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Important oligonucleotides in anti-sense research have been
investigated in silico and experimentally. This involves quan-
tum mechanical (QM) calculations and chromatography ex-
periments on locked nucleic acid (LNA) phosphorothioate
(PS) oligonucleotides. iso-potential electrostatic surfaces are
essential in this study and have been calculated from the
wave functions derived from the QM calculations that provide
binding information and other properties of these molecules.
The QM calculations give details of the electronic structures
in terms of e.g., energy and bonding, which make them
distinguish or differentiate between the individual PS diaste-
reoisomers determined by the position of sulfur atoms.
Rules are derived from the electronic calculations of these
molecules and include the effects of the phosphorothioate
chirality and formation of electrostatic potential surfaces.
Physical and electrochemical descriptors of the PS oligonucle-
otides are compared to the experiments in which chiral states
on these molecules can be distinguished. The calculations
demonstrate that electronic structure, electrostatic potential,
and topology are highly sensitive to single PS configuration
changes and can give a lead to understanding the activity of
the molecules.

INTRODUCTION

The pioneering work on phosphorothioate (PS) oligonucleotides was
performed more than four decades ago.' > The initial work' focused
on the biological changes caused by the substitution of a native oxy-
gen by sulfur.>*” Replacing a non-bridging oxygen with sulfur creates
a chiral center at phosphorous and produces two chiral isomers: Rp
and Sp. Thus, for every PS linkage introduced in an oligonucleotide,
two diastereoisomers are created. Because conventional solid-phase
PS synthesis is not stereoselective, an N-mer PS oligonucleotide

3,4,6-8 .
°~% Diastereo-

contains random mixtures of 2" diastereoisomers.
isomers exhibit different physical and chemical properties. In the
pioneering stereo-regular synthesis work of Stec et al’, it was
concluded that the Sp configuration generally provided better exonu-
clease resistance compared to the Rp, but the Sp and not the Rp
configuration was the substrate for endonucleolytic enzymes. On
the other hand, Rp isomers were much better than Sp substrates
for DNA-dependent RNA polymerases, RNase H, and stimulated

. 7.9-
immune responses.G”’) H
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Stevenson'” and Zamecnik'’ demonstrated in 1978 that synthetic ol-
igonucleotides can be used to block translation and transcription.
They used a synthetic 13-mer DNA and proved the principle that later
was called antisense. At that time, it was appreciated that further nu-
cleolytic stabilization of the native diester linkages was required for
any practical therapeutic use of these molecules.'' PS oligonucleotides
had been used in 1970 by CDe Clercq and co-workers'* to stabilize
enzymatically produced polyribonucleotides. That work led to the se-
lection of PSs as nucleolytic stabilizers for synthetic antisense oligonu-
cleotides (AONs).">*" Although non-stereodefined AONs composed
of random diastereoisomeric mixtures were employed, the PS chirality
issue has been continuously discussed.'®**"** However, firm conclu-
sions on the necessity for producing stereo-defined AONs were not
reached. For instance, it was demonstrated that PS chirality produced
a small increase of the binding affinity to RNA targets,”* and also that
chirality had little influence on protein binding.”* Other physical
properties were also demonstrated to be dependent on stereochemis-
try. Karwowski et al.”” demonstrated in their paper on chiral synthesis
of dimeric locked nucleic acid (LNA) that high-performance liquid
chromatography (HPLC) retention time was changed with the Rp
and Sp isometri. It was proposed, for practical antisense drug discov-
ery and development, that PS chirality would play only a minor
role.”>** With the advent of new affinity-increasing synthetic nucleo-
tides, it was thought that the exonuclease protective properties of some
chiral PS combinations, the Sp form in particular, would not be needed
to prevent nucleolytic degradation.*® Others pointed to a potential
advance in controlling PS chirality and speculated that the modest in-
crease in affinity and RNase H recruitment of the Rp isomers,'”%” in
combination with the increased stability against 3’ exonucleases in hu-
man serum (Sp), alone or in combination with other chemical modi-
fications, could be useful for productive use in the design of AONs.' >’

Controlling PS chirality has attracted attention in antisense research,
but the use of stereo-defined antisense PSs has not been widely imple-
mented. One reason for this was that other chemical modifications
that produced significant improvements in potency and nuclease
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Figure 1. Ab Initio HF-SCF Results for LNA-PS Trimer: 5'-TTg,T-3'
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(Left) Optimized structure of 5'-TTgpT-3'. (Right) Relative energy as a function of rotation around the dihedral angle of the N-glycosidic bond (3" nucleotide). The red circle

shows the optimized structure (left).

stability emerged.”®*° In particular, sugar modifications, examples
such as the high-affinity bicyclic LNA and LNA analogs,”’ ™" pro-
duced new enabling results for oligonucleotide therapeutics.

However, recent work has highlighted the importance of PS chirality.
Meena et al. (N.I. Meena et al., 2015, AsiaTides, conference) showed
that stereo-defined diastereoisomers of the marketed antisense
drug Mipomersen exhibited improved properties. Mipomersen was
approved by the U.S. Food and Drug Administration (FDA) as a
random mixture comprising all the possible diastereoisomers. They
concluded that controlling PS chirality can provide marked advan-
tages for oligonucleotide therapeutics (N.L. Meena et al, 2015,
AsiaTides, conference). In contrast, it has also recently been reported
that controlling PS chirality in the gap region (DNA-PS segment) of
AON gapmers did not produce discernible benefits for therapeutic
applications and that a diastereoisomeric mix of Rp and Sp is required
to balance between good activity and nuclease stability.**

At this time, the importance of controlling PS chirality is still debated.
In order to approach this controversy from a novel perspective, we
report here a quantum mechanical (QM) study on LNA PS oligonu-
cleotides. A work published in 2014* demonstrated that QM
modeling of oligonucleotides could be used to describe and under-
stand fundamental properties and experimental observations, e.g.,
chromatograms. Here, we report an extension of that work and
demonstrate for LNA oligonucleotides that PS chirality influences
to a great extent the central properties of potential relevance for ther-
apeutic oligonucleotides.

In the following section, the results from quantum mechanical calcu-
lations are presented and compared to new anion exchange (AIE)
chromatogram experiments. Details of the methodology are described
in Materials and Methods at the end.

RESULTS

Justification of Computational Methods

The molecular systems investigated here are computationally large ol-
igonucleotides that exhibit many minima in their potential energy
surfaces. This created the possibility of identifying many possible sta-
ble conformers. Therefore, in order to justify the results, we started
by demonstrating the relevance of the methods. First, the specificity
of the methods was made plausible by studying a LNA-PS trimer
(5'-TTT-3). Second, the correctness of the methods was made
plausible by the comparison of a structure optimized in Hartree-
Fock self-consistent field (HF-SCF) calculations on a 9-mer DNA
(5'-gcgaaagct-3') with a published crystal structure.

In some of the calculations, environment effects have been included
by either adding solvent molecules explicitly or implicitly by appro-
priate change of dielectric parameters. These changes did not seem
to alter the structure dramatically.

The trimer (5'-TTT-3’) was built as described in the Materials and
Methods, and its structure was optimized by HF-SCF calculations
(Figure 1). The two thymine nucleobases at the 5 end interacted
by stacking, whereas the thymine nucleobase at the 3’ end was dis-
placed from the two other bases. On this background, we then chose
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to investigate how sensitive the energy of the molecule was to the
rotation of the nucleobase at the 3’ end. The energy was calculated
as a function of the rotation around the dihedral angle of the
N-glycosidic bond of the 3’ nucleotide. The dihedral angle was
rotated in steps of 10° over 360°, and the energy was calculated at
each point. Figure 1 shows that the energy of the molecule is very
dependent on the dihedral angle, reaching a maximal value above
500 kJ/mol relative to the energy of the most stable conformer. How-
ever, Figure 1 also shows that only a large change of the dihedral
angle will lead to a different conformer and that different conformers
are likely to reside in one of the three minima. Thus, this gives us
confidence that the HF-SCF optimization method leads to relatively
deep minima, and that a given initial condition can produce the
same specific final structure. Further discussions are given in the
Material and Methods section.

Next, justification of the structures obtained by the HF-SCF optimi-
zation method was performed by comparing a calculated structure
with a crystal structure of the same compound. We chose to compare
a calculated structure of the DNA 9-mer (5'-gcgaaagct-3’) with the
crystal structure of the same oligonucleotide obtained from PDB,
1IX]. The crystallographic structure was modified by removing the
magnesium and cobalt ions together with their ligands. The system
was made neutral by the addition of eight sodium atoms. Figure 2
shows the original crystal structure of the DNA 9-mer (A) together
with the structure optimized in HF-SCF calculations (B) starting
from the crystal structure. In both cases, the DNA 9-mer exhibits a
distinct helical structure, with striking similarities in the helical pa-
rameters between the crystal structure and the optimized modified
structure. For example, the 5-O to 3/-O distance was 31.84 A in
the crystal structure and 28.53 A in the optimized modified structure.
In addition, it was found that the N-glycosidic dihedral angles of the
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Figure 2. Calculated and Crystal Structure of 9-mer
DNA Diester: 5'-ggtaaacca-3'

(A) Crystal structure (11XJ) with ligand ions magnesium
and cobalt. (B) HF-SCF optimized structure of the sodium
salt starting from the crystal structure without magnesium
and cobalt ligand ions.

last three bases, -gct-3’, varied less than 10° be-
tween the two structures, providing a basis for
the similar stacking pattern. In this way, the
optimized structure produced in HF-SCF calcu-
lations is very similar to the structure of the
same molecule obtained from X-ray crystallo-
graphic measurements. We also produced
some molecular dynamics (MD) simulations
using the Metropolis algorithm,” which gave
less accurate results. For the MD simulations,
the MMFFaqua force field (Merck Pharma)
from Spartan, see Materials and Methods, was
utilized. This has also been used to generate
low-energy structures of the oligomers, leading to very similar
minima, but this was besides the focus of the paper.

In view of the results obtained from the DNA-PS trimer and the DNA
9-mer, both the specificity and correctness of the results of HF-SCF
optimizations were demonstrated. This makes us confident in using
the chosen quantum mechanics methods when studying the DNA-
PS and LNA-PS oligonucleotides.

HF-SCF Calculations of 8-mer DNA- and LNA-PS: 5'-cacactcc-3'
and 5'-CACACTCC-3'

The structure of the 8-mer DNA-PS with all-phosphorus stereo
centers Rp (all-Rp) is shown in Figure 3A. The structure of the corre-
sponding compound with all-phosphorous stereo centers Sp (all-Sp)
is shown in Figure 3B. The all-Sp compound, Figure 3B, exhibits a he-
lical, rather straight structure, whereas the all-Rp compound exhibits
a globular, “ball-like” structure. This is reflected in the short 5'-O to
3/-0 distance of only 10.5 A for the all-Rp compound as compared
to the 5-O to 3'-O distance of 34.1 A for the all-Sp compound
(Table 1). Thus, PS chirality has a major influence on the structure
of the 8-mer DNA-PS compound.

Figure 3 also includes the frontier orbitals: the highest occupied mo-
lecular orbital (HOMO) (solid) and the lowest unoccupied molecular
orbital (LUMO) (transparent). It is noted that the HOMO orbitals are
localized on a particular nucleobase. In the case of the all-Rp com-
pound, this is on the fourth nucleobase, adenine, counting from the
5’ end. In the case of the all-Sp compound, the HOMO is localized
on the cytosine at the 3’ end of the molecule. The LUMO for each
molecule is localized on one of the sodium atoms. This is consistent
with the partial positive charge associated with the sodium ions, as
shown in Mulliken population analyses using Mulliken charges,
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Figure 3. Ab Initio HF-SCF Optimized Structures and Electrostatic Potentials of 8-mer DNA PS Oligonucleotides: 5'-CACACTCC-3
(A) DNA-PS with all phosphorous in Rp configuration. (B) All phosphorous in Sp configuration.

natural charges, and electrostatic charges, all showing that the sodium

atoms have an appreciable positive charge.”'

Figure 3 shows the surfaces of the electrostatic potentials, with iso-
values chosen as 83.68 kJ/mol (mesh) and —83.68 kJ/mol (solid).

This energy corresponds to two to three times the energy of a
hydrogen bond, and, as such, is illustrative for the sites on the oligo-
nucleotides that interact and bind by hydrogen bonding and salt
bridge formation. The structural difference between the all-Rp and
all-Sp compounds is also reflected in the “accessible areas.” The

Table 1. DNA, in Small Letters, and LNA, in Capital Letters, Oligonucleotides with Sequence 5-CACACTCC-3' and Specific Chirality of the Phosphorous

Atoms

Relative Distance
DNA/LNA Energy  Dipole Electrostatic Potential,  Electrostatic Potential ~ (5'-O to HOMO LUMO
Oligonucleotides (eV) (Debye)  Density, 0.002 electrons/au®  83.68 kJ/mol —83.68 kJ/mol 3-0) (A)  Structure (eV) (eV)
s ) N iy e ) e
cacactcc: 7Rp 0.00 53.72 1,909 794 2,358 1,111 - 411 10.5 non helical —7.67 —0.75
CACACTCC: 7Rp 1.03" 14.64 2,143 1,008 2,548 1,182 1,369 292 33.6 helical —8.35 —0.05
C-Sp-ACACTCC: 6Rp 0.98" 11.53 2,142 991 2,577 1,205 1,324 317 317 helical —8.36 —0.07
CACA-Sp-CTCC: 6Rp 0.72° 16.90 2,130 964 2,459 1,067 1,222 262 25.7 helical —8.35 —0.15
CACACTC-Sp-C: 6Rp 1.03° 14.66 2,141 1,017 2,554 1,203 1,374 296 35.1 helical —8.40 —0.05
cacactcc: 7Sp 2.50° 61.18 1,961 918 2,412 1,212 1,315 370 34.1 helical —8.34 —0.82
CACACTCC: 7Sp 1.07° 63.81 2,107 989 2,527 1,119 1,372 459 353 helical —8.03 —-0.25
C-Rp-ACACTCC: 6Sp  0.00 52.57 2,056 907 2,320 974 = 372 274 helical —8.07 0.14
CACA-Rp-CTCC: 6Sp 0.86° 68.39 2,101 991 2,560 1,147 1,369 476 36.6 helical —8.02 —-0.28
CACACTC-Rp-C: 6Sp 1.06° 62.35 2,104 987 2,528 1,114 1,372 443 35.0 helical —7.91 —0.25

The results are derived in HF-SCF calculations, with the basis set as 6-31G*. The table includes the structures of the oligonucleotides, their relative energies, their dipole moments,
and the distances between 5'-O and 3'-O. Also included are the energies of the HOMOs and LUMOs as well as the areas and accessible areas of the charge density and electrostatic

potentials.

“The potential was truncated.
“Energies are relative to that of C-Rp-ACACTCC 6Sp.
“Energy is relative to that of cacactcc 7Rp.
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Figure 4. Ab Initio HF-SCF Optimized Structure and Electrostatic Potential of 8-mer LNA PS Oligonucleotide: 5-CACACTCC-3'

All phosphorous are in either Rp (right) and Sp (left) configuration.

accessible surface area or solvent accessible surface area is an area
accessible to solvent on a given bio-molecule.”>>* It is calculated using
a rolling ball of solvent with a specially chosen radius, in this case
1.00 A, employed to probe the surface of a molecule. In the SPARTAN
program, a region is considered inaccessible if the ball or sphere of
solvent is centered on a line normal to the surface, and when touching
a point on the surface in the region, is causing disruption of other
regions. The accessible surface area of the density and of the
positive electrostatic potential is larger for the all-Sp compound. In
contrast, the accessible surface area of negative electrostatic potential
is larger for the all-Rp compound: 411 A% (Rp) as compared to 370 A”
(all-Sp).

When the bridge 2'-O-CH,-4' is added to the deoxyribose rings, the
iso-sequential 8-mer LNA phosphorothioate (LNA-PS) with locked
ribose rings was created. For LNA-PS nucleotides, cytosine is 5-meth-
ylated. The molecular structure and electrostatic potentials for the all-
Rp LNA-PS oligonucleotide are shown in Figure 4. The correspond-
ing results for the all-Sp LNA-PS oligonucleotide are also shown. The
molecular structures and topologies of the electrostatic potentials
differ considerably from those of the corresponding DNA-PS nucle-
otide. The most conspicuous change in the structures of the 8-mers,
going from the DNA-PS oligonucleotide to the LNA-PS oligonucleo-
tide, was that both LNAs, i.e., all Rp or all Sp, exhibit helical (helix-
like) and more stretched structures. In this context, the helical

432 Molecular Therapy: Nucleic Acids Vol. 8 September 2017

structure is defined by the sugar phosphate backbone of the molecule
having a spiraling turn, but does not necessarily have the bases
stacked. Furthermore, going from the DNA-PS to the fully modified
LNA-PS leads, for both LNAs, to increased areas of charge densities
and increased areas of electrostatic potentials. This is consistent
with the larger number of atoms in the LNA-PS molecules as
compared to the DNA-PS molecules. It was expected that the
increased rigidity in the LNA compounds would result in straighter
structures with increased 5'-O to 3'-O distances. From Table 1, it is
noted that the 5-O to 3/-O distance of the all-Rp LNA-PS, 33.6 A,
is much larger than the corresponding distance for the all-Rp
DNA-PS, 10.5 A. However, the corresponding change going from
the DNA to the LNA congener of the all-Sp isomers created only a
modest increase from 34.1 A to 35.3 A.

The influence of PS chirality at the phosphorous atoms was further
investigated by successively exchanging a single configuration on
phosphorus. One Rp center in the all-Sp and one Sp center in the
all-Rp LNA-PS were exchanged for the other configuration to deter-
mine the length sensitivity of single configuration changes. In Figure 5
and Table 1, the structures of three such single PS chirality modifica-
tions are shown. The topology of the electrostatic potentials was very
sensitive to a single PS configuration change, and single modifications
influence the topology of the entire molecule. It was also observed that
the area of the positive electrostatic potentials was approximately
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twice as large as that of the negative electrostatic potentials. Further-
more, the accessible surface areas of the negative electrostatic poten-
tials were significantly larger for the all-Sp oligonucleotides or the
oligonucleotides with one Sp replaced by one Rp than for the oligonu-
cleotides with six Rps. Differences in the accessible areas are poten-
tially important for interaction of the oligonucleotides with solvents
in addition to other potential molecular interactions. Thus, the
more open and stretched structure the oligonucleotides attained,
the higher the accessible surface area of both polarities and, therefore,
the larger the potential interaction area.

The lengths of the oligonucleotides were also sensitive to the change
in PS chirality. Insertion of a single Sp at the ends of the all-Rp LNA
did not change the length significantly. However, a single Sp in the
middle of the all-Rp LNA reduced the length from 33.6 A to
25.7 A. For the all-Sp LNA-PS, a single Rp in the middle and at the
3’ end did not change the lengths significantly. In contrast, an Rp
at the 5" end of a fully Sp LNA-PS reduced the length from 35.3 A
t0 274 A.

There are other parameters for monitoring the electrostatic structures
of the oligonucleotides (Table 1). For example, the dipole moments
also showed PS chirality sensitivity; the calculated values for
the LNA-PS Rp series is much lower than those of the LNA-PS Sp
series.

Quantum Mechanical Calculation of 7-mer-LNA-PS Gapmers:
5'-ATgtaG™C-3'

7-mer LNA-PS gapmers were constructed with either all-Rp or all-
Sp configurations. The subtleties of single PS chirality changes
were elucidated by studying additional 7-mer LNA-PS gapmers
by replacing one Rp configuration in the all-Rp oligonucleotide
with a single Sp. This was done successively, creating six 7-mer
LNA-PS gapmers with all-Rp configurations but one Sp. Likewise,
six 7-mer LNA-PS gapmers were created by replacing one Sp config-

Figure 5. Ab Initio HF-SCF Optimized Structures and
Electrostatic Potentials of 8-mer LNA PS
Oligonucleotides: 5-CACACTCC-3'

(A-C) One Sp was inserted in the all-Rp LNA PS at the first
(A), fourth (B), and sixth (C) PS position counted from the
5 end.

uration with a single Rp in the all-Sp oligonu-
cleotide. Six sodium atoms were added to
the oligonucleotides, and the structures were
optimized in HF-SCF calculations (Figures 6
and 7; Table 2). The all-Rp LNA-PS gapmer
has a helical structure; the distance from 5-O
to 3/-O is 34.7 A. The corresponding all-Sp
LNA-PS gapmer has a “ball-like” structure (Fig-
ure 6), with a distance of 14.5 A from 5'-O to
3’-0. This differs from the DNA 8-mer oligonu-
cleotides, for which the all-Rp oligonucleotide is much shorter than
the all-Sp oligonucleotide.

Replacement of one Rp in the all-Rp LNA-PS gapmer by a single Sp
configuration leads to shorter 5'-O to 3'-O distances. The shortest dis-
tance, 22.5 A, is observed when the Rp close to the nucleobase in the
middle of the molecule, i.e., at the 3’ position of thymidine, is replaced
by a Sp configuration. The shortest LNA-PS gapmer is the all-Sp com-
pound. Replacing one Sp configuration in the all-Sp gapmer with one
Rp gives rise to larger 5-O to 3/-O distances (Table 2). In this case, the
largest distance, 30.2 A, is obtained when the Sp configuration at the
3’ end is replaced by Rp.

The fact that the maximum length variance of the fully LNA-modified
8-mers was 10.9 A (36.6-25.7 A) and 20.2 A (14.5-34.7 A) for the
shorter 7-mer LNA gapmer could indicate that the more rigid LNA
structure decreases the length sensitivity as a function of phosphorous
chirality.

In contrast to the large differences observed in the topology of elec-
trostatic potentials and 5'-O to 3/-O distances, the total surface areas
of the charge densities and of the electrostatic potentials are not very
sensitive to chirality at phosphorus atoms for the studied LNA-PS
oligonucleotides. Overall, the surface areas of the positive electro-
static potentials are approximately twice as large as those of the nega-
tive electrostatic potentials. However, the accessible surface area of
the negative electrostatic potential for the all-Sp 7-mer LNA-PS
gapmer, 240 A is larger than that of the accessible surface area of
the negative electrostatic potentials for the all-Rp oligonucleotide,
214 A% This is in accordance with the findings for the 8-mer
LNA-PS, but the difference between the values is not as significant
as for the 8-mer LNA-PS.

For each of the 7-mer LNA-PS gapmers, the HOMO is localized on a
single nucleobase, whereas the LUMO is localized on a sodium atom,
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as is the case for the 8-mer LNA-PS nucleotides. For the all-Rp
gapmer, the HOMO is localized at adenine on the 5'-LNA nucleotide.
This is also true for most of the gapmers, in which one Rp configura-
tion is replaced by a Sp configuration. However, when the Rp config-
uration closest to the 5’ end is replaced by Sp, the HOMO is reposi-
tioned on guanine, and the HOMO in the gapmer 5'-ATgta-Sp-GC-3'
is localized on LNA-guanine. The HOMO in the all-Sp oligonucleo-
tide is localized at adenosine, which is also the case when the Sp
configuration at the 5’ end is replaced by Rp. For the remaining Sp
gapmers with one Rp configuration, the HOMOs are localized on
the purines DNA-g and LNA-G and A (Table 2).

As was the case for the 8-mer LNA nucleotides, the dipole moments
vary considerably. The largest value, 61.30 D, was found for the
compound 5'-AT-Rp-gtaGC-3’, whereas the compound 5'-ATg-
Rp-taGC-3’ had a dipole moment of only 5.81 D.

AIE Chromatograms of LNA 7-mer and 8-mer

AIE chromatography (Figure 8) was performed on the 7-gapmer and
8-mer LNAs. The stereo-defined all-Sp and all-Rp forms of both LNA
PSs were co-injected with a random mixture of the same design and
sequence. The chromatograms show that the stereospecific forms
all-Sp (first) and all-Rp (last) constituted the two extremes relating
to the retention times.

Quantum Mechanical Calculation of an LNA-PS/RNA Duplex

The 7-mer LNA-PS gapmer, the all-Rp 5'-ATgtaGC-3', was con-
structed antiparallel with a trimer RNA, 3'-cau-5', complementary to
the DNA gap of the LNA gapmer. This structure was optimized in
HE-SCF calculations. The resulting structure, including the HOMO
and the LUMO orbitals, is shown in Figure 9. The surfaces of the
electrostatic potentials are also shown in Figure 9. Interestingly, the
duplex structure was preserved from the initial calculations to the final
converged structure. Both the 7-mer LNA-PS gapmer and the trimer
RNA show clear stacking of the nucleobases and a W/C H-bonding
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Figure 6. Ab Initio HF-SCF Optimized Structure and
Electrostatic Potential of 7-mer LNA PS
Oligonucleotide 5'-AT-gta-GC-3', with All
Phosphorous in Sp Configuration

Also shown are the HOMO and LUMO.

motif. The lengths of the three hydrogen bonds
between the guanine nucleobase on the 7-mer
and cytosine on the trimer are 1.972, 1.994, and
2.107 A. Two hydrogen bonds are identified be-
tween the thymine nucleobase on the 7-mer and
adenine on the trimer, 2.006 A and 1.992 A. In
addition, there are two hydrogen bonds between
the uracil nucleobase on the trimer and adenine
on the 7-mer (2.076 A and 2.319 A). Further-
more, the uracil nucleobase of the trimer also
formed a hydrogen bond with the LNA-
guanine nucleobase on the 7-mer (2.166 A), which represents an intra-
molecular bonding not part of the W/C motif. The lengths of these
hydrogen bonds are consistent with the published values for W/C
H-bonding.”*** The binding energy between the 7-mer and the RNA
trimer was determined by calculating the energy of the 7-mer and
the RNA trimer separately, while maintaining their structures from
the minimized duplex, and then subtracting the energy of the duplex.
The bonding energy was calculated as 2.78 eV = 268.2 kJ/mol. This cor-
responds to 33.5 kJ/mol per hydrogen bond. These results indicate that
the quantum optimization procedure of the duplex can produce the
structures and sequence selectivity known for nucleic acids. The accu-
racy of the quantum calculation of the duplex structure can be tested in
a similar way that Olson et al.”® and others have tested the geometry of
the duplex structure, theoretically as well as experimentally. Data from
our calculated duplex structure are given in Table 3 and shows great
agreement to crystallographic data.”

Table 3 shows data for base-pair geometries for the 7-mer LNA-PS
gapmer, the all-Rp 5'-ATgtaGC-3/, as defined by Olsson et al.”> The
distances d ¢y, ¢y differ at most by 0.2 A from the values of the ideal
models obtained by Olsson et al. The angles Ag, N9-C1'....Cl’, shown
in Table 3, differ by less than 5° from those of the ideal models of Ols-
son et al. The largest discrepancy between Ay, N1-C1’....C1’, presented
in Table 3, and those of Olsson et al. is 2.1°.

Quantum Mechanical Calculation of 13-mer Oligonucleotides
HF-SCF calculations were also carried out for a large 13-mer,
5'-TCatggctgcAGC-3', in the all-Rp form. The 13-mer was loaded
with 12 sodium atoms and converged to an approximate helical struc-
ture. The distance between the 5’-O to 3’-O in the converged structure
is 48.25 A, and the dipole moment is derived as 116.3 D.

DISCUSSION
We have employed several ways to justify the optimization methods
used. First, the HF-SCF optimization was shown to be specific and the
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QM calculations lead to relatively deep minima. This means that fixed
initial conditions will, with high probability, produce the same
specific end structure. Second, it was shown that the HF-SCF optimi-
zations can produce structures with high similarity to accepted refer-
ence models, such as X-ray crystallography. Third, biological justifi-
cation was illustrated by the fact that throughout the optimization
process, a DNA-RNA hybrid structure was energy minimized to a
final hybrid structure obeying a Watson-Crick hybridization
pattern,”* > with a geometry (e.g., H-bond lengths) known from
referenced works. Taken together, this indicates that the data have
relevance in experimental chemical and biological settings.

The AIE chromatograms demonstrate expected chromatographic
difference between stereo-defined diastereoisomers and random
diastereoisomeric mixtures (Figure 8). In the co-injections, the ste-
reo-defined compounds elute as sharp peaks and the random mix-
tures elute the many diastereoisomers (64 and 128) over a much
broader range. Here, the all-Rp and all-Sp diastereoisomers exhibit
extreme retention properties. Both all-Sp LNAs elute first and the
all-Rp LNAs elute last. It is interesting to note that the all-Sp
LNAs investigated have lower positive accessible areas of electro-
static potentials and higher negative accessible areas and vice
versa for the all-Rp LNAs. This indicates that the accessible area
might be a physical parameter for predicting AIE chromatography
migration.

Figure 7. Ab Initio HF-SCF Optimized Structures and
Electrostatic Potentials of 7-mer LNA PS
Oligonucleotides 5'-AT-gta-GC-3'

(A-F) One Rp is inserted from the 5’ end (A) to the 3’ end
(F) in the all-Sp LNA PS.

Molecular structures and electrostatic potentials
(MEPs) are important factors for molecular
recognition.”” " Compounds with different
electrostatic potential topologies are likely to
exhibit different recognition patterns in biolog-
ical systems. Generally, ligand-receptor binding
processes are very complex. The net binding en-
ergy is a balance between structure and MEP on
the one hand and counteracting de-solvation ef-
fects and allosteric effects on the other.”' " For
instance, the binding of oligonucleotides to
proteins is via hydrogen bonding, salt bridge for-
mation, water exclusion, and hydrophobic inter-
actions, such as nucleobase stacking with aro-
matic amino acids.”***”* Protein binding can
be strong and “specific” by the fact that specific
sites, e.g., segments of the nucleobase sequence
on the oligonucleotide, bind to specific amino
acid sites on the protein. Changing a single nu-
cleobase in a sequence of such a “specific” oligo-
nucleotide can lead to significant Kd increase.*®
Many factors play a role in understanding the properties of oligonucle-
otides in complex biological systems. Both binding to the fully comple-
mentary nucleic acid target and binding to mismatched nucleic acid
targets must be considered. However, it is also necessary to take into
account binding to other cellular biomolecules. It is well known that
protein binding drives many important pharmaceutical parameters,
such as toxicity, plasma half-life, tissue accumulation, cellular uptake,
and activity of antisense oligonucleotides.””*>~"”

Small changes in chemical composition can profoundly change the
structure of the oligonucleotides.”” For instance, a single change of
one stereocenter in the all-Sp 7-mer oligonucleotide changes the 5'-O
to 3'-O length from 14.5 A to the range 24.4-30.2 A, depending on
which stereocenter changes configuration. It is shown here that inter-
changing the deoxyriboses in an 8-mer DNA-PS with LNA nucleotides
caused marked differences in structure and MEP topology.
For the Rp oligonucleotides (all-Rp and oligonucleotides with single
Sp substitutions), the MEP topology, 5-O to 3'-O distance, and
accessible area were changed the most. For the Sp oligonucleotides
(all-Sp and oligonucleotides with single Rp substitutions), these
parameters were much less affected. Our experiments on AIE
chromatograms support this observation, which was seen in the calcu-
lation of accessible surface area. It is too early to say if this differentiated
sensitivity between Rp and Sp oligonucleotides is a general phenome-
non, so at this point, we ascribe this effect to be related to these specific
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Table 2. LNA 7-mer Oligonucleotide Gapmers with Sequence 5-ATgtaGC-3' and Specific Chirality of the Phosphorous Atoms

Relative Distance

Energy® Dipole  Density (0.002 Electrostatic Potential ~ Electrostatic Potential ~ (5'-O to HOMO LUMO
LNA Oligonucleotides  (eV) (Debye) electrons/au’) (83.68 kJ/mol) (—83.68 kJ/mol) 3/-0) (A)  Structure (eV) (eV)
Design and Sequence Accessible Accessible Accessible
(5’ to 3) Area (A%)  Area (A%)  Area (A% Area (A%) Area (A?) Area (A?)
ATgtaGC: 6Rp 0.96 33.68 1,802 876 2,159 1,040 1,135 214 347 helical —7.88 (A) —0.39
A-Sp-TgtaGC: 5Rp 0.63 2323 1,783 832 2,078 942 1,157 142 32.8 helical —7.98 (g) —-0.27
AT-Sp-gta GC: 5Rp 0.01 25.06 1,775 765 2,030 884 1,030 115 27.8 helical —-7.97 (A) —0.19
ATg-Sp-taGC: 5Rp 1.37 36.31 1,772 821 2,113 1,024 1,241 188 30.3 helical —7.82(A) -—1.19
ATgt-Sp-aGC: 5Rp 0.73 29.73 1,793 853 2,067 971 1,102 185 225 non helical —7.91 (A) 0.16
ATgta-Sp-GC: 5Rp 1.81 24.67 1,805 843 2,220 1,156 1,173 209 323 helical —7.69 (G) —0.65
ATgtaG-Sp-C: 5Rp 2.39 34.35 1,812 856 2,182 1,067 1,256 219 329 helical —7.87 (A) —046
ATgtaGC: 6Sp 1.26 33.16 1,659 668 2,045 843 1,100 240 14.5 non helical —7.88 (a) —0.40
A-Rp-TgtaGC: 5Sp 1.24 27.94 1,739 747 2,040 941 1,166 183 24.4 non helical —8.14 (a) —0.52
AT-Rp-gtaGC: 5Sp 0.00 61.30 1,759 820 2,172 1,140 1,447 441 26.3 helical —7.59 (g) —0.80
ATg-Rp-taGC: 5Sp 0.68 5.81 1,734 756 1,989 819 1,150 116 20.4 helical —8.13 (G) —0.27
ATgt-Rp-aGC: 5Sp 1.87 39.63 1,729 772 2,039 941 1,189 177 294 helical —799 (A) —0.54
ATgta-Rp-GC: 55p 241 26.02 1,696 731 1,990 909 1,156 139 29.8 helical —8.18 (A) —0.53
ATgtaG-Rp-C: 55p 1.62 30.37 1,763 762 1,997 908 1,115 239 30.2 helical -7.57(G) —0.60

The results are derived in HF-SCF calculations, with the basis set as 6-31G*. The table includes the structures of the oligonucleotides, their relative energies, their dipole moments, and
the distances between 5'-O and 3'-O. Also included are the energies of the HOMOs and LUMOs as well as the areas and accessible areas of the charge density and electrostatic po-

tentials. The location of HOMO is indicated following the HOMO value.
*All energies are relative to that of AT-Rp-gtaGC: 5Sp.

molecules. However, it is clearly demonstrated that modifying a single
configuration in either the 8-mer fully modified LNA or the 7-mer LNA
gapmer leads to profound structure and MEP changes.

The structure of the all-Sp 7-mer gapmer is “ball-like,” with a 5'-O to
3'-O of only 14.5 A. Introduction of a single Rp stereo center
straightens and doubles the length of the structure, producing a
dramatically different electronic and MEP topology. Thus, the
induced change by a single chirality modification in stereodefined
PS oligonucleotides is “global” and propagated throughout the entire
molecule (Figures 6 and 7). Because structure and MEPs are strong
property determinants, a single chirality change in a stereodefined
PS oligonucleotide may produce significant chemical and biological
property changes. This is strongly exemplified in Table 2 and the cor-
responding Figure 7, where a huge difference in dipole moment ap-
pears between two 7-gapmers in Table 2 that only differs by a single
chiral shift from position 2 to 3 of the R state in an otherwise all S state
oligomer. The dipole moment D recorded in Table 2 decreases from
61.3 to 5.8 Debye by that shift but can be understood when looking at
the potential surfaces of Figure 7B, which show a large charge separa-
tion (and D) between positive and negative surface patches compared
to Figure 7C, where the charged areas are evenly distributed, making
the charge separation small.

The structural, electronic, and MEP topology changes observed here
are context exclusive. For instance, one could assume that the more
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rigid structure of the bicyclic LNA would produce more extended
structures. This is supported by the fact that the all-Rp 8-mer DNA
PS has a length of 10.5 A and the iso-sequential all-Rp 8-mer LNA-
PS has a length of 33.6 A (Table 1). However, most of the Sp series
(DNA and LNA) have the same lengths more or less. The measured
parameters are highly compound and PS chirality specific. The QM
results illustrate that some single chirality changes “globally” affect
the molecule to a greater or lesser extent. It would thus be useful to
determine at which position a chirality modification would create a
“maximal” effect on structural, electronic, and electrostatic parame-
ters. PS oligonucleotides are no exception to the fact that single
chirality changes in stereodefined diastereoisomers have profound
importance for molecular structure and properties. Although the
QM structures and topologies are based on data from shorter oligo-
nucleotides (7-mers and 8-mers), we find it plausible that longer con-
geners will behave in much the same way.

The sensitivity that PS chirality imparts to structure and electrostatics
can be expected to influence many biologically and pharmacologically
relevant parameters. The data demonstrate that within a given oligo-
nucleotide sequence, PS chirality offers a large structure and property
space that produces many single diastereoisomers with different
properties. This adds a new dimension to differentiate structure
and activity among therapeutic oligonucleotides. Accordingly, the
properties of a given selected “lead” molecule identified after classic
non-stereo-selective procedures can be further optimized by selecting
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Figure 8. AIE Chromatograms of 260 nm of Stereo-Defined and Random
Mixture LNA PS Oligonucleotides

(A) LNA 8-mer (5-CACACTCC-3'). S and R denotes all-Sp and all-Rp 8-mers,
respectively. The random mixture (128 diastereoisomers) was partly resolved
between the peaks of “S” and “R.” (B) LNA 7-gapmer (5'-AT-gta-GC-3'). S and R
denotes all-Sp and all-Rp 7-gapmers, respectively. The random mixture (64 di-
astereoisomers) elutes as a broad band between the two peaks.

from among the various single diastereoisomers, those isomers with
different and better pharmaceutical properties. In this way, it should
be possible to identify isomers with optimized pharmaceutical prop-
erties among the thousands of compounds in a random mixture. An
interesting aspect of this is that because all these single diastereoiso-
mers are selected from the same pool, they will all share an identical
nucleotide sequence and design so it will be known upfront that they
bind to the RNA target with high affinity. This is an attribute that is
unique for RNA therapeutics.

Concerning the docking of drug molecules to receptors, two models
or views are in question: the lock-key and induced fit’”® model. It
seems that the induced fit models are more realistic due to the influ-
ences of the environment, although the effects of the environment are
less obvious for the DNA/RNA oligomer binding.

MATERIALS AND METHODS

Computational Methods

Most of the data presented here have been derived using ab initio
quantum mechanical methods,” i.e., all structural and energy prop-
erties of the molecules investigated are derived from the time-inde-
pendent electronic Schrodinger equation, without any assumption
of parameters and potentials. In particular, the ab initio HF-
SCF®”*! has been used, with the approximation of Born-Oppen-
heimer separating the nuclear and electronic motion. The HF-SCF

approximation is an independent particle model, i.e., each electron
is assumed to move in the field of the nuclei and the mean field of
all other electrons. The results of the HF-SCF calculations are elec-
tronic configurations. In addition, the geometric structures of the
DNA or LNA PS oligonucleotides are also determined.

The PS oligonucleotides are constructed using the nucleotide builder
in SPARTAN ’14. The DNA molecules are constructed as single strand
nucleotides with an o helix defined with a rise per base pair of 2.548 A
and a rotation per base pair of 32.70°. The LNAs are constructed by
adding a 2'-O-CH,-4' bridge across the appropriate furanose rings.””
Furthermore, to arrive at the LNA-PS oligonucleotides, one of the
non-bridging oxygen atoms in the phosphodiester is replaced by a sul-
fur atom. This creates a chiral center on each phosphorus atom.
Finally, the appropriate number of Na™ ions is added to make the olig-
omers electronically neutral. Molecules so constructed were optimized
in HE-SCF calculations using either SPARTAN ‘14 or Gaussian 09. In
SPARTAN, the calculations are converged when the maximum
gradient is below 0.0003 H/bohr or the maximum change in bond
length is less than 0.0012 A. In Gaussian, the convergence criteria
are that the maximum displacement is less than 0.0018 a.u., whereas
the maximum force is less than 0.00045 a.u.

The wave functions for the LNA-PS oligonucleotides are approxi-
mated as Slater determinants, in which the elements are molecular or-
bitals expanded as linear combinations of atomic orbitals (LCAOs).
The basis sets consist of Gaussian type functions, and in the present
work, the basis set has been chosen as 6-31G*.

Test runs on small oligomers have also been carried out for DFT with
B3LYP and, basically, they resulted in the same structural minima as
that from HF-SCF but required more computer resources. In the case
of 3-mers, the deviation, e.g., in dihedral angles, mounted to less than
1% going from HF-SCF to B3LYP.

Most of the QM studies in the past literature have been employing
DFT methods for their studies of bio-molecules, although smaller
than the oligonucleotides of this paper. Such DFTs studied give
roughly similar electronic structures. One of the authors of this paper
has been participating in an extensive QM study performed (Frimand
et al.*?) on peptides with aqueous solvents, in which different QM
methods are compared. The study concluded that the various
methods basically gave the same minimized electronic structures
but consumed different computer resources.

The main task of calculating the electronic structures of molecules is
to solve the time-independent Schrodinger equation of the multi-

electron molecules within the Born-Oppenheimer approximation.

When the molecular orbitals are expanded in basis sets, the HF-SCF
method gives rise to the matrix equation:””

1—;<ccoef>:Es<ccoef>7
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coef

where ¢ are the expansion coefficients of the molecular orbitals,
E contains the orbital energies, and S is the overlap matrix. The ele-
ments of the Fock operator, F,,, consist of the elements of the core
Hamiltonian, H,,,“"

term K,,,. Thus, the elements of the F operator become:

, the Coulomb energy term J,,, and the exchange

__ pycore
Fpo = HO + K-

The elements of the core Hamiltonian are:

o= [ o[-0 2m)a-(e famen) Y 21 o,

where A stands for the Laplace operator and ¢, is the molecular
orbital expanded on the basis functions.

On the basis of the optimized wave function, it is possible to calcu-
late the electrostatic potential experienced by a test charge at a
particular point in three-dimensional space. The electrostatic poten-
tial can be illustrated as an iso-surface defined by points that have
the same electrostatic potential energy relative to a test charge.
Thus, both positive and negative potential energy surfaces can be
derived that give information about where ligand molecules can be
attracted to the oligonucleotides. The chosen iso-values for the elec-
trostatic potentials here are 83.68 kJ/mol and —83.68 kJ/mol. This
energy corresponds to two to three times the energy of a hydrogen
bond and is thus reflective of intermolecular interactions/bonding
found in biological systems. The iso-surfaces of the electrostatic po-
tentials mostly show larger compact spheres covering larger areas of
the molecules, and numbers of smaller spheres around polar/
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Figure 9. Ab Initio HF-SCF Optimized Structure of
Duplex: 5'-ATgtaGC-3' for all-Rp and RNA Trimer
5'-uac-3'

The HOMO (solid) is localized on A at the &' end and
LUMO (transparent) was localized at a sodium atom at the
3 end.

charged groups or atoms comprising electron
lone pairs. Further, on the basis of the opti-
mized wave functions, the electron densities
have been derived. These are presented
as iso-surfaces, with
0.002 electrons/a.u.’® Also calculated are iso-
surfaces of the HOMO and LUMO. These sur-
faces yield information about electron donor/
acceptor sites. Charges associated with the
various atoms in the oligonucleotides can be
calculated using the Mulliken approximation.”’
Few simulations based on quantum mechanical

iso-values chosen as

optimization of larger bio-molecular structures
starting from the atomic constituents have
been reported in the literature. This is in
contrast to classical MD simulations of DNA
and protein structures and of the simulation of folding processes.
In the latter, the multiple minima problem is well-documented
and seen in the many conformational states that are observed in pro-
tein folding.

The quantum mechanical procedures result in optimized structures
that often have helical structures, which in our test case of 11X]J (Fig-
ure 2), came close to the crystal structure.®’ Here, in this test, we start
with the crystal structure as the initial structure and employ the HF-
SCF and, in some cases, also the MD optimizations that are based on
force fields.'®

Synthesis of Oligonucleotides with Defined PS Chirality

The synthesis of chiral DNA and LNA 3'-O-oxazaphos-
pholidine monomers was performed using previously described
methods.”” The oligonucleotides 5'-A T gta,G,"C-3' (7-mer) and
5'- MCAMCAMC T MCMC-3" (8-mer) and the all-Rp and all-Sp
isoforms were synthesized according to published procedures, with
the exception that DCI (4,5-dicyano imidazole) was used as the
activator.

Table 3. Base-Pair Geometry as Derived for the LNA-PS/RNA Duplex
Obtained in HF/6-31G* Calculations

Base Pair der.cr (A) Ay () e (°)
C-G 10.8 56.1 49.0
T-A 10.6 56.6 51.6
U-A 10.9 53.6 52.3

der..cr, My and Ag are defined according to Shrake et al.”
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AIE chromatography was performed on a Dionex Ultimade 3000
system. Column: DNA-pac PA100, 2 x 250 mm. Solvents buffer A
(10 mM NaClO4, 1 mM EDTA, and 20 mM Tris-HCL, pH 7.8)
and B (1 mM NaClO4, 1 mM EDTA, and 20 mM Tris-HCL,
pH 7.8). Gradient 0 min. 0% B, 35 min. 35% B, 40 min. 0% B. Detec-
tion 260 nm. 50 pL injected.
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