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Abstract

Objective

A neuroprosthesis using a brain–machine interface (BMI) is a promising therapeutic option

for severely paralyzed patients, but the ability to control it may vary among individual

patients and needs to be evaluated before any invasive procedure is undertaken. We have

developed a neuroprosthetic hand that can be controlled by magnetoencephalographic

(MEG) signals to noninvasively evaluate subjects’ ability to control a neuroprosthesis.

Method

Six nonparalyzed subjects performed grasping or opening movements of their right hand

while the slow components of the MEG signals (SMFs) were recorded in an open-loop con-

dition. The SMFs were used to train two decoders to infer the timing and types of movement

by support vector machine and Gaussian process regression. The SMFs were also used to

calculate estimated slow cortical potentials (eSCPs) to identify the origin of motor informa-

tion. Finally, using the trained decoders, the subjects controlled a neuroprosthetic hand in a

closed-loop condition.

Results

The SMFs in the open-loop condition revealed movement-related cortical field characteris-

tics and successfully inferred the movement type with an accuracy of 75.0 ± 12.9% (mean ±

SD). In particular, the eSCPs in the sensorimotor cortex contralateral to the moved hand

varied significantly enough among the movement types to be decoded with an accuracy of

76.5 ± 10.6%, which was significantly higher than the accuracy associated with eSCPs in

the ipsilateral sensorimotor cortex (58.1 ± 13.7%; p = 0.0072, paired two-tailed Student’s
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t-test). Moreover, another decoder using SMFs successfully inferred when the accuracy

was the greatest. Combining these two decoders allowed the neuroprosthetic hand to be

controlled in a closed-loop condition.

Conclusions

Use of real-time MEG signals was shown to successfully control the neuroprosthetic hand.

The developed systemmay be useful for evaluating movement-related slow cortical poten-

tials of severely paralyzed patients to predict the efficacy of invasive BMI.

Introduction
Restoration of upper limb function by brain–machine interface (BMI) [1,2] is becoming a ther-
apeutic option for severely paralyzed patients [3,4] to improve their daily life [5]. Even in
severely paralyzed patients, information about movement intention and movement types for
the affected limbs can be extracted from the sensorimotor cortices through neural decoding
techniques using invasively recorded signals, such as spikes and electrocorticograms (ECoGs)
[1–3,5–7]. However, the decoding accuracy varies significantly among individual patients with
paralysis and deteriorates according to the degree of motor dysfunction [7]. It is necessary to
evaluate how effectively the brain signals of patients with severe paralysis can control a prosthe-
sis online before invasive BMI systems are used.

In this study, real-time magnetoencephalographic (MEG) signals were used to evaluate indi-
vidual cortical activity and ability to control a neuroprosthetic hand. Previous studies revealed
that some upper limb movements can be inferred fromMEG signals [8–10]. Through a source
reconstruction technique, MEG signals can enable estimation of the cortical potential in the
sensorimotor cortices precisely enough to reconstruct two-dimensional hand movements
[11,12]. Notably, the cortical potential is the feature recorded by the ECoG and includes motor
information such as trajectory, timing, and types of movements [13–18]. However, the cortical
potentials measured by ECoGs are deteriorated among patients with severe paralysis and have
decreased accuracy for classifying movement types [7]. The potential performance of an
ECoG-based BMI in the context of altered cortical potentials may be estimated from the per-
formance of a MEG-based BMI to classify movement types. No previous studies have demon-
strated control of a neuroprosthetic hand with real-time MEG being used to infer the
movement types performed at arbitrary time points.

Here, we developed a novel noninvasive BMI system to control a prosthetic hand. The sys-
tem used real-time MEG to detect movement onset and to classify the movement type online
and was applied in six nonparalyzed subjects performing two types of hand movements: grasp-
ing and opening. Through use of neural decoding techniques [19], the slow component of the
MEG signals enabled successfully inferring the timing and types of the performed movement.
The MEG signals and reconstructed cortical potentials during the movements showed a char-
acteristic spatiotemporal pattern of slow cortical potentials (SCPs) in the sensorimotor cortex
contralateral to the moved hand. Furthermore, a prosthetic hand was successfully controlled
online to grasp and open at the intended time by using the MEG signals. Therefore, the MEG-
controlled real-time neuroprosthetic hand was shown to be useful for evaluating the individual
ability of patients to control the online BMI.
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Subjects and Methods

Subjects
Six healthy nonparalyzed subjects (three women, three men; mean age 25.2 years, range 22–31
years), who were all right-handed, participated in this study. All subjects were informed of the
purpose and possible consequences of this study, and written informed consent was obtained.
The ethics committee of Osaka University Hospital approved this study (no. 12107).

Recording Method and Data Collection
The overall schematic of the system is shown in Fig 1A. Neuromagnetic brain activity was mea-
sured by a 160-channel whole-head MEG (MEGvision NEO, Yokogawa Electric Corporation,
Kanazawa, Japan) housed in a magnetically shielded room. The subject was in a supine posi-
tion, and a projection screen was fixed in front of his or her face. A cushion was placed under
the elbow of the subject to reduce artifacts caused by shoulder movements. Visual stimuli were
shown on the screen by using a visual stimulus presentation system (Presentation, Neurobeha-
vioral Systems, Albany, CA, USA) and a liquid crystal projector (LVP-HC6800, Mitsubishi
Electric, Tokyo, Japan). MEG signals were sampled at 1000 Hz with an online low-pass filter at
200 Hz and acquired online by FPGA DAQ boards (PXI-7854R, National Instruments, Austin,
TX, USA) after passing through an optical isolation circuit. Subjects were instructed not to
move their head to avoid motion artifacts. The head position was measured by five marker
coils attached to the subject’s face to estimate cortical current before each session.

Task
Open-loop session. Each subject was given visual and aural execution cues 40 times to

grasp or open the right hand once when the cue was given (Fig 1B). To reduce motion artifacts,
the subject was instructed to perform the hand movement without moving any other body
part. The type of movement to perform was presented visually with either the Japanese word

Fig 1. Experiment paradigm and analysis overview. (A) System overview of the real-time prosthetic hand control. MEG signals were acquired in real time
to be analyzed on a single computer. The prosthetic hand was controlled according to the decoders that inferred the timing of movement intention and types
of performed movements. The subject controlled the prosthetic hand by watching the screen representing the prosthetic hand and following the instructions
for movements. (B) Experimental paradigm of the open-loop session. First, one of the movement types, grasping or opening, was presented on the screen in
front of the subject. Then the subject moved the right hand as instructed at the execution cue. Each movement type was repeated four times. (C) Position of
MEG sensors used for online control and offline analysis are shown as red points. (D) Position of vertices for estimation of eSCPs. Eighty-four vertices were
selected in the sensorimotor cortex of each hemisphere: red, contralateral; blue, ipsilateral.

doi:10.1371/journal.pone.0131547.g001
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for “grasp” or “open.” After the movement type instruction, four execution cues were given to
the subject. The order of the movement type instructions was randomized.

Closed-loop session. A screen in front of each subject showed a picture of the prosthetic
hand in real time and the instruction monitor as visual feedback (Fig 1A). The instruction
monitor displayed either the Japanese word for “grasp” or “open” alternately every 7 s for a
total of 22 instructions. Subjects were told to control the prosthetic hand by following the
instruction (grasp or open), using the same movements of the right hand as in the open-loop
session.

Experimental Procedure
Each subject was tested in one open-loop session followed by several closed-loop sessions. In
the open-loop session, calculation of the decoding features was performed online in order to
train an online decoder afterward. For the first few closed-loop sessions, subjects tried to con-
trol the prosthetic hand freely. During this period, the experimenter modulated thresholds
within the online decoder to detect the onset. Subjects then controlled the prosthetic hand
according to the instructions in the closed-loop session with the fixed thresholds (Fig 1A). The
performance in controlling the prosthetic hand was evaluated in the last session. The entire
experiment required about 1 h to complete.

Real-Time Decoding and Prosthetic Hand Control
MATLAB R2013a (Mathworks, Natwick, MA, USA) was used for online calculation of decod-
ing features and for online prosthetic hand control. First, MEG signals from 84 parietal sensors
(Fig 1C) in the open-loop session were averaged in a 500-ms time window for each sensor and
converted into z-scores using the means and standard deviations estimated from data recorded
during 1000-ms non-overlapping time windows (total 50 windows for 50 s) at the beginning of
the open-loop session, when the subjects were instructed to rest. This time-averaged magnetic
field, termed the slow magnetic field (SMF), was calculated for the period from −2000 to 1000
ms at 100-ms intervals according to the execution cue.

The SMFs in the open-loop session were used to train the online decoder, which consisted
of an onset decoder and class decoder, to control the prosthetic hand online in the subsequent
closed-loop session. First, the class decoder was trained by a radial basis function (RBF) kernel
support vector machine (SVM) in libsvm toolbox [20] using the SMFs at peak classification
accuracy of the movement type estimated by 10-fold cross-validation within ±500 ms of the
execution cue. The trained class decoder used the SMF as input in the closed-loop session to
provide the inferred movement type, grasp or open. The onset decoder consisted of a mutual
information estimator and a movement detector. The mutual information estimator was
trained with Gaussian process regression [21] in the GPML toolbox [22] to estimate the mutual
information between the actual and inferred movement type using SMFs at three time points
from –2000 to 1000 ms: the classification accuracy peak time and time points before and after
the peak. These three time points were automatically selected by optimizing the correlation
between the mutual information actually obtained in the open-loop session and the mutual
information estimated by the trained estimator. Then, to train the movement detector, two
time periods, Roff and Ron, were defined in the open-loop data, starting at −2000 ms and the
classification accuracy peak time, respectively. The RBF kernel SVM was used to train the
detector to classify these two periods. The movement detector received the SMF input at
each time point and produced a value that represented the confidence of its being in the Ron

period. By combining the mutual information and the confidence value with two thresholds,
the timing of the movement intention was estimated as the time crossing the threshold. By

Neuroprosthetic Hand Using Real-Time MEG

PLOSONE | DOI:10.1371/journal.pone.0131547 July 2, 2015 4 / 13



maximizing the number of correct classifications of movement type at the timing of inferred
movement intention within ±500 ms according to the training time of the class decoder, the
optimal parameters for the duration of Roff and Ron periods and the thresholds were deter-
mined to train the onset decoder.

In the closed-loop session, the SMF was calculated online every 200 ms to update the pros-
thetic hand state. Using the latest SMF, the onset decoder estimated the mutual information
and confidence value of the movement intention. When both exceeded their respective thresh-
olds, which were manually set before the closed-loop session, movement onset was detected
and the prosthetic hand was controlled to make the movement type inferred by the class
decoder; otherwise, the prosthetic hand remained still. To avoid multiple onset detections in a
single attempt or the execution of a hand movement, the prosthetic hand maintained the
inferred movement for 1.5 s after an onset was detected. If no onset was detected for 20 s, the
prosthetic hand returned to its resting position.

The prosthetic hand used in this study was developed by Dr. Hiroshi Yokoi to imitate the
human upper limb, and each finger has 2 degrees of freedom. The joints are controlled by 10
servo motors using flexible wires. A microcontroller regulated all motors in a coordinated man-
ner to form a grasping or opening hand shape. The overall delay from the MEG system to the
visual feedback of the prosthetic hand was around 830 ms: real-time data acquisition, ~20 μs;
data processing including the time window for the SMF (500 ms), ~570 ms; prosthetic hand
control, ~150 ms; visual feedback, ~110 ms.

Offline Analysis
Classification accuracy in the open-loop session. MEG signals from 84 parietal sensors

were converted to SMF by averaging over 500 ms and normalizing to a z-score by a 50-s period
at the beginning of the session in the same way as the online-acquired features. The cortical
potentials estimated by variational Bayesian multimodal encephalography (VBMEG) [23] were
likewise converted to the estimated slow cortical potentials (eSCPs) on 84 vertices in the con-
tralateral and ipsilateral sensorimotor cortex (contralateral and ipsilateral eSCPs; Fig 1D). The
signal sources for the current estimation were the same 84 sensors used for the SMF, and the
sensors-to-vertices conversion was a linear transformation.

Classification accuracy of movement type was estimated by nested cross-validation [24]
with SMF or eSCP features calculated for the period from −500 to 500 ms according to the exe-
cution cue, with a 500-ms sliding time window, shifted by 100-ms. The nested cross-validation
was adopted so that hyperparameters for the SVM and time window to test were always
selected independently from the testing data set. To optimize the hyperparameters and the
time window, training data sets were classified by 10-fold cross-validation 10 times, and the
parameters with the highest averaged classification accuracy of the repeated cross-validation
were selected. The classification accuracy was calculated from the classification result of each
testing data set, which was tested by the decoder trained with the optimized hyperparameters
and time window. All decoding analyses were performed in MATLAB R2007b using RBF ker-
nel SVM.

Offline evaluation of onset detection. Ten-fold cross-validation was used to evaluate
the accuracy of the onset detection in the open-loop session. The onset decoder was trained
by the same algorithm used in the closed-loop session. The timing of the first onset detection
was pinpointed in each trial among the test data sets by using the trained onset decoder. The
search started at −2000 ms according to the timing at which the class decoder was trained.
The SMF and eSCP features were tested at 200-ms intervals until 1000 ms after the timing.
Thresholds for the mutual information and confidence value of the movement intention were

Neuroprosthetic Hand Using Real-Time MEG

PLOSONE | DOI:10.1371/journal.pone.0131547 July 2, 2015 5 / 13



automatically estimated from the training data set to maximize the number of correctly
detected and decoded movements within ±500 ms according to the training time of the class
decoder. To evaluate selectivity of the onset detection in the open-loop session, the onset range
(−500 to 500 ms, according to the training time of the class decoder) and no-onset range
(−2000 to −500 ms) were defined. The selectivity of the onset detection was tested using a one-
sided Fisher’s exact test based on detection and no detection during the onset and no-onset
ranges.

Evaluation of the closed-loop session. The decoding accuracy of movement type in the
closed-loop session was defined as the number of prosthetic hand movements that correctly
followed the instruction divided by the total number of prosthetic hand movements. To evalu-
ate the selectivity of onset detection in the closed-loop session, the session was divided into two
sections depending on the instruction and state of the prosthetic hand: “same state” in which
instruction and the state were the same (no need to move the prosthetic hand) and “different
state” in which they differed (need to move the prosthetic hand). Selectivity of the onset detec-
tion in the closed-loop session was tested using a one-sided Fisher’s exact test based on detec-
tion and no detection during the same-state and different-state sections.

Results

Movement-Related Activation during the Open-Loop Session
The characteristic activation of MEG signals was observed when subjects moved their hands in
the open-loop session. Fig 2A shows a representative mean contour map of the SMF at the
time point of execution cues for movement. The map shows the dipole pattern around the sen-
sorimotor cortices. Moreover, the SMF showed a gradual increase from before the execution
cue, peaking during movement, and the amplitude of the SMF depended on the movement
type (Fig 2B). These spatiotemporal properties of the SMF represent characteristic features of
the movement-related cortical field (MRCF) [25] and were similar in all subjects.

To elucidate the signal source of the SMF, the eSCPs were estimated from the same MEG
signals using VBMEG. When subject 1 moved his right hand, the eSCP was clearly activated on
the left sensorimotor cortex, which was contralateral to the moved hand, depending on the
movement type (Fig 2C; for other subjects, see S1 Fig). Differences in the eSCPs between the
two types of movements were evaluated by one-way analysis of variance. The F-values color-
coded on the reconstructed surface of the normalized brain show that the eSCP on the left
(contralateral) sensorimotor cortex varied significantly between the movement types (Fig 2D).
Notably, a significant F-value on the contralateral sensorimotor cortex was observed in all
subjects.

Movement Decoding
The timing of movement intention was inferred by the onset decoder using the SMFs for each
trial in the open-loop session (−2000 to 1000 ms) (see Subjects and Methods). To evaluate the
accuracy of onset detection, the earliest timing of the onset detection in each trial was evaluated
by 10-fold cross-validation. Fig 3A demonstrates that the timing of movement intention was
selectively inferred within ±500 ms and peaked at –200 ms, using SMFs (time 0 ms corresponds
to the timing at which the class decoder was trained using the SMF). 72.9 ± 12.9% (mean ± SD)
of the onset was selectively detected within ±500 ms, with statistical significance for all subjects
(p< 0.05, one-sided Fisher’s exact test; see also S1 Table). Notably, 56.7 ± 12.9% and
47.7 ± 17.6% of the onsets were selectively detected within ± 500 ms using the eSCP of the
sensorimotor cortex contralateral (contra-eSCP) and ipsilateral (ipsi-eSCP) to the tested
right hand, respectively, with statistical significance for five out of the six subjects (p<0.05,
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one-sided Fisher’s exact test) (Fig 3B). Moreover, the sensitivity and specificity of the detection
was the best using the SMF, compared to using contra-eSCP and ipsi-eSCP (Fig 3C). Thus, the
onset decoder using the SMF succeeded in inferring the time point at which the class decoder
infers the type of performed movement.

The class decoder inferred the performed movement types in the open-loop session (see
Subjects and Methods). The movement type was classified by using the SMFs with accuracies
of 75.0 ± 12.9% (mean ± SD), which significantly exceeded accuracy by chance (p< 0.05, one-
sided binominal test) in five of the six subjects (Fig 3D, see also S1 Table). Moreover, to evalu-
ate the origin of the motor information, the classification accuracies were evaluated using con-
tra-eSCP and ipsi-eSCP. The classification accuracies using contra-eSCPs were 76.5 ± 10.6%,
which were comparable to those using the SMFs, and were significantly superior to those using
the ipsi-eSCPs (58.1 ± 83.7%; p = 0.0072, paired two-tailed Student’s t-test; Fig 3D, see also

Fig 2. Example of movement-type specific activation during the open-loop session. (A) The z-scored MEG signals (SMFs) averaged at the time of
execution cue (0 ms) when subject 1 grasped or opened his right hand are color-coded at the location of the sensors. R, right; L, left. (B) The time course of
mean SMFs at the sensor indicated by the black arrow in A. The shaded area shows the standard error. (C) The z-scored cortical potentials (eSCPs)
averaged at 0 ms are color-coded on the normalized brain surface for each movement of subject 1. (D) The F-values of one-way ANOVA comparing eSCPs
for the two types of movements shown in C are color-coded on the normalized brain surface only for values with p < 0.05.

doi:10.1371/journal.pone.0131547.g002
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S2 Table). These results suggest that the motor information for classifying the movement types
mostly originated in the sensorimotor cortex contralateral to the tested hand.

Online Control of the Prosthetic Hand
Using the onset detection and movement type classification in real time, the prosthetic hand
could be controlled by the SMFs in the closed-loop condition. For example, subject 1 success-
fully controlled the prosthetic hand in 10 of 12 total movements following the instructions
(83.3%; S1 Video). The SMF and eSCP at the timing of the detected onset were estimated

Fig 3. Accuracies for onset detection and classification of movement type. (A) The mean onset detection rate is shown from −2000 to 1000 ms with the
standard deviation (N = 6). The N.D. (not detected) denotes the rate of trials in which no onset was detected from −2000 to 1000 ms (mean and standard
deviation). Time 0 ms denotes target time to detect, which is the training time of the class decoder in training data sets. (B) Blue and red lines show the mean
onset detection rates of contra-eSCP and ipsi-eSCP, respectively. The shaded area denotes the standard deviation (N = 6). (C) The green and red bars
denote the average of the sensitivity and specificity of onset detection, respectively, and the error bars denote 95% confidence intervals. Asterisks show
statistical significances (*p < 0.05, **p < 0.01, paired two-tailed Student’s t-test, N = 6) (D) The classification accuracies of movement type were compared
among three types of features for decoding (**p < 0.01, paired two-tailed Student’s t-test,N = 6). The mean and 95% confidence interval are shown. Dotted
line denotes chance level (50%).

doi:10.1371/journal.pone.0131547.g003
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offline, by adapting the online decoder to the MEG signals during the closed-loop session. The
SMF exhibited a dipole pattern (Fig 4A), and the eSCP showed activation of the sensorimotor
cortex contralateral to the tested right hand (Fig 4B). For all subjects, the prosthetic hand was
successfully moved according to instructions in more than 50% of the prosthetic hand move-
ments with a few onset detections of 1.21 ± 0.45 (mean ± SD) times on average. Moreover, the
movement onset was selectively detected during the specific periods, in which the subject was
instructed to initiate movements, with a statistical significance for 50% of subjects (p< 0.05,
one-sided Fisher’s exact test). The accuracy of classifying the movement type also significantly
exceeded chance for four of the six subjects (p< 0.05, one-sided binominal test; Table 1).
These results demonstrated that the neuroprosthetic hand was successfully controlled using
the SMFs in the closed-loop condition.

Discussion
In this study, we developed a noninvasive BMI to control a neuroprosthetic hand using SMFs
recorded from real-time MEG. The SMFs had the characteristics of MRCFs and were success-
fully decoded to infer the timing and type of the performed movement. Notably, the eSCPs

Fig 4. SMF and eSCP at the timing of detected onset. (A) The SMF when movement onset was detected is
color-coded at the location of the sensors. R, right; L, left. (B) The eSCP at the timing of the detection is color-
coded on the normalized brain surface.

doi:10.1371/journal.pone.0131547.g004

Table 1. Summary of closed-loop prosthetic hand control.

Subject Detection of movement onset Decoding of movement type

Sensitivity (%) Specificity (%) Accuracy (%)

1 88.2 64.7 83.3*

2 85.0 40.0 72.2*

3 66. 7 70.6 76.9*

4 64.0 50.0 52.4

5 52.6 60.0 60.0

6 77.8 66. 7 78.6*

*p < 0.05 as compared to chance (50%).

doi:10.1371/journal.pone.0131547.t001
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estimated from the SMFs showed movement type–specific activation in the contralateral senso-
rimotor cortex to the moved hand, with the decoding accuracy for inferring movement type
being significantly superior to that in the ipsilateral sensorimotor cortex; thus, the motor infor-
mation of the SMFs was estimated to originate mainly from the SCPs in the contralateral sen-
sorimotor cortex. Finally, real-time decoding using the SMFs was successfully used to control
the neuroprosthetic hand. The BMI using SMFs developed in this study may be used to nonin-
vasively evaluate the potential efficacy of invasive BMI using the SCPs of the paralyzed
patients.

Characteristics of Our Proposed BMI
Compared to other noninvasive BMIs previously reported, our proposed BMI is characterized
by the use of two types of motor information to control the prosthetic hand: movement inten-
tion and movement type. Although previous studies have shown that movement types can be
decoded by noninvasive measurements such as functional magnetic resonance imaging [26],
functional near-infrared spectroscopy [27], electroencephalogram [10,28], and MEG [8–
11,28], the decoding to infer the movement types has not been used to control the neuropros-
thetic hand online. However, decoding to infer movement intention or timing to move has fre-
quently been used in other studies to control various external devices [29–34]. Combining
these two types of motor information, our proposed BMI allows users to control a prosthetic
hand simply by performing the intended movements at the desired times.

Moreover, the proposed BMI will be suitable for adapting BMI control to individual abili-
ties. Our previous study using ECoG demonstrated that decoding accuracies to infer the move-
ment types were deteriorated among severely paralyzed patients compared to nonparalyzed
subjects, but the accuracies to infer the movement intention were preserved even in severely
paralyzed patients [7]. Moreover, in many previous studies with noninvasive BMI, the efficacy
of using movement intention to control a prosthesis [30,31] was successfully shown for patients
with motor dysfunction [32,33]. These studies showed that the information inferring the move-
ment intention was necessary for a clinically practical BMI, and that it was preserved in para-
lyzed patients. A BMI that can infer the movement type will enable more sophisticated control
of a prosthesis, including two-dimensional estimation of fingertip movements [11]; however,
the application of the system will be restricted to patients whose brain signals are suitable for
neural decoding. Therefore, by combining information for movement intention and movement
type, our proposed BMI can be adapted for individual patients based on how much motor
information can be derived from their brain signals.

Notably, the accuracies for classifying the two types of movements were relatively low com-
pared to our previous reports [9]. Though, some recent reports have pointed out the possibility
of over-estimation of accuracy without using nested cross-validation [35,36], it is worth noting
that our method for classifying movements successfully exceeded the chance level, even using
strict evaluations. On the other hand, in the case of the closed-loop control, the classification
accuracy might be affected by some limitations of our system. The system has a delay of
approximately 830 ms to control the prosthetic hand by an intention. Moreover, the MEG sig-
nals were evaluated only every 200 ms, which is rather slow compared to the variances of the
cortical signals. The classification accuracies online might be increased by improving the speed
of the system.

In addition, the performance and the applicability of noninvasive BMIs could be improved
by advances in recording technology and the decoding methods. Recent studies demonstrated
that optically pumped magnetometers will became an alternative to the superconducting quan-
tum interference devices that require cryogenic cooling and prevent the development of a
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portable MEG-BMI suitable for daily use [37,38]. Moreover, a recent EEG study demonstrated
that an amputee successfully controlled a neuroprosthesis in real-time using slow components
of the signals [39]. These advances may enable noninvasive BMIs to restore the motor func-
tions for severely paralyzed patients.

Preoperative Evaluation Using MEG-based BMI
The performance of our MEG-based neuroprosthesis might reflect a patient’s ability to control
a BMI using the SCPs in the sensorimotor cortex. The source localization analysis showed that
the SMFs for controlling the neuroprosthetic hand had characteristics of the MRCF and corre-
sponded to the SCPs in the sensorimotor cortex contralateral to the moved hands. Moreover,
the decoding analysis suggested that the motor information of the SMFs largely originated
from the SCPs in the contralateral sensorimotor cortex. Therefore, using the signals and motor
information from a common origin, our MEG-based BMI may enable estimating the ability of
severely paralyzed patients to control an ECoG-based BMI using the SCPs in the contralateral
sensorimotor cortex, although further studies are necessary to elucidate their relations.

Conclusions
The proposed BMI demonstrated real-time noninvasive control of a prosthetic hand, using
motor information about movement intention and movement type. This BMI system might
permit preoperative evaluation of invasive BMIs using the SCPs, which is essential for the clini-
cal application of the BMI.
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