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A major challenge for the successful treatment of drug addiction is the long-lasting
susceptibility to relapse and multiple processes that have been implicated in the
compulsion to resume drug intake during abstinence. Recently, the orexin/hypocretin
(Orx/Hcrt) system has been shown to play a role in drug-seeking behavior. The Orx/Hcrt
system regulates a wide range of physiological processes, including feeding, energy
metabolism, and arousal. It has also been shown to be recruited by drugs of abuse.
Orx/Hcrt neurons are predominantly located in the lateral hypothalamus that projects to
the paraventricular nucleus of the thalamus (PVT), a region that has been identified as a
“way-station” that processes information and then modulates the mesolimbic reward and
extrahypothalamic stress systems. Although not thought to be part of the “drug addiction
circuitry”, recent evidence indicates that the PVT is involved in the modulation of reward
function in general and drug-directed behavior in particular. Evidence indicates a role for
Orx/Hcrt transmission in the PVT in the modulation of reward function in general and drug-
directed behavior in particular. One hypothesis is that following repeated drug exposure,
the Orx/Hcrt system acquires a preferential role in mediating the effects of drugs vs.
natural rewards. The present review discusses recent findings that suggest maladaptive
recruitment of the PVT by drugs of abuse, specifically Orx/Hcrt-PVT neurotransmission.
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INTRODUCTION
Drug addiction is a chronic relapsing disorder characterized by
persistent drug-seeking and drug-taking behaviors (O’Brien and
McLellan, 1996; Leshner, 1997; O’Brien et al., 1998; McLellan
et al., 2000). Elucidation of the neurobiological mechanisms
that underlie the chronically relapsing nature of addiction and
identification of pharmacological treatment targets for relapse
prevention has emerged as a central issue in addiction research.

Several studies have sought to clarify the neuronal substrates
that regulate the compulsive behavioral characteristics of addic-
tion. Brain regions that have been identified to be involved in
relapse (drug seeking)-like behavior include the medial prefrontal
cortex, basolateral amygdala, central nucleus of the amygdala, bed
nucleus of the stria terminalis, hippocampus, nucleus accumbens,
and dorsal striatum (Everitt et al., 2001; McFarland and Kalivas,
2001; Cardinal et al., 2002; Goldstein and Volkow, 2002; Ito
et al., 2002; See, 2002; Kalivas and Volkow, 2005; Weiss, 2005;
Belin and Everitt, 2008; Steketee and Kalivas, 2011). Recently,
emerging evidence has proposed that the thalamus could also be
included in the neurocircuitry of addiction. Indeed, it is consid-
ered an important key relay between the ventral striatopallidum
and dorsal striatum and may contribute to the development of

compulsive drug-seeking behavior (Pierce and Vanderschuren,
2010).

Among the nuclei of the thalamus, the paraventricular nucleus
of the thalamus (PVT) has a pivotal neuroanatomical position and
therefore influences structures that have been implicated in drug-
seeking behavior (Moga et al., 1995; Bubser and Deutch, 1998;
Van der Werf et al., 2002). Of notable relevance for this review
is hypothalamic orexin/hypocretin (Orx/Hcrt) innervation of the
PVT. Orx/Hcrt peptides are found in fibers located in all regions
of this thalamic nucleus, whereas relatively modest fiber density
is found in the adjacent midline and intralaminar thalamic nuclei
(Kirouac et al., 2005). Although compelling evidence shows a role
for Orx/Hcrt in arousal and maintenance of the waking state (de
Lecea, 2012), further evidence supports an important and specific
role in general reward processing and drug abuse in particular (for
review, see Mahler et al., 2012).

An important consideration when referring to general reward
processing is what differentiates neural signaling related to
“normal” appetitive behavior vs. drug-directed behavior. One
possibility is that the neuronal circuits that mediate the control
of drug-seeking and drug-taking behaviors are common moti-
vational neuronal substrates that are more robustly activated by
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drugs and are not specific for addiction-related processes. Drug-
induced neuronal activation that “normally” controls responding
for natural rewards could create new motivational states or redi-
rect signaling that normally controls responses for natural reward
toward drug-directed behavior (Kelley and Berridge, 2002). The
aim of this review is to summarize recent findings that suggest
maladaptive recruitment of the PVT by drugs of abuse, specifically
Orx/Hcrt-PVT transmission, as a new neurotransmission system
in the etiology of compulsive drug seeking.

THE PVT
The PVT lies adjacent to the dorsal aspect of the third ventricle.
The PVT is part of dorsal midline thalamic nuclei and plays
a significant role in functions related to arousal, attention, and
awareness (Bentivoglio et al., 1991; Groenewegen and Berendse,
1994; Van der Werf et al., 2002). Although the midline and
intralaminar thalamic nuclei were first hypothesized to partici-
pate in the processing of non-discriminative nociceptive inputs
(Berendse and Groenewegen, 1991), it is now well recognized that
each member of these nuclei innervates functionally distinct areas
of the cortex and striatum (Groenewegen and Berendse, 1994; Van
der Werf et al., 2002; Smith et al., 2004).

Neuroanatomical studies have shown that the PVT receives
projections from brainstem regions associated with arousal and
autonomic nervous system function (Cornwall and Phillipson,
1988b; Chen and Su, 1990; Ruggiero et al., 1998; Krout and
Loewy, 2000; Krout et al., 2002; Hsu and Price, 2009). Further-
more, the PVT, through its projections to the prefrontal cortex
and nucleus accumbens (Berendse and Groenewegen, 1990; Su
and Bentivoglio, 1990; Brog et al., 1993; Freedman and Cassell,
1994; Moga et al., 1995; Bubser and Deutch, 1998; Otake and
Nakamura, 1998; Parsons et al., 2007; Li and Kirouac, 2008; Vertes
and Hoover, 2008; Hsu and Price, 2009), places this thalamic
structure in a unique position to affect cortico-striatal mecha-
nisms involved in reward and motivation (Pennartz et al., 1994;
Cardinal et al., 2002; Walker et al., 2003).

The PVT receives large and distinct inputs from several areas
of the hypothalamus, including the suprachiasmatic, arcuate,
dorsomedial, and ventromedial nuclei, and preoptic and lateral
hypothalamic areas (Cornwall and Phillipson, 1988a; Chen
and Su, 1990; Novak et al., 2000a; Peng and Bentivoglio, 2004;
Kirouac et al., 2005, 2006; Otake, 2005; Hsu and Price, 2009),
critical structures for the expression of motivated behavior
(Swanson, 2000). Remarkably, the PVT is the target of Orx/Hcrt
hypothalamic neurons (Kirouac et al., 2005) and has been
shown to function as an interface between the hypothalamus and
cortical-striatal projections that are essential for the integration of
energy balance, arousal, and food reward (e.g., Kelley et al., 2005).

Experiments that investigated neuronal activation of the PVT
have consistently shown that this brain region is recruited during
periods of arousal or by stress (Peng et al., 1995; Bhatnagar and
Dallman, 1998; Novak and Nunez, 1998; Bubser and Deutch,
1999; Novak et al., 2000b; Otake et al., 2002). The PVT has
also been implicated in the regulation of food intake and
hypothalamic-pituitary-adrenal activity in response to chronic
stress, food consumption, and energy balance (Bhatnagar and
Dallman, 1998, 1999; Jaferi et al., 2003). Although not initially

included in the neurocircuitry of addiction, recent evidence
implicates the PVT in the modulation of drug-directed behavior.
In fact, the PVT projects to brain regions that are implicated
in the control of drug-seeking behavior, such as the nucleus
accumbens, amygdala, bed nucleus of the stria terminalis, and
prefrontal cortex (Moga et al., 1995; Bubser and Deutch, 1998;
Van der Werf et al., 2002). Importantly, earlier findings demon-
strated selective activation of the PVT during ethanol seeking
(Dayas et al., 2008; Hamlin et al., 2009), and recent evidence
has shown potent and selective activation of the PVT during
cocaine seeking that does not occur during natural reward (e.g., a
highly palatable conventional reinforcer) seeking (Martin-Fardon
et al., 2013). Among the several functions mentioned above,
this review discusses the involvement of the PVT in drug- vs.
natural reward-seeking behavior (a nondrug control). This review
uses the terms “conventional reinforcer” or “natural reward”
to loosely define a nondrug condition (usually a sweet highly
palatable solution) that will serve as a comparison control for the
drug.

THE Orx/Hcrt SYSTEM
Orx/Hcrt peptides, orexin A and B (Orx-A and Orx-B), also
known as hypocretins (Hcrt-1 and Hcrt-2), are neuropeptides
expressed exclusively in neurons of dorsal tuberal hypothalamic
nuclei: lateral hypothalamus, perifornical nucleus, and dorsome-
dial hypothalamus (de Lecea et al., 1998; Sakurai et al., 1998b).
Orx-A/Hcrt-1 and Orx-B/Hcrt-2 are products of a common
single precursor polypeptide, prepro-orexin, through usual pro-
teolytic processing (de Lecea et al., 1998). These peptides share
sequence similarity and are the ligands for two receptors: Hcrt-
r1 and Hcrt-r2. Hcrt-r1 binds Orx-A with 20–30 nM affinity
but has much lower affinity (10- to 1000-fold lower) for Orx-
B, whereas Hcrt-r2 binds both peptides with similar affinity (in
the 40 nM range; Sakurai et al., 1998a; Ammoun et al., 2003;
Scammell and Winrow, 2011). Many studies have suggested that
Orx/Hcrt receptors are coupled to G-proteins. However, the G-
coupling of these receptors is far from clear but based on several
findings both Hcrt-r1 and Hcrt-r2 are likely to couple Gi/o, Gs and
Gq family G-proteins (Gotter et al., 2012; Kukkonen, 2013).

Orx/Hcrt neurons receive inputs from numerous brain areas
and project to the entire brain, thus influencing multiple neuronal
circuitries (Peyron et al., 1998; Date et al., 1999; Nambu et al.,
1999). Dense Orx/Hcrt terminals can be found in the cerebral
cortex, olfactory bulb, hippocampus, amygdala, basal forebrain,
hypothalamus, tuberomammillary nucleus, PVT, arcuate nucleus
of the hypothalamus, and brainstem (Peyron et al., 1998; Date
et al., 1999; Nambu et al., 1999). Orx/Hcrt neurons receive projec-
tions from the medial prefrontal cortex, nucleus accumbens shell,
amygdala, bed nucleus of the stria terminalis, arcuate nucleus of
the hypothalamus, and preoptic area (Sakurai et al., 2005). With
regard to Hcrt-rs, limited overlapping distributions of Hcrt-r1
and Hcrt-r2 mRNAs have been shown, with functional differences
between Hcrt-r1 and Hcrt-r2 (Trivedi et al., 1998; Lu et al., 2000;
Marcus et al., 2001; for review, see Aston-Jones et al., 2010),
proposing different physiological roles for each receptor subtype.

Because of its connections, the Orx/Hcrt system is involved in
a multitude of physiological functions. The Orx/Hcrt system is
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strongly involved in the regulation of feeding, arousal, sleep/wake
states, the stress response, energy homeostasis, and reward (for
review, see Tsujino and Sakurai, 2013). Particularly important
for this review, evidence supports an important and specific
role for the Orx/Hcrt system in drug addiction (for review, see
Mahler et al., 2012), specifically Orx/Hcrt neurons located in the
lateral hypothalamus (Harris et al., 2005). Notably, these neurons
project to the PVT, nucleus accumbens shell, ventral pallidum,
ventral tegmental area, central nucleus of the amygdala, and bed
nucleus of the stria terminalis (Peyron et al., 1998; Baldo et al.,
2003; Winsky-Sommerer et al., 2004). Originally implicated in
the regulation of feeding behavior (Sakurai et al., 1998a; Edwards
et al., 1999; Haynes et al., 2000, 2002), these neurons play a
modulatory role in reward function, with a specific contribution
to drug-related behavior (Harris et al., 2005).

THE Orx/Hcrt SYSTEM CONTIBUTES TO THE BEHAVIORAL
EFFECTS OF DRUGS OF ABUSE
Orx/Hcrt has been reported to enhance the incentive motivational
effects of stimuli conditioned to drug availability, increase the
motivation to seek the drug, and increase the reinforcing actions
of drugs of abuse.

In fact, intra-ventral tegmental area microinjection of
Orx-A produces a renewal of morphine-induced conditioned
place preference (CPP), whereas administration of the Hcrt-r1
antagonist N-(2-methyl-6-benzoxazolyl)-N ′-1,5-n-aphthyridin-
4-yl urea (SB334867) attenuates the expression of morphine-
induced CPP (Harris et al., 2005). Consistent with the role of
Orx/Hcrt in the expression of CPP, when injected systematically,
the Hcrt-r1 antagonists SB334867 and 5-bromo-N-[(2S,5S)-
1-(3-fluoro-2-methoxybenzoyl)-5-methylpiperidin-2-yl]methyl-
pyridin-2-amine (GSK1059865) reduce the expression of
cocaine- and amphetamine-induced CPP (Gozzi et al., 2011;
Hutcheson et al., 2011; Sartor and Aston-Jones, 2012), suggesting
a prominent role for Hcrt-r1 in the rewarding effects of cocaine
and amphetamine. Interestingly, the participation of Hcrt-r2
was recently described in some of ethanol’s behavioral effects.
Blockade of Hcrt-r2 using (2,4-dibromo-phenyl)-3-([4S,5S]-
2,2-dimethyl-4-phenyl-[1,3]dioxan-5-yl)-urea (JNJ-10397049)
was reported to decrease the acquisition, expression, and
reinstatement of ethanol-induced CPP (Shoblock et al., 2011),
suggesting that Hcrt-r2 may be mainly involved in the rewarding
effect of ethanol.

Orx/Hcrt has also been described to play a role in
psychostimulant-induced locomotor sensitization. SB334867
injected peripherally or into the ventral tegmental area
blocked the acquisition of cocaine sensitization, antagonized
the potentiation of excitatory currents induced by cocaine in
dopaminergic neurons of the ventral tegmental area (Borgland
et al., 2006), and blocked the expression of amphetamine
sensitization (Quarta et al., 2010). Moreover the dual
Hcrt-r1/Hcrt-r-2 antagonist N-biphenyl-2-yl-1-[[(1-methyl-
1H-benzimidazol-2-yl)sulfanyl]acetyl]-l-prolinamide similarly
blocked the expression of amphetamine sensitization and
plasticity-related gene expression in the ventral tegmental area
after chronic amphetamine (Winrow et al., 2010).

Orx/Hcrt has also been reported to participate in regulating
the motivation to take drugs. When injected in the ventral
tegmental area, Orx-A/Hcrt-1 increases the breakpoint for
cocaine self-administration on a progressive-ratio schedule of
reinforcement (España et al., 2011). Antagonizing Hcrt-r1 with
SB334867 reduces the motivation to self-administer cocaine and
attenuates the cocaine-induced enhancement of dopaminergic
signaling in the nucleus accumbens when injected into the
ventral tegmental area (España et al., 2010). Additionally, the
blockade of Hcrt-r1 decreases nicotine (Hollander et al., 2008)
and heroin (Smith and Aston-Jones, 2012) self-administration,
and both Hcrt-r1 or Hcrt-r2 antagonism reduces ethanol
self-administration, without interfering with sucrose self-
administration (Lawrence et al., 2006; Shoblock et al., 2011;
Brown et al., 2013). Finally, recent findings have shown that Hcrt-
r2 antagonism reduces compulsive heroin self-administration
(Schmeichel et al., 2013).

Orx/Hcrt plays an important role in drug-seeking behavior
triggered by stress or drug-related environmental stimuli. Intrac-
erebroventricular (ICV) injection of Orx-A/Hcrt-1 increases
intracranial self-stimulation (ICSS) thresholds and reinstates
cocaine and nicotine seeking (Boutrel et al., 2005; Plaza-Zabala
et al., 2010). Furthermore, the blockade of Hcrt-r1 prevents cue-
and stress-induced reinstatement of cocaine, ethanol, and heroin
seeking (Boutrel et al., 2005; Lawrence et al., 2006; Richards et al.,
2008; Smith et al., 2010; Jupp et al., 2011b; Smith and Aston-
Jones, 2012; Martin-Fardon and Weiss, 2014a,b).

The Orx/Hcrt system has also been shown to play a role
in drug withdrawal. SB334867 attenuates the somatic signs of
nicotine and morphine withdrawal (Sharf et al., 2008; Plaza-
Zabala et al., 2012), and Orx/Hcrt neurons are activated following
acute nicotine administration and during nicotine (Pasumarthi
et al., 2006; Plaza-Zabala et al., 2012) and morphine (Georgescu
et al., 2003) withdrawal. Some studies suggest the existence of
a correlation between blood Orx/Hcrt levels and the symp-
toms of withdrawal from alcohol in humans (Bayerlein et al.,
2011; von der Goltz et al., 2011), supporting the hypothesis
that the Orx/Hcrt system is important for behavioral changes
associated with drug dependence and withdrawal in animals and
humans.

A central role for Orx/Hcrt neurons in the lateral hypotha-
lamus in drug addiction exists (Harris et al., 2005). Orx/Hcrt
neurons in the lateral hypothalamus become activated by stimuli
associated with cocaine, ethanol, morphine, and food (Harris
et al., 2005; Dayas et al., 2008; Martin-Fardon et al., 2010; Jupp
et al., 2011b), and Orx/Hcrt microinjection in the lateral hypotha-
lamus increases voluntary ethanol intake (Schneider et al., 2007).
The expression of CPP induced by food, morphine, and cocaine
is associated with the activation of lateral hypothalamus Orx/Hcrt
neurons (Harris et al., 2005). Interestingly, cocaine-induced CPP
was associated with a decrease in Orx/Hcrt mRNA expression
in the lateral hypothalamus, suggesting some form of compen-
satory feedback that follows strong neuronal activation induced
by cocaine (Zhou et al., 2008).

Behavioral and functional evidence indicates a role for
Orx/Hcrt signaling in the neurobehavioral and motivational
effects of ethanol and other drugs of abuse (Borgland et al.,
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2006; Bonci and Borgland, 2009; Thompson and Borgland, 2011).
Importantly, Orx/Hcrt are hypothalamic neuropeptides that were
originally reported to regulate feeding (Sakurai et al., 1998a). The
blockade of Hcrt-r1 by SB334867 decreases food intake (Haynes
et al., 2000; Rodgers et al., 2001; Ishii et al., 2005), and the
Orx/Hcrt system appears to be recruited in regulating the intake
of highly palatable food (Nair et al., 2008; Borgland et al., 2009;
Choi et al., 2010).

Although the Orx/Hcrt system is well known to regulate (nat-
ural) reward function, the findings mentioned above indicate that
the Orx/Hcrt system also plays a critical role in the neurobehav-
ioral and motivational effects of drugs of abuse. Recent studies
indicated that the Orx/Hcrt system is, in fact, more strongly
engaged by drugs of abuse than by non-drug reinforcers. For
example, Hcrt-r1 or Hcrt-r2 blockade is more effective in reduc-
ing ethanol self-administration than sucrose intake (Shoblock
et al., 2011; Jupp et al., 2011a; Brown et al., 2013). Additionally,
using a conditioned reinstatement animal model of relapse, in
which stimuli conditioned to cocaine, ethanol, and conventional
reinforcers elicit equal levels of reinstatement, pharmacological
manipulation of Hcrt-r1 selectively reversed conditioned rein-
statement induced by a cocaine- or ethanol-related stimulus but
had no effects on the same stimulus conditioned to a conventional
reinforcer (Martin-Fardon and Weiss, 2009, 2014a,b; Martin-
Fardon et al., 2010).

THE PVT CONTRIBUTES TO DRUG-SEEKING BEHAVIOR
The PVT has been proposed to be a key relay that gates
Orx/Hcrt-coded reward-related communication between the lat-
eral hypothalamus and ventral and dorsal striatum (Kelley et al.,
2005). This hypothalamic-thalamic-striatal neurocircuitry may
have evolved to prolong central motivational states and pro-
mote feeding beyond the fulfillment of immediate energy needs,
thereby creating energy reserves for potential future food short-
ages (Kelley et al., 2005). It is hypothesized that maladaptive
recruitment of this system by drugs of abuse may “tilt” its function
toward excessive drug-directed behavior, which may explain the
increased sensitivity of the Orx/Hcrt system to antagonist interfer-
ence with drug-seeking behavior as opposed to behavior directed
toward natural reward.

Much evidence supports the involvement of the PVT in the
reinstatement of drug-seeking behavior especially triggered by
stimuli conditioned to the availability of the drug itself. For exam-
ple, context- or cue-induced reinstatement of alcohol seeking
is associated with significant PVT recruitment (Wedzony et al.,
2003; Dayas et al., 2008; Perry and McNally, 2013). Furthermore,
inactivation of the PVT prevents context-induced reinstatement
of ethanol seeking (Hamlin et al., 2009; Marchant et al., 2010),
cocaine prime-induced reinstatement (James et al., 2010), cocaine
sensitization (Young and Deutch, 1998), and the expression of
cocaine-induced CPP (Browning et al., 2014). Moreover, PVT
neurons are activated by reexposure to cocaine-paired (Brown
et al., 1992; Franklin and Druhan, 2000), methamphetamine-
paired (Rhodes et al., 2005), and ethanol-paired (Wedzony et al.,
2003; Dayas et al., 2008) contextual stimuli, whereas exposure to
sucrose-related stimuli does not induce PVT activation (Wedzony
et al., 2003).

In addition to the numerous studies that showed a
contribution of the PVT in different aspects of drug addiction,
the specific contribution of Orx/Hcrt signaling in this thalamic
nucleus has recently attracted much attention. The PVT is densely
innervated by Orx/Hcrt fibers (Kirouac et al., 2005; Parsons et al.,
2006) and is a major source of glutamatergic afferents to the
nucleus accumbens, bed nucleus of the stria terminalis, central
nucleus of the amygdala, and medial prefrontal cortex (Parsons
et al., 2007; Li and Kirouac, 2008; Vertes and Hoover, 2008;
Hsu and Price, 2009). These brain regions are part of the
neurocircuitry of addiction. Earlier findings have shown that
blockade of Hcrt-r1 receptors in the PVT did not produce
any reduction of cue-induced reinstatement of cocaine seeking
(James et al., 2011) suggesting that antagonizing Hcrt-r2 within
this brain region may be more efficient in blocking drugs of
abuse effects. In agreement with this hypotheses, other studies
have shown that microinjection of the Hcrt-r2 antagonist
(2S)-1-(3,4-dihydro-6,7-dimethoxy-2(1H)-isoquinolinyl)-3,3-di
methyl-2-[(4-pyridinylmethyl)amino]-1-butanone hydrochlo-
ride (TCSOX229) but not SB334867 into the PVT significantly
attenuated the expression of naloxone-induced conditioned place
aversion (CPA; Li et al., 2011), implying a specific role for PVT
Hcrt-r2 in mediating morphine withdrawal. Furthermore, acute
nicotine increased Fos expression in Orx/Hcrt neurons that
project from the lateral hypothalamus to the PVT (Pasumarthi
and Fadel, 2008), suggesting the participation of this pathway in
nicotine arousal. A role for Orx/Hcrt projections from the lateral
hypothalamus to the PVT in ethanol seeking is supported by
findings that showed that alcohol-related contextual cues activate
these neurons (Dayas et al., 2008). Specifically, more Fos-positive
hypothalamic Orx/Hcrt neurons were observed in rats exposed to
contextual stimuli previously associated with ethanol availability
vs. rats exposed to the same stimuli previously paired with non-
reward, and the ethanol-related stimuli increased the number
of Fos-positive PVT neurons that were closely associated with
Orx/Hcrt fibers (Dayas et al., 2008).

Importantly, the PVT has been reported to participate in the
regulation of feeding. For example, lesions of the PVT (Bhatnagar
and Dallman, 1999) or inhibition of PVT neurons with GABAA

antagonist muscimol (Stratford and Wirtshafter, 2013) were
shown to increase feeding. Likewise, electrolytic lesion of the PVT
induced an attenuation of increased locomotion and blood corti-
costerone levels normally produced by the anticipation to obtain
food (Nakahara et al., 2004). Only a few examples of the role of
this thalamic nucleus in food intake regulation are mentioned
here, and discussing this issue further is beyond the scope of
the present review. The following sections discuss recent findings
from this laboratory that describe the specific involvement of the
PVT (and Orx/Hcrt transmission) in drug-seeking behavior vs.
normal motivated behavior toward a conventional reinforcer.

THE PVT IS DIFFERENTIALLY RECRUITED BY COCAINE VS .
NATURAL REWARD: CORRELATION WITH COCAINE SEEKING
Further evidence from this laboratory (Martin-Fardon et al.,
2013) has demonstrated a differential recruitment pattern of
the PVT by cocaine-related stimuli vs. stimuli paired with a
highly palatable conventional reinforcer, sweetened condensed
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milk (SCM). The aim of this study was to establish the recruit-
ment pattern of the PVT induced by presentation of a discrim-
inative stimulus (SD) conditioned to cocaine or SCM using an
animal model of relapse described earlier (e.g., Baptista et al.,
2004; Martin-Fardon et al., 2007, 2009). Briefly, male Wistar
rats were trained to associate the SD with the availability of
cocaine or SCM (S+) vs. saline or non-reward (S−). Following the
extinction of cocaine- and SCM-reinforced responding, the rats
were presented with the respective S+ or S− alone. Presentation
of the cocaine S+ or SCM S+ (but not the non-reward S−)
after extinction stimuli elicited identical levels of reinstatement
as described in earlier studies (Baptista et al., 2004; Martin-
Fardon et al., 2007, 2009). The brains were labeled for Fos
in the PVT, and Fos-positive neurons were counted following
cocaine S+ or SCM S+ presentation and compared with counts
obtained following S− presentation. Presentation of the cocaine
S+ but not saline S− activated c-fos. In contrast, presentation
of both the SCM S+ and non-reward S− produced identical
neural activation. A correlation plot between the reinstatement
responses and number of Fos-positive cells in the PVT revealed a
significant correlation in the cocaine group but not in the SCM
group (Martin-Fardon et al., 2013). These data suggest that the
PVT is specifically recruited during the conditioned reinstatement
of cocaine seeking but not SCM seeking, further supporting the
hypothesis that this thalamic structure is involved in the drug
addiction circuitry.

Orx/Hcrt IN THE PVT MEDIATES COCAINE-SEEKING
BEHAVIOR IN RATS
The significant correlation in the cocaine group but not in
the SCM group strongly suggests that cocaine induces the dys-
regulation of neurotransmission in the PVT. The aim of the
next study was to investigate the specific role of PVT Orx/Hcrt
transmission in cocaine seeking vs. behavior motivated toward
SCM seeking. Male Wistar rats were trained to self-administer
short-access cocaine (ShA; 2 h/day), long-access cocaine (LgA;
6 h/day; i.e., an animal model of cocaine dependence), or SCM
(30 min/day) for a total of 21 days and then subjected to
daily extinction training for 14 days. The following day, the
rats received intra-PVT microinjections of Orx-A/Hcrt-1 (0,
0.25, 0.5, 1, and 2 µg) and then placed into operant cham-
bers under extinction conditions for 2 h. Orx-A/Hcrt-1 rein-
stated ShA and LgA cocaine seeking and SCM seeking but with
different dose-response profiles. The effects of Orx-A/Hcrt-1-
induced reinstatement on cocaine seeking in the ShA group were
characterized by an inverted U-shaped dose-effect function, with
low doses but not high doses eliciting reinstatement (Matzeu
et al., 2013). In contrast, Orx-A/Hcrt-1 induced reinstatement
in the SCM group at high but not low doses. A leftward shift
in the Orx-A/Hcrt-1 dose-effect function was observed for the
reinstatement of ShA cocaine seeking compared with SCM seek-
ing. Additionally, Orx-A/Hcrt-1-induced reinstatement in the
LgA group produced a left-upward shift of the dose-response
function compared with the SCM group and an upward shift
compared with the ShA group. These findings suggest that a
history of cocaine dependence leads to neuroadaptive changes

at the level of the PVT, resulting in “sensitization” of LH-PVT-
Orx/Hcrt transmission, reflected by increased sensitivity (i.e.,
a leftward shift) and exacerbated behavioral responses (i.e., an
upward shift) to the effects of Orx-A/Hcrt-1, further implicating
Orx/Hcrt-PVT transmission in cocaine-seeking behavior and the
specific involvement of the PVT in the neurocircuitry associated
with cocaine seeking. Knowing that Orx/Hcrt participates in the
regulation of a multitude of physiological processes, one may
argue that exogenous administration of Orx/Hcrt into the PVT
may produce nonspecific side effects. Recently, it was reported
that intra-PVT administration of Orx-A at doses 1.5- to 4.5-
fold higher than the maximum dose used here significantly
increased freezing and grooming behavior, which may inter-
fere with (i.e., reduce) operant responding (Li et al., 2010).
However, in the present study, Orx-A administration reinstated
(increased) reward-seeking behavior; therefore, over the dose
range selected, Orx-A should not have produced any nonspe-
cific changes in “emotional” behavior that could account for
the different dose-response functions produced in the different
groups.

CONCLUSION
A greater understanding of the neurotransmission that underlies
compulsive behaviors associated with addiction will provide a
more targeted and efficacious means of establishing and prolong-
ing drug and alcohol abstinence. Data from this laboratory and
the literature indicate that Orx/Hcrt-PVT transmission plays a
distinctive role in behavior motivated by stimuli conditioned to
drugs vs. natural rewards and that a history of cocaine depen-
dence changes the sensitivity of the PVT to the Orx-A priming
effect. This suggests that drugs of abuse in general dysregulate
neurotransmission in the PVT and that with long-term drug
or alcohol use, the Orx/Hcrt system acquires a preferential role
in mediating drug of abuse seeking vs. natural reward seeking.
What remains to be clarified are the neuromechanisms behind
this differential involvement of Orx/Hcrt-PVT transmission. One
hypothesis is that a history of protracted drug abuse induces dys-
regulation of lateral hypothalamus-Orx/Hcrt-PVT neurotrans-
mission, reflected by a change in Orx/Hcrt receptor expression
in the PVT or an alteration of Orx/Hcrt production in the
lateral hypothalamus that in turn is reflected by a correlation
between PVT activation and cocaine-seeking behavior. A his-
tory of drug self-administration may also induce neuroadapta-
tions (e.g., enhanced synaptic strength) in the PVT that in turn
perturbs its “normal” function toward excessive drug-directed
behavior.

Considering the importance of relapse prevention in postde-
pendent individuals, it would be important to determine whether
the effects of pharmacological tools (e.g., Hcrt-r antagonists)
change in postdependent individuals, as described earlier for
metabotropic glutamate receptors (Aujla et al., 2008; Hao et al.,
2010; Sidhpura et al., 2010; Kufahl et al., 2011) and the nociceptin
system (e.g., Economidou et al., 2008; Martin-Fardon et al., 2010;
Aujla et al., 2013) and whether these effects are mediated by
the PVT. The literature and data generated by our laboratory
strongly support a previously unrecognized mechanism, namely
the dysregulation of Orx/Hcrt-PVT transmission, in the etiology
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of drug dependence, which may help identify novel therapeutic
targets for drug addiction.
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