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Accumulating evidence suggests that glutamate clearance plays a critical role in the
pathophysiology and treatment of depression. Preclinical and clinical studies have
demonstrated that ketamine provides an immediate and sustained antidepressant
effect. However, the precise mechanism of its action remains to be elucidated.
Glutamate transporter 1 (GLT1) participates in glutamate clearance; therefore, we
hypothesized that GLT1 may play an important role in the antidepressant effect of
ketamine. In this study, we determined that GLT1 inhibition blocks the antidepressant-
like properties of ketamine and alters the phosphorylation of the mammalian target of
rapamycin (mTOR) in the prefrontal cortex (PFC). Our results show that pretreatment
with dihydrokainic acid (DHK), a GLT1 inhibitor, alleviated the antidepressant-like effect
of ketamine, and decreased the level of phosphorylated mTOR (pmTOR) in mice (which
is normally upregulated by ketamine). In addition, inhibition of α-amino-3-hydroxy-
5-methyl-4-isoxazole-propionic acid (AMPA) receptor and L-type voltage-dependent
calcium channel (L-VDCC) significantly abolished the antidepressant-like effect of
ketamine. Moreover, inhibition of L-VDCC significantly blocked the upregulation of GLT1
and BDNF in the PFC of mice. The inhibition of the AMPA receptor only significantly
alleviated BDNF. Our results provide insight into the role of GLT1 as the critical
presynaptic molecule participating in the pathophysiological mechanism of depression
and contributing to the antidepressant-like effect of ketamine. In addition, our study
confirms that both AMPA receptor and L-VDCC are crucial factors in the immediate
antidepressant-like effect of ketamine.

Keywords: glutamate transporter 1, depression, ketamine, α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor, L-type voltage-dependent calcium channel

INTRODUCTION

Depression is one of the most prevalent psychiatric disorders, characterized by high incidence
and treatment resistance. However, currently available antidepressants have several major
drawbacks, such as low response rates and delayed therapeutic effects (Gaynes et al., 2009). The
pathophysiology of depression as well as targets of pharmacological treatments have been defined
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by the monoamine hypothesis of depression for the last
decades. Antidepressants aiming at these previously defined
targets normally require from 3 to 8 weeks to produce a
therapeutic response; however, they affect neurotransmitters
immediately (Machado-Vieira et al., 2008). A single sub-
anesthetic dose of ketamine, a glutamate N-methyl-D-aspartate
(NMDA) receptor antagonist, based on two meta-analyses of
randomized placebo-controlled trials (Fond et al., 2014; McGirr
et al., 2015), meets the needs of a rapid-acting antidepressant
treatment. However, the mechanism underlying this immediate
antidepressant effect in animal models remains largely unknown
(Kavalali and Monteggia, 2015).

Ketamine has been described as a powerful antagonist of
NMDA receptors, however, researchers have shown that the
mechanisms underlying this response are likely to be more
complex than a selective blockade of NMDA receptors (Naughton
et al., 2014; Chaki and Fukumoto, 2015). Glutamatergic systems
have been found to play an important role in the rapid
antidepressant effect of ketamine (Krystal et al., 2013; Lener
et al., 2017; Machado-Vieira et al., 2017). Glial cells regulate
glutamatergic systems by clearing glutamate from extracellular
space via excitatory amino acid transporter (EAAT). The
glutamate is then recycled in the glutamate-glutamine cycle.
Without the activity of glutamate transporters, glutamate builds
up and kills cells in a process called excitotoxicity. It has
been reported that β-lactam antibiotic ceftriaxone increases the
uptake of glutamate by upregulating the expression of EAATs,
and therefore exerts neuroprotective (Rothstein et al., 2005)
and antidepressant effects (Mineur et al., 2007). There are five
subtypes of EAATs in humans, as well as rodents. Subtypes
EAAT1-2 are found in the membranes of glial cells (Lehre et al.,
1995). EAAT2, also known as glutamate transporter 1 (GLT1),
is responsible for over 90% of glutamate reuptake in the central
nervous system (CNS) (Matsugami et al., 2006; Holmseth et al.,
2009; Rao et al., 2015). GLT1 has been reported to play a critical
role in the antidepressant effect of ketamine, and its mechanism
of action may be associated with brain-derived neurotrophic
factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling
(Liu et al., 2016). However, the upstream regulatory mechanism
by which GLT1 participates in the antidepressant effect of
ketamine remains to be clarified.

In the present study, we examined the effects of GLT1
on the rapid antidepressant-like effect of ketamine in chronic
unpredictable mild stress (CUMS) mice and explored the
pathways that may participate in the regulation of GLT1 in the
prefrontal cortex (PFC) of mice. First, we inhibited the activity
of GLT1 with dihydrokainic acid (DHK) in CUMS mice. We
then determined the level of mammalian target of rapamycin
(mTOR), which is responsible for the rapid action of ketamine
(Jernigan et al., 2011). Furthermore, we aimed to clarify the
roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor (AMPAR) and L-type voltage-dependent calcium
channel (L-VDCC) in the regulation of GLT1. These two proteins
participate in the upstream pathways of BDNF as well as TrkB,
and have been reported to play an important role in the rapid
antidepressant-like effects of ketamine (Duman et al., 2012).
Additionally, BDNF and TrkB activation regulated by AMPAR

and L-VDCC are required for the rapid antidepressant effects of
ketamine (Autry et al., 2011), and BDNF is a potent endogenous
activator of mTOR, which has also been suggested to underlie the
antidepressant action of ketamine (Li et al., 2010).

MATERIALS AND METHODS

Animals and Drugs
The adult male C57BL/6J mice (6–8 weeks) used for the
experiment were supplied by the Laboratory Animal Center
of the Southern Medical University (Guangzhou, China). The
animals were housed in an air-conditioned room at 22 ± 3◦C
and 60 ± 5% relative humidity under a 12 h light/12 h dark
cycle (lights on at 7:00 a.m.) with ad libitum access to food
and water. All experiments were carried out in accordance
with the principles of the “NIH Guide for the Care and Use
of Laboratory Animals” (NIH Publications No. 80–23, revised
1996). The procedures were approved by the Animal Care and
Use Committee of the Southern Medical University. Ketamine
hydrochloride, NBQX, and DHK used in this work were obtained
from Sigma (St. Louis, MO or Shanghai, China). Verapamil was
purchased from Aladdin Ltd., (Shanghai, China). All of them
were dissolved in saline to the required concentration.

Experimental Design and Drug Treatment
The first aim of the present study was to explore the role
of GLT1 in ketamine-induced rapid-acting antidepressant-like
effects in CUMS mice. The selective inhibitor of GLT-1, DHK
(1.0 µg), or vehicle was microinjected by intracerebroventricular
(i.c.v.) injection in mice. Intraperitoneal injection of ketamine (10
mg/kg, i.p) was administered 30 min after the DHK treatment,
and then the open field test (OFT) and forced swim test (FST)
were conducted successively in the light phase between 8:00 a.m.
and 4:00 p.m. in day 1 and 2 (as shown in Figure 1A).

In addition, to assess the roles of AMPAR and L-VDCC in the
antidepressant-like actions of ketamine, the NBQX (0.5 µg, i.c.v)
and Verapamil (5.0 nmol, i.c.v) were pretreatment 30 min before
the ketamine administration, respectively, in mice. And then the
OFT and FST were conducted successively in the same day (as
shown in Figure 1B).

Surgery for Brain Cannula Implantation
and Drug Injections
Intracerebroventricular cannulation implantation was performed
as described (Li et al., 2017). The stereotaxic coordinates for
the lateral ventricle were carried out in accordance with the
Paxinos/Franklin mouse atlas (Paxinos and Franklin, 2001). All
mice were anesthetized with 2% isoflurane and mounted on a
stereotactic frame (R WD Kopf Instruments, Shenzhen, China)
with a Kopf model mouse adaptor. Stainless steel guide cannula
were implanted in the lateral ventricle at 0.70 mm posterior to the
bregma, 1.30 mm lateral to the midline, and 2.00 mm below the
skull surface. The guide cannula was anchored to the skull with
dental cement and a stainless-steel stylet was inserted to maintain
patency for microinjection. Animals were housed individually
and allowed 7 days for recovery.
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FIGURE 1 | Schedule of drug treatment and behavioral tasks orders. The
experiment design of GLT1 inhibition in the rapid antidepressant-like effect of
Ketamine (A) and the involvement of AMPAR/L-VDCC in the regulation of
Ketamine on GLT1 (B).

During the microinfusion, the mice were indisposed with
a gaseous anesthetic and woke up 10∼20 min after infusion,
and could be applied to behavior tests to explore the rapid
antidepressant-like effects of ketamine in mice. The infusions
were performed via a 10-µl Hamilton microsyringe connected
to the microinfusion cannula via 0.26-mm ID polyethylene
tubing. Microinfusions were carried out over 5 min with
an infusion pump at 1 µL/min, and the cannulas were
left in place for 3 additional minutes to avoid backflow.
To verify the correct placement of the cannula after i.c.v
drug delivery, mice were sacrificed after behavioral tests and
cryostat sections of lateral ventricle cut through the cortex
determine the cannula track. Only animals with the correct
cannula placement were used for further analysis. Mice were
sacrificed by dislocated spine method under anesthesia (ether),
the tissues used for western blot analysis were collected 6 h after
ketamine treatment.

Chronic Unpredictable Mild Stress
Procedure
This animal model of stress consists of chronic exposure to
variable unpredictable stressors, none of which is sufficient alone
to induce long-lasting effects. Briefly, the CUMS procedure
(Huang et al., 2017) involved 12 different stressors that were
randomly arranged throughout the day and night over 56
consecutive days. The stressors were (1) 24 h of food deprivation,
(2) 1 h of exposure to 4◦C room (3) 24 h of exposure to a 45◦
cage tilt, (4) overnight illumination, (5) 24 h of exposure to a wet
cage (100 ml of water per individual cage, which is enough to

make the sawdust bedding wet), (6) 5 min of swimming in 6∼8◦C
water, (7) tail clamp for 5 min, (8) 24 h of water deprivation,
(9) unpredictable shocks for 5 min (15 mA, one shock/5, 10 s
duration), (10) Swimming for 15 min, (11) 4 h of restricted
movement, and (12) 4 h of disrupting the cage. The behavioral
tests were performed and scored by trained and experienced
observers who were blinded to the animals’ conditions.

Open Field Test
Briefly, the Open Field Test (OFT) was conducted according to
the previous protocols that we recently reported (Li et al., 2017;
Lv et al., 2018). The 50 × 50-cm arena with 39-cm high walls is
made of a white Plexiglas box. Two black lines were drawn on the
floor. Mice were placed into the center of the arena and allowed to
explore the apparatus for 5 min. The number of the line crossings
and rearings were considered parameters of locomotor activity
and recorded over a 5-min period by a digital system.

Forced Swimming Test
The FST was conducted in a sound-attenuated room according to
the previous studies with minor changes (Wu et al., 2016; Zanos
et al., 2016; Lv et al., 2018). Briefly, mice were placed individually
for 6 min into a clear plastic cylinder (diameter 10 cm, height
25 cm) containing 10 cm of fresh water, maintained at 23 ± 2◦C.
The immobility time was recorded over the following 4 min of
the 6-min testing duration. The immobility time was defined as
time when a mouse floated with only the bare minimum activity
necessary to keep their heads above the water.

Western Blot Analysis
Frozen PFC tissues in each group (n = 3) of mice were
homogenized in ice-cold radio-immunoprecipitation assay
(RIPA) lysis buffer containing protease and phosphatase
inhibitors cocktail (Pierce Biotechnology, Rockford, IL,
United States). Lysates were centrifuged at 12,000 × g for
30 min at 4◦C. The protein concentration of each sample lysate
was determined with the BCA kit (Thermo Scientific, Rockford,
IL). Each sample (25 µg total protein) was separated on 10% SDS
polyacrylamide gel electrophoresis (PAGE) gels and transferred
to PVDF membranes (0.22 µm; Millipore, CA). Membranes
were then incubated with anti-mTOR (1:1,000, Cell Signaling),
anti-phospho-mTOR (1:1,000, Cell Signaling), anti-GLT1
(1:1,000, Santa Cruze), BDNF (1:800, Abcam, United States) and
anti-GAPDH (1:2,000, Millipore, CA) at 4◦C overnight. The
membranes were then incubated with Alexa Fluor800-conjugated
antibody (1:10,000, Invitrogen, Eugene, OR) for 60 min. Target
bands were captured with the fluorescence scanner (Odyssey
Infrared Imaging System, LI-COR Biotechnology, Lincoln, NE)
and quantified with Image J.

Statistical Analysis
Data are presented as mean± standard error of the mean (SEM).
Statistical analysis of the data was performed using one-way
analysis of variance (ANOVA) followed by Tukey’s post-hoc test as
appropriate using GraphPad Prism software (Version 5.0, Prism
software for PC, GraphPad). Values of P < 0.05 were considered
statistically significant.
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RESULTS

Role of Glutamate Transporter 1 in the
Antidepressant-Like Effects of Ketamine
in Chronic Unpredictable Mild Stress
Mice
The CUMS exposure did not alter the locomotor activities of the
mice in OFT [F(4, 51) = 1.712, P = 0.1616, Figure 2A]. While, the
immobility time of FST was significantly increased by CUMS in
day 1 [F(4, 51) = 5.228, P < 0.01, Figure 2B] and day 2 [F(4,
51) = 5.447, P < 0.01, Figure 2C]. A single administration of
ketamine (10 mg/kg) significantly reversed these two alterations
in CUMS procedure (both P < 0.01). However, the decrease of
immobility time produced by ketamine was only significantly
blocked by intracerebroventricular (i.c.v.) injection of DHK on
day 1 (P < 0.01, Figure 2B), suggesting that GLT1 plays a critical
role in the rapid-acting antidepressant-like effects of ketamine in
mice. We did not find the antidepressant-like actions of ketamine
was abolished by DHK 24 h after infusion in the FST (Day 2,
Figure 2C). As shown in Supplementary Figure 1, the different
doses of ketamine (3, 10, and 30 mg/kg, i.p) did not significantly
change the locomotor activities. However, these Three doses of
ketamine produced significant antidepressant-like actions in the
FST and TST of mice (Supplementary Figure 2).

Ketamine Activated Mammalian Target
of Rapamycin in the Prefrontal Cortex of
Chronic Unpredictable Mild Stress Mice
and Was Significantly Alleviated by
Dihydrokainic Acid
To investigate whether the activation of mTOR produced by
ketamine in an animal model of depression was abolished by
DHK, the expressions of phosphorylation of mTOR (pmTOR)
and total mTOR were determined in the PFC of mice (Figure 3A).
As shown in Figure 3B, the CUMS exposure resulted in a
significant decrease in protein levels of pmTOR when compared
with the control group (P < 0.05). In comparison with the CUMS
group, ketamine treatment significantly elevated pmTOR protein
expression (P < 0.01). However, pretreatment with DHK, the up-
regulation on the ratio of pmTOR in the PFC of mice produced
by ketamine was significantly abolished (P < 0.01). Figure 3C
showed the changes of mTOR, there was no significant change
among all groups [F(4, 10) = 0.1079, P = 0.9770].

The Involvement of α-Amino-3-Hydroxy-
5-Methyl-4-Isoxazolepropionic Acid
Receptor and L-Type Voltage-Dependent
Calcium Channel in the Rapid-Acting
Antidepressant-Like Effects of Ketamine
in the Prefrontal Cortex of Mice
Given the growing evidence that AMPAR and L-VDCC may
involve in the rapid-acting antidepressants (Duman et al., 2012;
Lepack et al., 2014; Zanos et al., 2016), we aimed to explore
whether the GLT1 and BDNF were regulated by AMPAR and

L-VDCC in the antidepressant-like actions of ketamine in mice.
As shown in Figures 4A,C, the locomotor activities of the
mice were not changed in the line crossings [NBQX, F(4,
45) = 1.523, P = 0.2115, Figure 4A; Verapamil, F(4, 45) = 0.8936,
P = 0.4757, Figure 4C] of OFT by all treatments. However, both
pretreatment with NBQX [F(4, 45) = 22.56, P < 0.001, Figure 4B]
and verapamil [F(4, 45) = 10.03, P < 0.001, Figure 4D] can
completely reversed the antidepressant-like effects of ketamine in
the FST of mice. As shown in Supplementary Figure 3. Single
treatment with NBQX (microinjection) and verapamil (i.p.) had
no effects alone in the OFT and FST of mice.

The Different Role of α-Amino-3-
Hydroxy-5-Methyl-4-Isoxazolepropionic
Acid Receptor and L-Type
Voltage-Dependent Calcium Channel in
the Regulation on the Glutamate
Transporter 1 by Ketamine in the
Prefrontal Cortex of Mice
Growing evidence has shown that the AMPAR and L-VDCC are
activated by rapid-acting antidepressants, resulting in the fast
release of BDNF and activation of downstream pathways (Lepack
et al., 2014; Yao et al., 2017; Yu et al., 2017, 2018; Ghosal et al.,
2018). To evaluate the roles of AMPAR and L-VDCC in the
regulation of GLT1 and BDNF by ketamine, we analyzed levels
of the GLT1 and BDNF by western blot analysis in the PFC of
mice (Figure 5A). After 56 days of CUMS exposure, the levels of
GLT1 [F(4, 10) = 17.01, P = 0.0002, Figure 5B] and BDNF [F(4,
10) = 13.63, P = 0.0005, Figure 5B] were significantly decreased
in the PFC of mice. However, a single treatment with ketamine
rapidly and significantly reversed these molecular changes (GLT1,
P < 0.01; BDNF, P < 0.01, Figure 5B). In contrast, the levels
of BDNF (NBQX, P < 0.05; verapamil, P < 0.001) in the
PFC of mice were significantly abolished by pretreatment with
verapamil, respectively. Notably, the up-regulation on the GLT1
of ketamine was significantly alleviated by verapamil in the PFC
of mice (P < 0.05). Interestingly, pretreatment with NBQX, the
up-regulation on the GLT1 by ketamine was not significantly
abolished compared with single treatment with ketamine in
the PFC of mice.

DISCUSSION

A variety of studies in patients have shown that glutamatergic and
rodent models dysregulation is involved in depression (Li et al.,
2019). GLT1 is responsible for the majority (90%) of extracellular
and synaptic glutamate clearance in the CNS. Previous studies
have suggested that a decrease in the level of GLT1 in the brain is
a possible cause of depression (Cui et al., 2014; Rappeneau et al.,
2016). Specifically, infusion of DHK (GLT1 inhibitor) into the
brain has been shown to alter the levels of amino acids (Fallgren
and Paulsen, 1996) and induce both anxiety and depressive-like
symptoms (John et al., 2015; Gasull-Camos et al., 2017a). In
the above reports, DHK exhibited its effects within 5–15 min,
and biological assays and behavior tests were completed in 24
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FIGURE 2 | The influence of DHK on the rapid antidepressant effect of Ketamine. The crossing of mice in OFT (A); the immobility time of mice in day 1 (B); the
immobility time of mice in day 2 (C). The data are expressed as means ± SEM, n = 10–12. ∗∗P < 0.01 compared with vehicle + vehicle + non-stressed group;
##P < 0.01 compared with vehicle + vehicle + CUMS group; @@P < 0.01 compared with ketamine + vehicle + CUMS group.

FIGURE 3 | The influence of DHK on the mTOR phosphorylation in the PFC of mice. mTOR and pmTOR protein expression were determined by Western blot.
Representative western blot (A) and quantification (B,C) of fold changes in the protein levels of pmTOR and mTOR in the PFC of mice. The data are expressed as
means ± SEM; n = 3; *P < 0.05 compared with vehicle + vehicle + non-stressed group; ##P < 0.01 compared with vehicle + vehicle + CUMS group; @@P < 0.01
compared with ketamine + vehicle + CUMS group.

h, similar to the behavior tests in our study. GLT1 levels in the
PFC corresponding to the effect after 48 h of DHK infusion were
established by western blot analyses.

In our experiments, GLT1 expression levels in the PFC
were significantly decreased following CUMS stimulation and
returned to normal by ketamine treatment, which was consistent
with the results of previous studies (Choudary et al., 2005; Liu
et al., 2016). GLT1 inhibition is known to induce depression-like
behaviors (Bechtholt-Gompf et al., 2010), whereas upregulation
of GLT1 can have an antidepressant effect (Rothstein et al.,
2005; Sanacora et al., 2007; Bechtholt-Gompf et al., 2010; Ding
et al., 2017). Our current work confirmed that pretreatment
with the GLT1 inhibitor DHK significantly alleviated the rapid
antidepressant-like effect of ketamine infusion, which was
consistent with the results of previous studies (Choudary et al.,
2005; Liu et al., 2016). The decrease in astrocytic Glu uptake due
to the decreased level of GLT1 might lead to a shortage of Gln
in astrocytes, which is responsible for the release of Glu into
the presynaptic neuron, which may support our findings. Our
findings may be also confirmed by previous studies in which the
infusion of DHK into the brain has been shown to change the

levels of amino acids (Fallgren and Paulsen, 1996) and induce
both anxiety and depressive-like symptoms (John et al., 2015;
Gasull-Camos et al., 2017a).

Activation of the mTOR signaling pathway has been recently
shown to be a critical factor in the antidepressant effect of
ketamine (Hoeffer and Klann, 2010). The rapid induction of
mTOR phosphorylation occurs within 30 min of ketamine
administration. This, in turn, leads to the activation of
mTOR-dependent protein synthesis (Duman et al., 2012).
Here, we assessed changes in the level of the phosphorylated
mTOR (pmTOR) after DHK treatment and found that the
downregulation of GLT1 significantly inhibited the regulatory
effect of ketamine on pmTOR. Therefore, it can be concluded
that the regulatory action of ketamine on GLT1 influences mTOR
activity. GLT1 as the major glial glutamate transporter is located
in the membranes of pre-synaptic astrocytes and is responsible
for more than 90% of glutamate uptake.

Glutamate is an important excitatory neurotransmitter in the
CNS. This molecule as well as its cognate receptors have been
described as new targets for rapid antidepressant action (Dutta
et al., 2015; Machado-Vieira et al., 2017). Here, we speculated that
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FIGURE 4 | The roles of AMPAR and L-VDCC played in the rapid antidepressant effect of Ketamine. The crossing of mice in an open field test in AMPAR blocked (A)
and L-VDCC inhibition (C); the immobility time of mice in forced swimming test in AMPAR blocked (B) and L-VDCC inhibition (D). The data are expressed as
means ± SEM, n = 10. ∗∗P < 0.01 compared with vehicle + vehicle + non-stressed group; ##P < 0.01 compared with vehicle + vehicle + CUMS group; @@P < 0.01
compared with ketamine + vehicle + CUMS group.

FIGURE 5 | The roles of AMPAR and L-VDCC in the regulation of Ketamine on GLT1 and BDNF in the PFC of mice. GLT1 and BDNF protein expression were
determined by Western blot. Representative western blot (A) and quantification (B) of fold changes in the protein levels of GLT1, and BDNF in the PFC of mice. The
data are expressed as means ± SEM; n = 3; **P < 0.01 compared with vehicle + vehicle + non-stressed group; ##P < 0.01 compared with vehicle + vehicle +
CUMS group; @P < 0.05, @@P < 0.01 compared with ketamine + vehicle + CUMS group.
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GLT1 indirectly influences the level of mTOR phosphorylation
through the regulation of glutamate levels during the rapid
antidepressant effect of ketamine.

AMPAR and L-VDCC have both been demonstrated to play
important roles in the rapid antidepressant effect of ketamine as
one of the critical downstream fast-acting factors. This finding
has been confirmed by behavior tests in the current study. We
also measured BDNF expression levels and found that ketamine
regulated the levels of BDNF in CUMS mice. Both NBQX and
verapamil pretreatment abolished the effects of ketamine on
BDNF, consistent with previous reports (Jourdi et al., 2009;
Lepack et al., 2014; Zhou et al., 2014). It is likely that L-VDCC
may play a key role in the regulatory effect of ketamine on GLT1.
However, the effect of L-VDCC inhibition on the level of GLT1
expression was different from that of AMPAR inhibition. AMPAR
antagonist treatment increased GLT1 expression. We believe that
this effect may be due to the participation of AMPA in the
serotonergic activity in the PFC. It was reported that DHK and
S-AMPA microinfusion in IL evoked similar antidepressant-like
effects in the FST at 10 min post-administration (Gasull-Camos
et al., 2018). Moreover, the GLT1 inhibition has been reported
to induce a rapid increase in serotonergic activity in IL, which
was blocked by NBQX (Gasull-Camos et al., 2017b). However, in
our experiments we only detected the total GLT1 expressed in the
PFC (not IL); therefore, further research is needed to clarify the
changes in GLT1 expression in the IL after AMPA inhibition. The
signaling pathway induced by the communication between glial
and neuronal cells is often difficult to study. Data suggest that
astrocytes signal to neurons through the Ca2+-dependent release
of glutamate (Haydon and Carmignoto, 2006; Fiacco et al., 2009).
Additionally, our biochemical studies revealed that the calcium
channel blocker verapamil significantly inhibited the effect of
ketamine in CUMS mice.

This may be evidence of the influence of calcium channels
on GLT1 expression. Growing evidence suggests that the
antidepressant-like effects of ketamine and scopolamine in
rodent models are caused by an influx of extracellular glutamate,
elevated levels of BDNF, and activation of L-VDCC (Lepack et al.,
2014; Wohleb et al., 2017; Ghosal et al., 2018; Yu et al., 2018). This
may explain why the regulation of GLT1 by ketamine was blocked
by t e calcium channel antagonist verapamil.

This study has some limitations. We found that GLT1
expression changed in both the hippocampus and PFC in mice
under CUMS. As the PFC is an integral region in the top-
down regulation of behavior and control of stress reactivity
(Arnsten, 2015), we studied the biological changes in this area
as a representation of the brain region. Accumulating evidence
indicates that the hippocampus and nucleus accumbens (NAc)
are also involved in depression-like phenotypes (Tsankova et al.,
2006; Zhang et al., 2014; Yang et al., 2015). Thus, it is necessary to
clarify the changes in these areas in future studies.

CONCLUSION

In conclusion, we showed that the antidepressant-like effect of
ketamine on CUMS mice was prevented by GLT1 inhibition
and that the regulation of mTOR phosphorylation in the
PFC of mice affected the action of GLT1. Our results
also indicated that L-VDCC in the PFC may influence
the regulatory role of GLT1 in the therapeutic mechanism
of ketamine.
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