiligo patients than that
in healthy controls, and knockdown of AhR increased IL-17A production and decreased
IL-22 levels in CD4+ T cells of vitiligo patients [31]. In contrast, there was a sharp increase
in AhR mRNA expression in peripheral blood monocytes obtained from patients [105].

6.4. Acneiform Eruption/Chloracne

Chloracne is a condition characterized by acne-like eruptions of comedones, cysts,
and pustules that develop after exposure to substances such as dioxins and dioxin-like
compounds [106]. The pathogenesis of chloracne is also mediated by exposure to danger-
ous AhR ligands [106]. Substances such as dioxins and dioxin-like compounds increase
the expression of the enzyme CYP1A1 in skin cells such as keratinocytes, sebum cells,
and melanocytes of human skin through AhR, and overexpression of CYP1A1 has been
confirmed in the skin of patients with chloracne [106,107]. The binding of dioxin to AhR ac-
celerates epidermal terminal differentiation and converts sebaceous cells into keratinocytes,
resulting in chloracne [107].

6.5. Hidradenitis Suppruativa (HS)

The link between pharyngitis AhR and possible fungal pathogenesis has been demon-
strated [107]. HS is a debilitating, chronic, and recurrent skin disease of the hair folli-
cles, which typically manifests as painful, deep-seated, inflamed lesions in the apocrine
gland-bearing parts of the body; the etiology of the disease remains obscure [108]. How-
ever, it has been reported that IL-17 is strongly associated with the pathogenesis of HS
(Hidradenitis suppruativa), and AhR is involved in the regulation of IL-17 secretion by Th
17 cells [108,109]. AhR primarily aids the differentiation of Th 17 cells in conjunction with
exogenous or endogenous ligands. In addition, the skin microbiome regularly converts
tryptophan derived from the host skin into indoles, which regulate tissue inflammation
by binding to AhR [109]. Poorer AhR activation in HS skin lesions was confirmed, which
coincided with reduced generation of bacteria-derived AhR agonists and a lower incidence
of AhR ligand-producing bacteria in the local flora.

6.6. Skin Cancer

Tryptophan metabolites such as KYN, KYNA, and FICZ are AhR ligands that promote
melanoma cell growth in vitro [110,111], have antiproliferative and cytotoxic activities,
and promote apoptosis in melanoma A375 and RPMI7951 cells [110]. UVB, one of the
major causes of melanoma, has been shown to enhance the antiproliferative activity of
the KYN and KYNA, tryptophan metabolites of melanoma cells, A375, and SK-MEL-3
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RPMI-7951 in vitro [111]. A potential biological interaction between UVB radiation and
selected tryptophan-derived AhR ligands was also identified in melanoma cells. Moreover,
it was confirmed that UVB increases the inhibitory activity of KYN and KYNA on the
metabolic activity of melanoma SK-MEL-3 cells and enhances KYN-induced necrosis in
these cells. However, the biological mode of action of each compound differs in different
cells, and not all compounds are dependent on AhR [110,111].

7. Therapeutic Properties of AhR

The effects of AhR ligands as agonists or antagonists are dependent on several factors,
including ligand structure, specific genes, and the cell context-dependent expression of
important cofactors or coactivators [112]. The role of AhR in carcinogenesis has been
examined, the effects of an AhR ligand antagonist have been explored, and the potential of
AhR as a drug target has also been studied. As the Th 2-deviated milieu potently reduces
FLG and other barrier-related molecules, the upregulation of the AhR:ARNT complex
may compensate for attenuation of the Th 2-mediated FLG reduction in the skin barrier.
A recent discovery related to endogenous AhR ligands revealed a physiological role for
AhR in cell behavior and development, modulation of lymphoid cell development, and
induction of regulatory T cells [113–115]. It is also AhR that regulates gut immunity through
regulation of innate lymphocytes. The potential of a Th 2-biased environment to decrease
the production of endogenous AhR ligands such as indole-3-aldehyde by symbiotic skin
microbiota was studied by Yu et al. [115]. Therefore, FICZ and IAld, which are rapidly
metabolized AhR ligands, may be helpful in the treatment of AD by appropriately activating
the AhR-ARNT-FLG axis [62,116].

7.1. Coal Tar

Coal tar, which consists of a wide range of PAHs, is metabolized to detoxify internal
PAHs via CYP450 enzymes induced by AhR [116–119]. Coal tar induces AhR-dependent
skin barrier repair in atopic dermatitis. Recently, van den Bogaard et al. demonstrated that
coal tar restored FLG expression in FLG-haploinsufficient keratinocytes and counteracted
Th 2 cytokine-mediated downregulation of skin barrier proteins to wild-type levels. In
addition, in AD patients, coal tar completely restored the expression of major skin barrier
proteins, such as filaggrin, and diminished the levels of Th 2 cytokines IL-4 and IL-13 [57].

7.2. Oleanolic Acid

Oleanolic acid, a biological compound of Lingustrum lucidum, inhibits PM2.5-induced
autophagy in keratinocytes. A study has been published on the regulation of oleanolic acid
and AhR activation. In a study by Kim et al., oleanolic acid was shown to suppress CYP1A1
expression by AhR activation and reduce the levels of TNF-α and other inflammatory
cytokines, such as IL-1β and IL-6 [120].

7.3. Tapinarof

Tapinarof (GSK2894512, previously known as WBI-1001) is a naturally derived small
molecule produced by the bacterial symbionts of entomopathogenic nematodes [121,122].
Tapinarof is a natural AhR agonist used to treat skin inflammation in humans. Creams
containing Tapinarof displayed significant efficacy in patients with PS and AD [123–125].
In a study by Smith et al., Tapinarof was shown to bind to and activate AhR in several other
cell types, including cells of the human skin. In addition, it was reported that Tapinarof
reduced the expression of pro-inflammatory cytokines in stimulated peripheral blood CD4+
T cells and ex vivo human skin and affected the expression of barrier genes in primary
human keratinocytes. Compound actuation of erythema, epidermal thickening, and tissue
cytokine levels was reduced by topical treatment of AhR-sufficient mice with Tapinarof
in a mouse model of AhR [126]. Application of a Tapinarof 1% cream once daily showed
superior results to those observed with vehicle control in reducing the severity of plaque
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PS [127]. Studies on Tapinarof 1% cream have reported long-term safety, efficacy and good
tolerability in adolescents and adults with AD [128].

8. Conclusions

In summary, accumulating evidence suggests that various AhR pathways and ligands
are involved in the pathogenesis of chronic inflammatory skin diseases, such as AD and PS.
A therapeutic effect can be observed using AhR ligands based on the relationship between
AhR and skin diseases. Nevertheless, the physiological and pathological actions and roles
of AhR in the skin are still largely unknown, and further studies are needed in this area.
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